1. 用十字相乘法怎么运算
字相乘法能把某些二次三项式分解因式。这种方法的关键是把二次项系数a分解成两个因数a1,a2的积a1•a2,把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果:在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。
例题
例1 把2x^2-7x+3分解因式.
分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分
别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.
分解二次项系数(只取正因数):
2=1×2=2×1;
分解常数项:
3=1×3=3×1=(-3)×(-1)=(-1)×(-3).
用画十字交叉线方法表示下列四种情况:
1 1
╳
2 3
1×3+2×1
=5
1 3
╳
2 1
1×1+2×3
=7
1 -1
╳
2 -3
1×(-3)+2×(-1)
=-5
1 -3
╳
2 -1
1×(-1)+2×(-3)
=-7
经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.
解 2x^2-7x+3=(x-3)(2x-1).
一般地,对于二次三项式ax2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:
a1 c1
╳
a2 c2
a1c2+a2c1
按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即
ax2+bx+c=(a1x+c1)(a2x+c2).
像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法.
例2 把6x^2-7x-5分解因式.
分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种
2 1
╳
3 -5
2×(-5)+3×1=-7
是正确的,因此原多项式可以用十字相乘法分解因式.
解 6x^2-7x-5=(2x+1)(3x-5)
指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式.
对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数.例如把x^2+2x-15分解因式,十字相乘法是
1 -3
╳
1 5
1×5+1×(-3)=2
所以x^2+2x-15=(x-3)(x+5).
例3 把5x^2+6xy-8y^2分解因式.
分析:这个多项式可以看作是关于x的二次三项式,把-8y^2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即
1 2
╳
5 -4
1×(-4)+5×2=6
解 5x^2+6xy-8y^2=(x+2y)(5x-4y).
指出:原式分解为两个关于x,y的一次式.
例4 把(x-y)(2x-2y-3)-2分解因式.
分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先进行多项式的乘法运算,把变形后的多项式再因式分解.
问:两上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便?
答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了.
解 (x-y)(2x-2y-3)-2
=(x-y)[2(x-y)-3]-2
=2(x-y) ^2-3(x-y)-2
=[(x-y)-2][2(x-y)+1]
=(x-y-2)(2x-2y+1).
1 -2
╳
2 1
1×1+2×(-2)=-3
指出:把(x-y)看作一个整体进行因式分解,这又是运用了数学中的“整体”思想方法.
例5 x^2+2x-15
分析:常数项(-15)<0,可分解成异号两数的积,可分解为(-1)(15),或(1)(-15)或(3)
(-5)或(-3)(5),其中只有(-3)(5)中-3和5的和为2。
=(x-3)(x+5)
总结:①x^2+(p+q)x+pq型的式子的因式分解
这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p+q)x+pq=(x+p)(x+q)
②kx^2+mx+n型的式子的因式分解
如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么
kx^2+mx+n=(ax+b)(cx+d)
a b
╳
c d
通俗方法
先将二次项分解成(1 X 二次项系数),将常数项分解成(1 X 常数项)然后以下面的格式写
1 1
X
二次项系数 常数项
若交叉相乘后数值等于一次项系数则成立 ,不相等就要按照以下的方法进行试验。(一般的题很简单,最多3次就可以算出正确答案。)
需要多次实验的格式为:(注意:此时的abcd不是指(ax^2+bx+c)里面的系数,而且abcd最好为整数)
a b
╳
c d
第一次a=1 b=1 c=二次项系数÷a d=常数项÷b
第二次a=1 b=2 c=二次项系数÷a d=常数项÷b
第三次a=2 b=1 c=二次项系数÷a d=常数项÷b
第四次a=2 b=2 c=二次项系数÷a d=常数项÷b
第五次a=2 b=3 c=二次项系数÷a d=常数项÷b
第六次a=3 b=2 c=二次项系数÷a d=常数项÷b
第七次a=3 b=3 c=二次项系数÷a d=常数项÷b
......
依此类推
直到(ad+cb=一次项系数)为止。最终的结果格式为(ax+b)(cx+d)
例解:
2x^2+7x+6
第一次:
1 1
╳
2 6
1X6+2X1=8 8>7 不成立 继续试
第二次
1 2
╳
2 3
1X3+2X2=7 所以 分解后为:(x+2)(2x+3)
[编辑本段]⒉十字相乘法(解决两者之间的比例问题)
原理
一个集合中的个体,只有2个不同的取值,部分个体取值为A,剩余部分取值为B。平均值为C。求取值为A的个体与取值为B的个体的比例。假设A有X,B有(1-X)。
AX+B(1-X)=C
X=(C-B)/(A-B)
1-X=(A-C)/(A-B)
因此:X∶(1-X)=(C-B)∶(A-C)
上面的计算过程可以抽象为:
A ………C-B
……C
B……… A-C
这就是所谓的十字相乘法。
十字相乘法使用时的注意
第一点:用来解决两者之间的比例问题。
第二点:得出的比例关系是基数的比例关系。
第三点:总均值放中央,对角线上,大数减小数,结果放在对角线上。
2. 如何计算十字相乘法。
十字相乘法——借助画十字交叉线分解系数,从而把二次三项式分解因式的方法叫做十字相乘法。
十字相乘法是二次三项式分解因式的一种常用方法,它是先将二次三项式 的二次项系数a及常数项c都分解为两个因数的乘积(一般会有几种不同的分法)
然后按斜线交叉相乘、再相加,若有 ,则有 ,否则,需交换 的位置再试,若仍不行,再换另一组,用同样的方法试验,直到找到合适的为止。
在我们做因式分解题时,可以参照下面的口诀:
首先提取公因式,然后考虑用公式;
十字相乘试一试,分组分得要合适;
四种方法反复试,最后须是连乘式。
十字相乘法解题实例:
1)、 用十字相乘法解一些简单常见的题目
例1把m²+4m-12分解因式
分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题
解:因为 1 -2
1 ╳ 6
所以m²+4m-12=(m-2)(m+6)
例2把5x²+6x-8分解因式
分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1。当二次项系数分为1×5,常数项分为-4×2时,才符合本题
解: 因为 1 2
5 ╳ -4
所以5x²+6x-8=(x+2)(5x-4)
例3解方程x²-8x+15=0
分析:把x²-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。
解: 因为 1 -3
1 ╳ -5
所以原方程可变形(x-3)(x-5)=0
所以x1=3 x2=5
例4、解方程 6x²-5x-25=0
分析:把6x²-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。
解: 因为 2 -5
3 ╳ 5
所以 原方程可变形成(2x-5)(3x+5)=0
所以 x1=5/2 x2=-5/3
2)、用十字相乘法解一些比较难的题目
例5把14x²-67xy+18y²分解因式
分析:把14x²-67xy+18y²看成是一个关于x的二次三项式,则14可分为1×14,2×7, 18y²可分为y.18y , 2y.9y , 3y.6y
解: 因为 2 -9y
7 ╳ -2y
所以 14x²-67xy+18y²= (2x-9y)(7x-2y)
例6 把10x²-27xy-28y²-x+25y-3分解因式
分析:在本题中,要把这个多项式整理成二次三项式的形式
解法一、10x²-27xy-28y²-x+25y-3
=10x²-(27y+1)x -(28y²-25y+3) 4y -3
7y ╳ -1
=10x²-(27y+1)x -(4y-3)(7y -1)
=[2x -(7y -1)][5x +(4y -3)] 2 -(7y – 1)
5 ╳ 4y - 3
=(2x -7y +1)(5x +4y -3)
说明:在本题中先把28y²-25y+3用十字相乘法分解为(4y-3)(7y -1),再用十字相乘法把10x²-(27y+1)x -(4y-3)(7y -1)分解为[2x -(7y -1)][5x +(4y -3)]
解法二、10x²-27xy-28y²-x+25y-3
=(2x -7y)(5x +4y)-(x -25y)- 3 2 -7y
=[(2x -7y)+1] [(5x -4y)-3] 5 ╳ 4y
=(2x -7y+1)(5x -4y -3) 2 x -7y 1
5 x - 4y ╳ -3
说明:在本题中先把10x²-27xy-28y²用十字相乘法分解为(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解为[(2x -7y)+1] [(5x -4y)-3].
例7:解关于x方程:x²- 3ax + 2a²–ab -b²=0
分析:2a²–ab-b²可以用十字相乘法进行因式分解
解:x²- 3ax + 2a²–ab -b²=0
x²- 3ax +(2a²–ab - b²)=0
x²- 3ax +(2a+b)(a-b)=0 1 -b
2 ╳ +b
[x-(2a+b)][ x-(a-b)]=0 1 -(2a+b)
1 ╳ -(a-b)
所以 x1=2a+b x2=a-b
如果答案对您有帮助,真诚希望您的采纳和好评哦!!
祝:学习进步哦!!
*^_^* *^_^*
3. 十字相乘法如何计算
十字相乘法的方法简单来讲就是:十字左边相乘等于二次项,右边相乘等于常数项,交叉相乘再相加等于一次项。其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。十字相乘法能把某些二次三项式分解因式。对于形如ax²+bx+c=(a1x+c1)(a2x+c2)的整式来说,方法的关键是把二次项系数a分解成两个因数a1,a2的积a1·a2,把常数项c分解成两个因数c1,c2的积c1·c2,并使a1c2+a2c1正好是一次项的系数b,那么可以直接写成结果
:
ax²+bx+c=(a1x+c1)(a2x+c2)。在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。基本式子:x²+(p+q)χ+pq=(χ+p)(χ+q)。
例:
a²x²+ax-42
首先,我们看看第一个数,是a²,代表是两个a相乘得到的,则推断出(a
×+?)×(a
×+?)
然后我们再看第二项,+a
这种式子是经过合并同类项以后得到的结果,所以推断出是两项式×两项式。
再看最后一项是-42
,-42是-6×7
或者6×-7也可以分解成
-21×2
或者21×-2
首先,21和2无论正负,合并后都不可能是1
只可能是-19或者19,所以排除后者。
然后,再确定是-7×6还是7×-6.
(a×-7))×(a×+6)=a²-a-42(计算过程省略,)
得到结果与原来结果不相符,原式+a
变成了-a
再算:
(a×+7)×(a×+(-6))=a²+a-42
正确,所以a²x²+ax-42就被分解成为(ax+7)×(ax-6),这就是通俗的十字相乘法分解因式.
4. 求十字相乘法的运算方法,和步骤,详细些
十字相乘法是一种适用于二次三项式类型题目的简便方法,它可以用来分解因式和解一元二次方程。
如x²-7x+6,将x²拆为x乘x,6拆成(-1)乘(-6),交叉相乘,-x与-6x,将两者相加,若等于-7x,那么,即可化简为(x-1)(x-6)。
十字分解法能用于二次三项式(一元二次式)的分解因式(不一定是整数范围内)。对于像ax²+bx+c=(a1x+c1)(a2x+c2)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数a1,a2的积,把常数项c分解成两个因数c1,c2的积,并使a1c2+a2c1正好等于一次项的系数b。
(4)十字计算法扩展阅读
十字相乘法重难点
难点:灵活运用十字分解法分解因式。因为并不是所有二次多项式都可以用十字相乘法分解因式。
重点:正确地运用十字分解法把某些二次项系数不是1的二次三项式分解因式。
十字相乘法注意事项
第一点:用来解决两者之间的比例问题。
第二点:得出的比例关系是基数的比例关系。
第三点:总均值放中央,对角线上,大数减小数,结果放在对角线上。
5. 怎么运用十字相乘法计算
你好!十字相乘法的方法简单点来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
十字相乘法能把某些二次三项式分解因式。
6. 十字相乘法原理怎么样计算
字相乘法虽然比较难学,但是一旦学会了它,用它来解题,会给我们带来很多方便,以下是我对十字相乘法提出的一些个人见解。 1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。 2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。 3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。 4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。2、十字相乘法只适用于二次三项式类型的题目。3、十字相乘法比较难学。
7. 十字相乘法的技巧
十字相乘法的具体方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数.
应用十字相乘法解题的实例:
例1把m²+4m-12分解因式
分析:
本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题
因为 1 -2
1 ╳ 6
所以m²+4m-12=(m-2)(m+6)
例2把5x²+6x-8分解因式
分析:
本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1.当二次项系数分为1×5,常数项分为-4×2时,才符合本题
因为 1 2
5 ╳ -4
所以5x²+6x-8=(x+2)(5x-4)
例3解方程x²-8x+15=0
分析:
把x²-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5.
因为 1 -3
1 ╳ -5
所以原方程可变形(x-3)(x-5)=0
所以x1=3 x2=5
例4、解方程 6x²-5x-25=0
分析:
把6x²-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1.
因为 2 -5
3 ╳ 5
所以 原方程可变形成(2x-5)(3x+5)=0
所以 x1=5/2 x2=-5/3
(7)十字计算法扩展阅读:
十字分解法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。
十字分解法能用于二次三项式的分解因式(不一定是整数范围内)。对于像ax²+bx+c=(a1x+c1)(a2x+c2)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数a1,a2的积,把常数项c分解成两个因数c1,c2的积,并使a1c2+a2c1正好等于一次项的系数b。
那么可以直接写成结果:ax²+bx+c=(a1x+c1)(a2x+c2)。在运用这种方法分解因式时,要注意观察,尝试,并体会,它的实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。基本式子:x²+(p+q)x+pq=(x+p)(x+q)。
8. 十字相乘法的简单方法是什么
十字相乘法的方法简单点来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
9. 十字相乘法怎么计算
我们要把二次项拆成两个因式的积,
常数项拆成两个常数的积,然后十字图案交叉相乘,若合并后的结果为一次项,说明分解正确,再把每一行写在一个括号里相乘即可。若合并后的结果不是一次项,需要重新调整尝试。举例如下:
例:x²–6x+5(二次项系数为1的情形)
x - 5
↘ ↗
↗ ↘
x –1
交叉相乘并相加得:
–x–5x=-6x等于一次项
说明分解正确
∴x²–6x+5=(x–5)(x–1)
(把每行写在一个括号里即可)
(9)十字计算法扩展阅读
十字分解法能用于二次三项式(一元二次式)的分解因式(不一定是整数范围内)。对于像ax²+bx+c=(a1x+c1)(a2x+c2)这样的整式来说。
这个方法的关键是把二次项系数a分解成两个因数a1,a2的积,把常数项c分解成两个因数c1,c2的积,并使a1c2+a2c1正好等于一次项的系数b。那么可以直接写成结果:ax²+bx+c=(a1x+c1)(a2x+c2)。
在运用这种方法分解因式时,要注意观察,尝试,并体会,它的实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。基本式子:x²+(p+q)x+pq=(x+p)(x+q)。