Ⅰ K均值聚类法和系统聚类法有什么区别,这两种聚类方法的适用条件都是什么
适用条件:系统聚类法适于二维有序样品聚类的样品个数比较均匀。K均值聚类法适用于快速高效,特别是大量数据时使用。
两者区别如下:
一、指代不同
1、K均值聚类法:是一种迭代求解的聚类分析算法。
2、系统聚类法:又叫分层聚类法,聚类分析的一种方法。
二、步骤不同
1、K均值聚类法:步骤是随机选取K个对象作为初始的聚类中心,然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。
2、系统聚类法:开始时把每个样品作为一类,然后把最靠近的样品(即距离最小的群品)首先聚为小类,再将已聚合的小类按其类间距离再合并,不断继续下去,最后把一切子类都聚合到一个大类。
三、目的不同
1、K均值聚类法:终止条件可以是没有(或最小数目)对象被重新分配给不同的聚类,没有(或最小数目)聚类中心再发生变化,误差平方和局部最小。
2、系统聚类法:是以距离为相似统计量时,确定新类与其他各类之间距离的方法,如最短距离法、最长距离法、中间距离法、重心法、群平均法、离差平方和法、欧氏距离等。
Ⅱ kmeans聚类算法是什么
k均值聚类算法是一种迭代求解的聚类分析算法,由于简洁和效率使得他成为所有聚类算法中最广泛使用的。k均值聚类算法通过给定一个数据点集合和需要的聚类数目k,k由用户指定,k均值算法根据某个距离函数反复把数据分入k个聚类中。
k均值聚类算法的具体步骤:
其步骤是预将数据分为K组,则随机选取K个对象作为初始的聚类中心,然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。聚类中心以及分配给它们的对象就代表一个聚类。
每分配一个样本,聚类的聚类中心会根据聚类中现有的对象被重新计算。这个过程将不断重复直到满足某个终止条件。终止条件可以是没有(或最小数目)对象被重新分配给不同的聚类,没有(或最小数目)聚类中心再发生变化,误差平方和局部最小。
Ⅲ 如何对点进行k均值聚类算法 matlab
在聚类分析中,K-均值聚类算法(k-means algorithm)是无监督分类中的一种基本方法,其也称为C-均值算法,其基本思想是:通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果.\x0d假设要把样本集分为c个类别,算法如下:\x0d(1)适当选择c个类的初始中心;\x0d(2)在第k次迭代中,对任意一个样本,求其到c个中心的距离,将该样本归到距离最短的中心所在的类,\x0d(3)利用均值等方法更新该类的中心值;\x0d(4)对于所有的c个聚类中心,如果利用(2)(3)的迭代法更新后,值保持不变,则迭代结束,否则继续迭代.\x0d下面介绍作者编写的一个分两类的程序,可以把其作为函数调用.\x0d%% function [samp1,samp2]=kmeans(samp); 作为调用函数时去掉注释符\x0dsamp=[11.1506 6.7222 2.3139 5.9018 11.0827 5.7459 13.2174 13.8243 4.8005 0.9370 12.3576]; %样本集\x0d[l0 l]=size(samp);\x0d%%利用均值把样本分为两类,再将每类的均值作为聚类中心\x0dth0=mean(samp);n1=0;n2=0;c1=0.0;c1=double(c1);c2=c1;for i=1:lif samp(i)<th0\x0dc1=c1+samp(i);n1=n1+1;elsec2=c2+samp(i);n2=n2+1;endendc1=c1/n1;c2=c2/n2; %初始聚类中心t=0;cl1=c1;cl2=c2;\x0dc11=c1;c22=c2; %聚类中心while t==0samp1=zeros(1,l);\x0dsamp2=samp1;n1=1;n2=1;for i=1:lif abs(samp(i)-c11)<abs(samp(i)-c22)\x0dsamp1(n1)=samp(i);\x0dcl1=cl1+samp(i);n1=n1+1;\x0dc11=cl1/n1;elsesamp2(n2)=samp(i);\x0dcl2=cl2+samp(i);n2=n2+1;\x0dc22=cl2/n2;endendif c11==c1 && c22==c2t=1;endcl1=c11;cl2=c22;\x0dc1=c11;c2=c22;\x0dend %samp1,samp2为聚类的结果.\x0d初始中心值这里采用均值的办法,也可以根据问题的性质,用经验的方法来确定,或者将样本集随机分成c类,计算每类的均值.\x0dk-均值算法需要事先知道分类的数量,这是其不足之处.
Ⅳ 使用K-Means 算法进行聚类分析程序
高维求距离呗。自己定义一个距离的概念,一般都用和2维一样的2-norm.