㈠ CNN(卷积神经网络)是什么
CNN的核心其实就是卷积核的作用,如果学过数字图像处理,对于卷积核的作用应该不陌生,比如你做一个最简单的方向滤波器,那就是一个二维卷积核,这个核其实就是一个模板,利用这个模板再通过卷积计算的定义就可以计算出一幅新的图像,新的图像会把这个卷积核所体现的特征突出显示出来。比如这个卷积核可以侦测水平纹理,那卷积出来的图就是原图水平纹理的图像。现在假设要做一个图像的分类问题,比如辨别一个图像里是否有一只猫,我们可以先判断是否有猫的头,猫的尾巴,猫的身子等等,如果这些特征都具备,那么我就判定这应该是一只猫(如果用心的话你就会发现这就是CNN最后的分类层,这一部分是我们传统的神经网络的范畴)。
㈡ 卷积神经网络算法是什么
一维构筑、二维构筑、全卷积构筑。
卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一。
卷积神经网络具有表征学习(representation learning)能力,能够按其阶层结构对输入信息进行平移不变分类(shift-invariant classification),因此也被称为“平移不变人工神经网络(Shift-Invariant Artificial Neural Networks, SIANN)”。
卷积神经网络的连接性:
卷积神经网络中卷积层间的连接被称为稀疏连接(sparse connection),即相比于前馈神经网络中的全连接,卷积层中的神经元仅与其相邻层的部分,而非全部神经元相连。具体地,卷积神经网络第l层特征图中的任意一个像素(神经元)都仅是l-1层中卷积核所定义的感受野内的像素的线性组合。
卷积神经网络的稀疏连接具有正则化的效果,提高了网络结构的稳定性和泛化能力,避免过度拟合,同时,稀疏连接减少了权重参数的总量,有利于神经网络的快速学习,和在计算时减少内存开销。
卷积神经网络中特征图同一通道内的所有像素共享一组卷积核权重系数,该性质被称为权重共享(weight sharing)。权重共享将卷积神经网络和其它包含局部连接结构的神经网络相区分,后者虽然使用了稀疏连接,但不同连接的权重是不同的。权重共享和稀疏连接一样,减少了卷积神经网络的参数总量,并具有正则化的效果。
在全连接网络视角下,卷积神经网络的稀疏连接和权重共享可以被视为两个无限强的先验(pirior),即一个隐含层神经元在其感受野之外的所有权重系数恒为0(但感受野可以在空间移动);且在一个通道内,所有神经元的权重系数相同。
㈢ 前馈神经网络、BP神经网络、卷积神经网络的区别与联系
一、计算方法不同
1、前馈神经网络:一种最简单的神经网络,各神经元分层排列。每个神经元只与前一层的神经元相连。接收前一层的输出,并输出给下一层.各层间没有反馈。
2、BP神经网络:是一种按照误差逆向传播算法训练的多层前馈神经网络。
3、卷积神经网络:包含卷积计算且具有深度结构的前馈神经网络。
二、用途不同
1、前馈神经网络:主要应用包括感知器网络、BP网络和RBF网络。
2、BP神经网络:
(1)函数逼近:用输入向量和相应的输出向量训练一个网络逼近一个函数;
(2)模式识别:用一个待定的输出向量将它与输入向量联系起来;
(3)分类:把输入向量所定义的合适方式进行分类;
(4)数据压缩:减少输出向量维数以便于传输或存储。
3、卷积神经网络:可应用于图像识别、物体识别等计算机视觉、自然语言处理、物理学和遥感科学等领域。
联系:
BP神经网络和卷积神经网络都属于前馈神经网络,三者都属于人工神经网络。因此,三者原理和结构相同。
三、作用不同
1、前馈神经网络:结构简单,应用广泛,能够以任意精度逼近任意连续函数及平方可积函数.而且可以精确实现任意有限训练样本集。
2、BP神经网络:具有很强的非线性映射能力和柔性的网络结构。网络的中间层数、各层的神经元个数可根据具体情况任意设定,并且随着结构的差异其性能也有所不同。
3、卷积神经网络:具有表征学习能力,能够按其阶层结构对输入信息进行平移不变分类。
(3)卷积神经计算法扩展阅读:
1、BP神经网络优劣势
BP神经网络无论在网络理论还是在性能方面已比较成熟。其突出优点就是具有很强的非线性映射能力和柔性的网络结构。网络的中间层数、各层的神经元个数可根据具体情况任意设定,并且随着结构的差异其性能也有所不同。但是BP神经网络也存在以下的一些主要缺陷。
①学习速度慢,即使是一个简单的问题,一般也需要几百次甚至上千次的学习才能收敛。
②容易陷入局部极小值。
③网络层数、神经元个数的选择没有相应的理论指导。
④网络推广能力有限。
2、人工神经网络的特点和优越性,主要表现在以下三个方面
①具有自学习功能。例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。预期未来的人工神经网络计算机将为人类提供经济预测、效益预测,其应用前途是很远大的。
②具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。
③具有高速寻找优化解的能力。寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。
㈣ 如何计算卷积神经网络中接受野尺寸
#Compute input size that leads to a 1x1 output size, among other things
# [filter size, stride, padding]
convnet =[[11,4,0],[3,2,0],[5,1,2],[3,2,0],[3,1,1],[3,1,1],[3,1,1],[3,2,0],[6,1,0]]
layer_name = ['conv1','pool1','conv2','pool2','conv3','conv4','conv5','pool5','fc6-conv']
imsize = 227
def outFromIn(isz, layernum = 9, net = convnet):
if layernum>len(net): layernum=len(net)
totstride = 1
insize = isz
#for layerparams in net:
for layer in range(layernum):
fsize, stride, pad = net[layer]
outsize = (insize - fsize + 2*pad) / stride + 1
insize = outsize
totstride = totstride * stride
return outsize, totstride
def inFromOut( layernum = 9, net = convnet):
if layernum>len(net): layernum=len(net)
outsize = 1
#for layerparams in net:
for layer in reversed(range(layernum)):
fsize, stride, pad = net[layer]
outsize = ((outsize -1)* stride) + fsize
RFsize = outsize
return RFsize
if __name__ == '__main__':
print "layer output sizes given image = %dx%d" % (imsize, imsize)
for i in range(len(convnet)):
p = outFromIn(imsize,i+1)
rf = inFromOut(i+1)
print "Layer Name = %s, Output size = %3d, Stride = % 3d, RF size = %3d" % (layer_name[i], p[0], p[1], rf)
㈤ 卷积神经网络的学习率怎么计算出来的
注意:训练样本和测试样本是不一样的。判断正确和错误,主要是看能不能通过训练分析机以及是否在误差内。正确率的得出:对测试样本进行测试,看看识别出来的有哪些,除以测试样本的总数即可。
㈥ 常见的深度学习算法主要有哪些
深度学习常见的3种算法有:卷积神经网络、循环神经网络、生成对抗网络。
卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习的代表算法之一。
循环神经网络(Recurrent Neural Network, RNN)是一类以序列数据为输入,在序列的演进方向进行递归且所有节点(循环单元)按链式连接的递归神经网络。
生成对抗网络(GAN, Generative Adversarial Networks )是一种深度学习模型,是最近两年十分热门的一种无监督学习算法。
㈦ 卷积神经网络怎么计算输出特征图的大小
假设原图为32*32的,卷积核尺寸为4,步长为2,则输出的图像应该是(32-4+2)/2=15,输出就应该是15*15的图像