导航:首页 > 文档加密 > 黎曼曲面pdf

黎曼曲面pdf

发布时间:2022-06-21 13:14:49

A. 《微积分学教程(第一卷)》pdf下载在线阅读全文,求百度网盘云资源

《微积分学教程(第1卷)》(Г.М.菲赫金哥尔茨)电子书网盘下载免费在线阅读

链接: https://pan..com/s/1dDuS7c1C3YXpwCa0XSiH2A

提取码: qf7j

书名:微积分学教程(第1卷)

作者:Г.М.菲赫金哥尔茨

豆瓣评分:9.4

出版社:高等教育出版社

出版年份:2006-1-1

页数:526

内容简介:

本书是一部卓越的数学科学与教育着作。自第一版问世50多年来,本书多次再版,至今仍被俄罗斯的综合大学以及技术和师范院校选作数学分析课程的基本教材之一,并被翻译成多种文字。在世界范围内广受欢迎。

本书所包括的主要内容是在20世纪初最后形成的现代数学分析的经典部分。本书第一卷包括实变量一元与多元微分学及其基本应用;第二卷研究黎曼积分理论与级数理论;第三卷研究多重积分、曲线积分、曲面积分、斯蒂尔吉斯积分、傅里叶级数与傅里叶变换。

本书的特点是:一、含有大量例题与应用实例;二、材料的叙述通俗、详细和准确;三、在极少使用集合论的(包括记号)同时保持了叙述的全部严格性,以便读者容易初步掌握本课程的内容。

本书可供各级各类高等学校的数学分析与高等数学课程作为教学参考书,是数学分析教师极好的案头用书。

B. 求外国大学数学、物理教材。。。PDF也行。。。谢了。。。

物理:
力学
Kleppner An Introction To Mechanics

热学
Zemansky Heat and Thermodynamics

电磁学
Purcell Electricity and Magnetism

光学
Jenkins/White Fundamentals of Optics

经典力学
John Taylor Classical Mechanics (本科)
Scheck Mechanics (研究生)

电动力学
Griffiths 电动力学导论(本科)
Franklin Classical Electromagnetism(研究生)

量子力学
Griffiths 量子力学导论(本科)
Sakurai 现代量子力学(研究生)

统计力学
Schroeder Introction to Thermal Physics (本科)
Pathria 统计力学(研究生)

统计场论
Ma Shang-Keng Modern Theory of Critical Phenomena
Stanley Phase Transition and Critical Phenomena

固体物理
Ashcroft/Mermin Solid State Physics

数学物理方法
Boas Mathematical Methods in the Physical Science

广义相对论
Hartle Gravity
Wald General Relativity

粒子物理
Griffiths Introction to Elementary Particles
数学:
微分几何:
1、Peter Petersen, Riemannian Geometry:标准的黎曼几何教材;
2、Riemannian Manifolds: An Introction to Curvature by John M. Lee:最新的黎曼几何教材;
3、doCarmo, Riemannian Geometry.:标准的黎曼几何教材;
4、M. Spivak, A Comprehensive Introction to Differential Geometry I—V:全面的微分几何经典,适合作参考书;
5、Helgason , Differential Geometry,Lie groups,and symmetric spaces:标准的微分几何教材;
6、Lang, Fundamentals of Differential Geometry:最新的微分几何教材,很适合作参考书;
7、kobayashi/nomizu, Foundations of Differential Geometry:经典的微分几何参考书;
8、Boothby,Introction to Differentiable manifolds and Riemannian Geometry:标准的微分几何入门教材,主要讲述微分流形;
9、Riemannian Geometry I.Chavel:经典的黎曼几何参考书;
10、Dubrovin, Fomenko, Novikov “Modern geometry-methods and applications”Vol 1—3:经典的现代几何学参考书。
代数几何:
1、Harris,Algebraic Geometry: a first course:代数几何的入门教材;
2、Algebraic Geometry Robin Hartshorne :经典的代数几何教材,难度很高;
3、Basic Algebraic Geometry 1&2 2nd ed. I.R.Shafarevich.:非常好的代数几何入门教材;
4、Principles of Algebraic Geometry by giffiths/harris:全面、经典的代数几何参考书,偏复代数几何;
5、Commutative Algebra with a view toward Algebraic Geometry by Eisenbud:高级的代数几何、交换代数的参考书,最新的交换代数全面参考;
6、The Geometry of Schemes by Eisenbud:很好的研究生代数几何入门教材;
7、The Red Book of Varieties and Schemes by Mumford:标准的研究生代数几何入门教材;
8、Algebraic Geometry I : Complex Projective Varieties by David Mumford:复代数几何的经典。
调和分析 偏微分方程
1、An Introction to Harmonic Analysis,Third Edition Yitzhak Katznelson:调和分析的标准教材,很经典;
2、Evans, Partial differential equations:偏微分方程的经典教材;
3、Aleksei.A.Dezin,Partial differential equations,Springer-Verlag:偏微分方程的参考书;
4、L. Hormander “Linear Partial Differential Operators, ” I&II:偏微分方程的经典参考书;
5、A Course in Abstract Harmonic Analysis by Folland:高级的研究生调和分析教材;
6、Abstract Harmonic Analysis by Ross Hewitt:抽象调和分析的经典参考书;
7、Harmonic Analysis by Elias M. Stein:标准的研究生调和分析教材;
8、Elliptic Partial Differential Equations of Second Order by David Gilbarg:偏微分方程的经典参考书;
9、Partial Differential Equations ,by Jeffrey Rauch:标准的研究生偏微分方程教材。
复分析 多复分析导论
1、Functions of One Complex Variable II,J.B.Conway:单复变的经典教材,第二卷较深入;
2、Lectures on Riemann Surfaces O.Forster:黎曼曲面的参考书;
3、Compact riemann surfaces Jost:黎曼曲面的参考书;
4、Compact riemann surfaces Narasimhan:黎曼曲面的参考书;
5、Hormander ” An introction to Complex Analysis in Several Variables”:多复变的标准入门教材;
6、Riemann surfaces , Lang:黎曼曲面的参考书;
7、Riemann Surfaces by Hershel M. Farkas:标准的研究生黎曼曲面教材;
8、Function Theory of Several Complex Variables by Steven G. Krantz:高级的研究生多复变参考书;
9、Complex Analysis: The Geometric Viewpoint by Steven G. Krantz:高级的研究生复分析参考书。
专业方向选修课:
1、多复分析;2、复几何;3、几何分析;4、抽象调和分析;5、代数几何;6、代数数论;7、微分几何;8、代数群、李代数与量子群;9、泛函分析与算子代数;10、数学物理;11、概率理论;12、动力系统与遍历理论;13、泛代数。
数学基础:
1、halmos ,native set theory;
2、fraenkel ,abstract set theory;
3、ebbinghaus ,mathematical logic;
4、enderton ,a mathematical introction to logic;
5、landau, foundations of analysis;
6、maclane ,categories for working mathematican。应该在核心课程学习的过程中穿插选修

C. 《微分几何初步》pdf下载在线阅读,求百度网盘云资源

《微分几何初步》(陈维桓)电子书网盘下载免费在线阅读

资源链接:

链接: https://pan..com/s/1UstK7HLMVexhlC07bk8o1Q

提取码: u63d

书名:微分几何初步

作者:陈维桓

豆瓣评分:7.2

出版社:北京大学出版社

出版年份:1990-10

页数:272

内容简介:

《微分几何初步》是北京大学数学系微分几何课程的教材。主要讲述三维欧氏空间中曲线和曲面的局部理论,内容包括:预备知识,曲线论,曲面的第一基本形式,曲面的第二基本形式,曲面论基本定理,测地曲率和测地线,活动标架和外微分法。另有附录叙述了《微分几何初步》所用的微分方程的定理,并介绍了张量的概念。《微分几何初步》力图向近代微分几何的语言和方法靠近,因此在讲述时尽量结合现代流形的概念,并且自始至终使用附属在曲线、曲面上的标架场,对外微分形式有相当详细的介绍。《微分几何初步》叙述深入浅出,条理清楚,论证严密,突出几何想法,便于读者理解与掌握。

《微分几何初步》可作为综合大学及高等师范院校的微分几何课程教材,也可作为高等教育自学考试的教学参考书。

作者简介:

陈维桓,北京大学数学科学学院教授,博士生导师。1964年毕业于北京大学数学力学系,后师从吴光磊先生读研究生。长期从事微分几何方向的研究工作和教学工作,开设的课程有“微分几何”、“微分流形”、“黎曼几何引论”和“纤维丛的微分几何”等。已出版的着作有:《微分几何讲义》(与陈省身合着),《黎曼几何选讲》(与伍鸿熙合着),《微分几何初步》,《微分流形初步》,《极小曲面》,以及《黎曼几何引论》(上、下)(与李兴校合编着)等。

D. 《微积分学教程(第3卷)》pdf下载在线阅读全文,求百度网盘云资源

《微积分学教程(第3卷)》(Г.М.菲赫金哥尔)电子书网盘下载免费在线阅读

链接: https://pan..com/s/1v_0yKrwhTADsOAdipb0Y8g

提取码: 7b3f

书名:微积分学教程(第3卷)

作者:Г.М.菲赫金哥尔

豆瓣评分:9.5

出版社:高等教育出版社

出版年份:2006-1-1

页数:546

内容简介:

本书是一部卓越的数学科学与教育着作。自第一版问世50多年来,本书多次再版,至今仍被俄罗斯的综合大学以及技术和师范院校选作数学分析课程的基本教材之一,并被翻译成多种文字。在世界范围内广受欢迎。

本书所包括的主要内容是在20世纪初最后形成的现代数学分析的经典部分。本书第一卷包括实变量一元与多元微分学及其基本应用;第二卷研究黎曼积分理论与级数理论;第三卷研究多重积分、曲线积分、曲面积分、斯蒂尔吉斯积分、傅里叶级数与傅里叶变换。

本书的特点是:一、含有大量例题与应用实例;二、材料的叙述通俗、详细和准确;三、在极少使用集合论的(包括记号)同时保持了叙述的全部严格性,以便读者容易初步掌握本课程的内容。

本书可供各级各类高等学校的数学分析与高等数学课程作为教学参考书,是数学分析教师极好的案头用书。

E. 《极小曲面(平装)》pdf下载在线阅读,求百度网盘云资源

《极小曲面 (平装)》(陈维恒)电子书网盘下载免费在线阅读

链接:https://pan..com/s/1qyWL2hGBNED4QYFSOYFFgg

密码:gfpj

书名:极小曲面 (平装)

作者:陈维恒

出版社:湖南教育出版社

出版年份:1998年04月

页数:153 页

内容简介:

本书从肥皂膜的实验入手,以浅显易懂的语言深入浅出地介绍了3维欧式空间中极小曲面的概念、典型例子和性质,以及一些基本问题和近些年来的进展。极小曲面课题是微分几何研究的热点之一,它与许多数学分支有密切的联系,近来又与计算机技术结下了不解之缘,读者只要具备初等微积分知识,就能从本书中学到不少微分几何、复分析、变分法方面的知识,并且对于极小曲面的发展概貌有初步的了解。 本书的主要内容有:肥皂膜实验,极小曲面方程,Weierstarass表示公式,极小曲面的初等性质,Plateau问题,Bernstein定理,完备嵌入极小小曲面的新例子等等。

作者简介:

陈维桓,北京大学数学科学学院教授,博士生导师。1964年毕业于北京大学数学力学系,后师从吴光磊教授读研究生。1980年起长期从事和主持北京大学微分几何方向的研究工作和教学工作,直到2003年在北京大学退休。在着名学术期刊上发表各种研究论文近50篇;出版着作有:《微分几何讲义》(与陈省身合着),《黎曼几何选讲》(与伍鸿熙合着),《微分几何初步》,《微分几何》,《黎曼几何引论》(上、下册,与李兴校合着)(以上均为北京大学出版社出版);《微分流形初步》,《微分几何例题详解和习题汇编》,以及《流形上的微积分》(以上均为高等教育出版社出版)。培养硕士生10名,博士生3名。

F. 《微分几何讲义微分几何讲义》pdf下载在线阅读,求百度网盘云资源

《微分几何讲义》(陈省身)电子书网盘下载免费在线阅读

资源链接:

链接:https://pan..com/s/1qy2eMYnrrCHmytYRIFA3hw

提取码:hjmk

书名:微分几何讲义

作者:陈省身

豆瓣评分:8.8

出版社:北京大学出版社

出版年份:1999-07

页数:321

内容简介:

内 容 简 介

本书系统地论述了微分几何的基本知识。全书共七章并两个附录。作者以较大的

篇幅,即前三章和第六章介绍了流形、多重线性函数、向量场、外微分、李群和活动标架

法等基本知识和工具。在具备了上述宽广而坚实的基础上,论述微分几何的核心问题,

即连络、黎曼几何以及曲面论等。第七章复流形,既是当前十分活跃的研究领域,也是

第一作者研究成果卓着的领域之一,包含有作者独到的见解和简捷的方法。最后两个

附录,介绍了极小曲面与规范场理论,为这两活跃的前沿领域提出了不少进一步研究

课题。

此书适用于高等院校数学专业和理论物理专业的高年级学生、研究生阅读,并且

可供数学工作者和物理工作者参考。

目 录

第一章 微分流形

1微分流形的定义

2切空间

3子流形

4Frobenius定理

第二章 多重线性函数

1张量积

2张量

3外代数

第三章 外微分

1张量丛

2外微分

3外微分式的积分

4Stokes公式

第四章 连络

1矢量丛上的连络

2仿射连络

3标架丛上的连络

第五章 黎曼流形

1黎曼几何的基本定理

2测地法坐标

3截面曲率

4Gauss-Bonnet定理

5完全性

第六章 李群和活动标架法

1李群

2李氏变换群

3活动标架法

4曲面论

第七章 复流形

1复流形

2矢量空间上的复结构

3近复流形

4复矢量丛上的连络

5Hermite流形和kah1er流形

附录一 欧氏空间中的曲线和曲面

1.切线回转定理

2.四顶点定理

3.平面曲线的等周不等式

4.空间曲线的全曲率

5.空间曲线的变形

6.Gauss-Bonnet公式

7.Cohn-Vossen和Minkowski的唯一性定理

8.关于极小曲面的Bernstein定理

附录二 微分几何与理论物理

参考文献

G. 《微积分学教程(第3卷)》pdf下载在线阅读,求百度网盘云资源

《微积分学教程(第3卷)》(Г.М.菲赫金哥尔)电子书网盘下载免费在线阅读

资源链接:

链接:https://pan..com/s/1G2BrD5Qp5Sp7KImX4cPhxQ

提取码:stlg

书名:微积分学教程(第3卷)

作者:Г.М.菲赫金哥尔

豆瓣评分:9.5

出版社:高等教育出版社

出版年份:2006-1-1

页数:546

内容简介:

本书是一部卓越的数学科学与教育着作。自第一版问世50多年来,本书多次再版,至今仍被俄罗斯的综合大学以及技术和师范院校选作数学分析课程的基本教材之一,并被翻译成多种文字。在世界范围内广受欢迎。

本书所包括的主要内容是在20世纪初最后形成的现代数学分析的经典部分。本书第一卷包括实变量一元与多元微分学及其基本应用;第二卷研究黎曼积分理论与级数理论;第三卷研究多重积分、曲线积分、曲面积分、斯蒂尔吉斯积分、傅里叶级数与傅里叶变换。

本书的特点是:一、含有大量例题与应用实例;二、材料的叙述通俗、详细和准确;三、在极少使用集合论的(包括记号)同时保持了叙述的全部严格性,以便读者容易初步掌握本课程的内容。

本书可供各级各类高等学校的数学分析与高等数学课程作为教学参考书,是数学分析教师极好的案头用书。

H. 《微积分学教程(第一卷)》pdf下载在线阅读,求百度网盘云资源

《微积分学教程(第1卷)》(Г.М.菲赫金哥尔茨)电子书网盘下载免费在线阅读

资源链接:

链接:https://pan..com/s/1nsfFH0FvaLolPLm0iyYIyQ

提取码:ufh7

书名:微积分学教程(第1卷)

作者:Г.М.菲赫金哥尔茨

豆瓣评分:9.4

出版社:高等教育出版社

出版年份:2006-1-1

页数:526

内容简介:

本书是一部卓越的数学科学与教育着作。自第一版问世50多年来,本书多次再版,至今仍被俄罗斯的综合大学以及技术和师范院校选作数学分析课程的基本教材之一,并被翻译成多种文字。在世界范围内广受欢迎。

本书所包括的主要内容是在20世纪初最后形成的现代数学分析的经典部分。本书第一卷包括实变量一元与多元微分学及其基本应用;第二卷研究黎曼积分理论与级数理论;第三卷研究多重积分、曲线积分、曲面积分、斯蒂尔吉斯积分、傅里叶级数与傅里叶变换。

本书的特点是:一、含有大量例题与应用实例;二、材料的叙述通俗、详细和准确;三、在极少使用集合论的(包括记号)同时保持了叙述的全部严格性,以便读者容易初步掌握本课程的内容。

本书可供各级各类高等学校的数学分析与高等数学课程作为教学参考书,是数学分析教师极好的案头用书。

I. DNA复制的拓扑性质是什么

几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现一些孤立的问题,后来在拓扑学的形成中占着重要的地位。

在数学上,关于哥尼斯堡七桥问题、多面体的欧拉定理、四色问题等都是拓扑学发展史的重要问题。

哥尼斯堡(今俄罗斯加里宁格勒)是东普鲁士的首都,普莱格尔河横贯其中。十八世纪在这条河上建有七座桥,将河中间的两个岛和河岸联结起来。人们闲暇时经常在这上边散步,一天有人提出:能不能每座桥都只走一遍,最后又回到原来的位置。这个问题看起来很简单有很有趣的问题吸引了大家,很多人在尝试各种各样的走法,但谁也没有做到。看来要得到一个明确、理想的答案还不那么容易。

1736年,有人带着这个问题找到了当时的大数学家欧拉,欧拉经过一番思考,很快就用一种独特的方法给出了解答。欧拉把这个问题首先简化,他把两座小岛和河的两岸分别看作四个点,而把七座桥看作这四个点之间的连线。那么这个问题就简化成,能不能用一笔就把这个图形画出来。经过进一步的分析,欧拉得出结论——不可能每座桥都走一遍,最后回到原来的位置。并且给出了所有能够一笔画出来的图形所应具有的条件。这是拓扑学的“先声”。

在拓扑学的发展历史中,还有一个着名而且重要的关于多面体的定理也和欧拉有关。这个定理内容是:如果一个凸多面体的顶点数是v、棱数是e、面数是f,那么它们总有这样的关系:f+v-e=2。

根据多面体的欧拉定理,可以得出这样一个有趣的事实:只存在五种正多面体。它们是正四面体、正六面体、正八面体、正十二面体、正二十面体。

着名的“四色问题”也是与拓扑学发展有关的问题。四色问题又称四色猜想,是世界近代三大数学难题之一。

四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家都被着上不同的颜色。”

1872年,英国当时最着名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。1878~1880年两年间,着名律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理。但后来数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题。

进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。不过不少数学家并不满足于计算机取得的成就,他们认为应该有一种简捷明快的书面证明方法。

上面的几个例子所讲的都是一些和几何图形有关的问题,但这些问题又与传统的几何学不同,而是一些新的几何概念。这些就是“拓扑学”的先声。

什么是拓扑学?

拓扑学的英文名是Topology,直译是地志学,也就是和研究地形、地貌相类似的有关学科。我国早期曾经翻译成“形势几何学”、“连续几何学”、“一对一的连续变换群下的几何学”,但是,这几种译名都不大好理解,1956年统一的《数学名词》把它确定为拓扑学,这是按音译过来的。

拓扑学是几何学的一个分支,但是这种几何学又和通常的平面几何、立体几何不同。通常的平面几何或立体几何研究的对象是点、线、面之间的位置关系以及它们的度量性质。拓扑学对于研究对象的长短、大小、面积、体积等度量性质和数量关系都无关。

举例来说,在通常的平面几何里,把平面上的一个图形搬到另一个图形上,如果完全重合,那么这两个图形叫做全等形。但是,在拓扑学里所研究的图形,在运动中无论它的大小或者形状都发生变化。在拓扑学里没有不能弯曲的元素,每一个图形的大小、形状都可以改变。例如,前面讲的欧拉在解决哥尼斯堡七桥问题的时候,他画的图形就不考虑它的大小、形状,仅考虑点和线的个数。这些就是拓扑学思考问题的出发点。

拓扑性质有那些呢?首先我们介绍拓扑等价,这是比较容易理解的一个拓扑性质。

在拓扑学里不讨论两个图形全等的概念,但是讨论拓扑等价的概念。比如,尽管圆和方形、三角形的形状、大小不同,在拓扑变换下,它们都是等价图形。左图的三样东西就是拓扑等价的,换句话讲,就是从拓扑学的角度看,它们是完全一样的。

在一个球面上任选一些点用不相交的线把它们连接起来,这样球面就被这些线分成许多块。在拓扑变换下,点、线、块的数目仍和原来的数目一样,这就是拓扑等价。一般地说,对于任意形状的闭曲面,只要不把曲面撕裂或割破,他的变换就是拓扑变幻,就存在拓扑等价。

应该指出,环面不具有这个性质。比如像左图那样,把环面切开,它不至于分成许多块,只是变成一个弯曲的圆桶形,对于这种情况,我们就说球面不能拓扑的变成环面。所以球面和环面在拓扑学中是不同的曲面。

直线上的点和线的结合关系、顺序关系,在拓扑变换下不变,这是拓扑性质。在拓扑学中曲线和曲面的闭合性质也是拓扑性质。

我们通常讲的平面、曲面通常有两个面,就像一张纸有两个面一样。但德国数学家莫比乌斯(1790~1868)在1858年发现了莫比乌斯曲面。这种曲面就不能用不同的颜色来涂满两个侧面。

拓扑变换的不变性、不变量还有很多,这里不在介绍。

拓扑学建立后,由于其它数学学科的发展需要,它也得到了迅速的发展。特别是黎曼创立黎曼几何以后,他把拓扑学概念作为分析函数论的基础,更加促进了拓扑学的进展。

二十世纪以来,集合论被引进了拓扑学,为拓扑学开拓了新的面貌。拓扑学的研究就变成了关于任意点集的对应的概念。拓扑学中一些需要精确化描述的问题都可以应用集合来论述。

因为大量自然现象具有连续性,所以拓扑学具有广泛联系各种实际事物的可能性。通过拓扑学的研究,可以阐明空间的集合结构,从而掌握空间之间的函数关系。本世纪三十年代以后,数学家对拓扑学的研究更加深入,提出了许多全新的概念。比如,一致性结构概念、抽象距概念和近似空间概念等等。有一门数学分支叫做微分几何,是用微分工具来研究取线、曲面等在一点附近的弯曲情况,而拓扑学是研究曲面的全局联系的情况,因此,这两门学科应该存在某种本质的联系。1945年,美籍中国数学家陈省身建立了代数拓扑和微分几何的联系,并推进了整体几何学的发展。

拓扑学发展到今天,在理论上已经十分明显分成了两个分支。一个分支是偏重于用分析的方法来研究的,叫做点集拓扑学,或者叫做分析拓扑学。另一个分支是偏重于用代数方法来研究的,叫做代数拓扑。现在,这两个分支又有统一的趋势。

拓扑学在泛函分析、李群论、微分几何、微分方程额其他许多数学分支中都有广泛的应用。基因或DNA是遗传信息的携带者,在细胞分裂过程中,亲代细胞所含的遗传信息,完整地传递到两个子代细胞。这个过程的实质问题是DNA分子如何复制成完全相同的两个拷贝,有许多酶和蛋白质参与复制过程,通过正确和完整的复制,亲代DNA的遗传信息真实地传给子代,这是遗传信息一代一代传递下去的分子基础,这也是本章的重点内容。但生物体内外环境存在着使DNA分子损伤的因素,因此机体还必须有一套DNA修复的机制。最后还将介绍一些有关重组DNA技术的概念和方法。
DNA双螺旋的两股链是反向平行(antiparallel)的,新合成的两股子链,一股的方向为5′→3′,另一股为3′→5′。那么体内是否存在两种DNA聚合酶?一种催化核苷酸以5′→3′方向聚合,另一种以3′→5′方向聚合。但从现知所有的DNA聚合酶都只能催化5′→3′方向合成。这个问题直到1968年冈崎(Okazaki)发现大肠杆菌DNA复制过程中出现一些含1000 ~2000个核苷酸的片段,一旦合成终止,这些片段即连成一条长链。这种小片段被称为冈崎片段(Okazaki fragment)。因此,复制时亲代DNA分子中那股3′→5′方向的母链作为模板,指导新链以5′→3′方向连续合成,此链称为前导链(1eading strand)。在前导链延长1000 ~2000个核苷酸后,另一母链也作为模板指导新链也是沿5′→3′合成1 000 ~2 000个核苷酸的小片段,这就是冈崎片段。随着链的延长,可以有许多个冈崎片段,这条称

为随从链(1agging strand)。可见,随从链为不连续复制,所以DNA为半不连续复制(semi-discontinuous replication),如图12-2所示。复制后,这些冈崎片段由DNA连接酶的作用而连接成完整的新链。

基因或DNA是遗传信息的携带者,在细胞分裂过程中,亲代细胞所含的遗传信息,完整地传递到两个子代细胞。这个过程的实质问题是DNA分子如何复制成完全相同的两个拷贝,有许多酶和蛋白质参与复制过程,通过正确和完整的复制,亲代DNA的遗传信息真实地传给子代,这是遗传信息一代一代传递下去的分子基础,这也是本章的重点内容。但生物体内外环境存在着使DNA分子损伤的因素,因此机体还必须有一套DNA修复的机制。最后还将介绍一些有关重组DNA技术的概念和方法。
DNA双螺旋的两股链是反向平行(antiparallel)的,新合成的两股子链,一股的方向为5′→3′,另一股为3′→5′。那么体内是否存在两种DNA聚合酶?一种催化核苷酸以5′→3′方向聚合,另一种以3′→5′方向聚合。但从现知所有的DNA聚合酶都只能催化5′→3′方向合成。这个问题直到1968年冈崎(Okazaki)发现大肠杆菌DNA复制过程中出现一些含1000 ~2000个核苷酸的片段,一旦合成终止,这些片段即连成一条长链。这种小片段被称为冈崎片段(Okazaki fragment)。因此,复制时亲代DNA分子中那股3′→5′方向的母链作为模板,指导新链以5′→3′方向连续合成,此链称为前导链(1eading strand)。在前导链延长1000 ~2000个核苷酸后,另一母链也作为模板指导新链也是沿5′→3′合成1 000 ~2 000个核苷酸的小片段,这就是冈崎片段。随着链的延长,可以有许多个冈崎片段,这条称

为随从链(1agging strand)。可见,随从链为不连续复制,所以DNA为半不连续复制(semi-discontinuous replication),如图12-2所示。复制后,这些冈崎片段由DNA连接酶的作用而连接成完整的新链。

阅读全文

与黎曼曲面pdf相关的资料

热点内容
自己购买云主服务器推荐 浏览:422
个人所得税java 浏览:761
多余的服务器滑道还有什么用 浏览:191
pdf劈开合并 浏览:28
不能修改的pdf 浏览:752
同城公众源码 浏览:489
一个服务器2个端口怎么映射 浏览:297
java字符串ascii码 浏览:79
台湾云服务器怎么租服务器 浏览:475
旅游手机网站源码 浏览:332
android关联表 浏览:945
安卓导航无声音怎么维修 浏览:332
app怎么装视频 浏览:430
安卓系统下的软件怎么移到桌面 浏览:96
windows拷贝到linux 浏览:772
mdr软件解压和别人不一样 浏览:904
单片机串行通信有什么好处 浏览:340
游戏开发程序员书籍 浏览:860
pdf中图片修改 浏览:288
汇编编译后 浏览:491