㈠ RSA加密、解密、签名、验签的原理及方法
RSA加密是一种非对称加密。可以在不直接传递密钥的情况下,完成解密。这能够确保信息的安全性,避免了直接传递密钥所造成的被破解的风险。是由一对密钥来进行加解密的过程,分别称为公钥和私钥。两者之间有数学相关,该加密算法的原理就是对一极大整数做因数分解的困难性来保证安全性。通常个人保存私钥,公钥是公开的(可能同时多人持有)。
加密和签名都是为了安全性考虑,但略有不同。常有人问加密和签名是用私钥还是公钥?其实都是对加密和签名的作用有所混淆。简单的说,加密是为了防止信息被泄露,而签名是为了防止信息被篡改。这里举2个例子说明。
RSA的加密过程如下:
RSA签名的过程如下:
总结:公钥加密、私钥解密、私钥签名、公钥验签。
RSA加密对明文的长度有所限制,规定需加密的明文最大长度=密钥长度-11(单位是字节,即byte),所以在加密和解密的过程中需要分块进行。而密钥默认是1024位,即1024位/8位-11=128-11=117字节。所以默认加密前的明文最大长度117字节,解密密文最大长度为128字。那么为啥两者相差11字节呢?是因为RSA加密使用到了填充模式(padding),即内容不足117字节时会自动填满,用到填充模式自然会占用一定的字节,而且这部分字节也是参与加密的。
㈡ 非对称加密、SSH加密算法、数字签名简介
非对称加密算法的核心源于数学问题,它存在公钥和私钥的概念,要完成加解密操作,需要两个密钥同时参与。我们常说的“公钥加密,私钥加密”或“私钥加密, 公钥解密”都属于非对称加密的范畴。公钥加密的数据必须使用私钥才可以解密,同样,私钥加密的数据也 只能通过公钥进行解密。
相比对称加密,非对称加密的安全性得到了提升,但是也存在明显的缺点,非对称加解密的效率要远远小于对称加解密。所以非对称加密往往被用在一些安全性要求比较高的应用或领域中。
RSA加密算法是一种典型的非对称加密算法,它基于大数的因式分解数学难题,它也是应用最广泛的非对称加密算法,于1978年由美国麻省理工学院(MIT)的三位学者:Ron Rivest、Adi Shamir 和 Leonard Adleman 共同提出。
它的原理较为简单,我们假设有消息发送方A和消息接收方B,通过下面的几个步骤,我们就可以完成消息的加密传递:
(1)消息发送方A在本地构建密钥对,公钥和私钥;
(2)消息发送方A将产生的公钥发送给消息接收方B;
(3)B向A发送数据时,通过公钥进行加密,A接收到数据后通过私钥进行解密,完成一次通信;
(4)反之,A向B发送数据时,通过私钥对数据进行加密,B接收到数据后通过公钥进行解密。
由于公钥是消息发送方A暴露给消息接收方B的,所以这种方式也存在一定的安全隐患,如果公钥在数据传输过程中泄漏,则A通过私钥加密的数据就可能被解密。
如果要建立更安全的加密消息传递模型,需要消息发送方和消息接收方各构建一套密钥对,并分别将各自的公钥暴露给对方,在进行消息传递时,A通过B的公钥对数据加密,B接收到消息通过B的私钥进行解密,反之,B通过A的公钥进行加密,A接收到消息后通过A的私钥进行解密。
当然,这种方式可能存在数据传递被模拟的隐患,我们可以通过数字签名等技术进行安全性的进一步提升。由于存在多次的非对称加解密,这种方式带来的效率问题也更加严重。可以详读这两篇文章:RSA 算法原理 (一) (二)
在SSH安全协议的原理中, 是一种非对称加密与对称加密算法的结合,先看下图:
这里进行一下说明:
(1)首先服务端会通过非对称加密,产生一个 公钥 和 私钥
(2)在客户端发起请求时,服务端将 公钥 暴露给客户端,这个 公钥 可以被任意暴露;
(3)客户端在获取 公钥 后,会先产生一个由256位随机数字组成的会话密钥,这里称为口令;
(4)客户端通过 公钥 将这个口令加密,发送给服务器端;
(5)服务器端通过 私钥 进行解密,获取到通讯口令;
之后,客户端和服务端的信息传递,都通过这个口令进行对称的加密。
这样的设计在一定程度上提高了加解密的效率,不过,与客户端服务端各构建一套密钥对的加解密方式相比,在安全性上可能有所下降。在上面所述的通过口令进行加密的过程中,数据也是可以被窃听的,不过由于密钥是256个随机数字,有10的256次方中组合方式,所以破解难度也很大。相对还是比较安全的。服务端和客户端都提前知道了密钥,SSH的这种方式,服务端是通过解密获取到了密钥。
现在知道了有非对称加密这东西,那数字签名是怎么回事呢?
数字签名的作用是我对某一份数据打个标记,表示我认可了这份数据(签了个名),然后我发送给其他人,其他人可以知道这份数据是经过我认证的,数据没有被篡改过。
有了上述非对称加密算法,就可以实现这个需求:
㈢ 非对称加密算法有哪些
RSA:RSA 是一种目前应用非常广泛、历史也比较悠久的非对称秘钥加密技术,在1977年被麻省理工学院的罗纳德·李维斯特(Ron Rivest)、阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)三位科学家提出,由于难于破解,RSA 是目前应用最广泛的数字加密和签名技术,比如国内的支付宝就是通过RSA算法来进行签名验证。它的安全程度取决于秘钥的长度,目前主流可选秘钥长度为 1024位、2048位、4096位等,理论上秘钥越长越难于破解,按照维基网络上的说法,小于等于256位的秘钥,在一台个人电脑上花几个小时就能被破解,512位的秘钥和768位的秘钥也分别在1999年和2009年被成功破解,虽然目前还没有公开资料证实有人能够成功破解1024位的秘钥,但显然距离这个节点也并不遥远,所以目前业界推荐使用 2048 位或以上的秘钥,不过目前看 2048 位的秘钥已经足够安全了,支付宝的官方文档上推荐也是2048位,当然更长的秘钥更安全,但也意味着会产生更大的性能开销。
DSA:既 Digital Signature Algorithm,数字签名算法,他是由美国国家标准与技术研究所(NIST)与1991年提出。和 RSA 不同的是 DSA 仅能用于数字签名,不能进行数据加密解密,其安全性和RSA相当,但其性能要比RSA快。
ECDSA:Elliptic Curve Digital Signature Algorithm,椭圆曲线签名算法,是ECC(Elliptic curve cryptography,椭圆曲线密码学)和 DSA 的结合,椭圆曲线在密码学中的使用是在1985年由Neal Koblitz和Victor Miller分别独立提出的,相比于RSA算法,ECC 可以使用更小的秘钥,更高的效率,提供更高的安全保障,据称256位的ECC秘钥的安全性等同于3072位的RSA秘钥,和普通DSA相比,ECDSA在计算秘钥的过程中,部分因子使用了椭圆曲线算法。
㈣ 鏁板瓧绛惧悕閲囩敤镄勬槸浠涔埚姞瀵嗘妧链
鏁板瓧绛惧悕閲囩敤镄勬槸闱炲圭О锷犲瘑鎶链銆
闱炲圭О锷犲瘑鎶链锛屼篃绉颁负鍏阍ュ姞瀵嗭纴浣跨敤涓や釜瀵嗛挜杩涜屽姞瀵嗗拰瑙e瘑镎崭綔锛屽垎鍒鏄鍏阍ュ拰绉侀挜銆傚叕阍ユ槸鍏寮镄勶纴浠讳綍浜洪兘鍙浠ヤ娇鐢锛岃岀侀挜鏄淇濆瘑镄勶纴鍙链夊瘑阍ョ殑涓讳汉镓嶈兘浣跨敤銆傝繖绉嶅姞瀵嗘柟寮忕殑涓昏佷紭镣规槸瀹夊叏镐ч珮锛屽洜涓虹侀挜鍙链夊瘑阍ョ殑涓讳汉鎺屾彙锛屽嵆浣垮叕阍ヨ鏀诲嚮钥呰幏鍙栵纴涔熸棤娉曡В瀵嗗嚭铡熷嬩俊鎭銆
鍦ㄦ暟瀛楃惧悕涓锛屽彂阃佹柟浣跨敤镊宸辩殑绉侀挜瀵逛俊鎭杩涜屽姞瀵嗭纴鐢熸垚鏁板瓧绛惧悕锛岀劧钖庡皢鏁板瓧绛惧悕鍜屼俊鎭涓璧峰彂阃佺粰鎺ユ敹鏂广傛帴鏀舵柟浣跨敤鍙戦佹柟镄勫叕阍ュ规暟瀛楃惧悕杩涜岃В瀵嗭纴楠岃瘉淇℃伅镄勫畬鏁存у拰鐪熷疄镐с傚洜涓虹侀挜鍙链夊彂阃佹柟鎺屾彙锛屽洜姝ゅ彧链夊彂阃佹柟镓嶈兘鐢熸垚链夋晥镄勬暟瀛楃惧悕锛岃繖镙峰彲浠ョ‘淇濅俊鎭镄勬潵婧愬拰瀹屾暣镐с
涓句釜渚嫔瓙锛屽亣璁惧皬鏄庤佺粰灏忕孩鍙戦佷竴𨱒″姞瀵嗕俊鎭銆傚皬鏄庝娇鐢ㄨ嚜宸辩殑绉侀挜瀵逛俊鎭杩涜屽姞瀵嗭纴鐢熸垚鏁板瓧绛惧悕锛岀劧钖庡皢鏁板瓧绛惧悕鍜屼俊鎭涓璧峰彂阃佺粰灏忕孩銆傚皬绾㈡敹鍒颁俊鎭钖庯纴浣跨敤灏忔槑镄勫叕阍ュ规暟瀛楃惧悕杩涜岃В瀵嗭纴楠岃瘉淇℃伅镄勫畬鏁存у拰鐪熷疄镐с傚傛灉瑙e瘑鎴愬姛锛岃存槑淇℃伅纭瀹炴槸灏忔槑鍙戦佺殑锛屽苟涓旀病链夊湪浼犺緭杩囩▼涓琚绡℃敼銆
镐讳箣锛屾暟瀛楃惧悕閲囩敤镄勬槸闱炲圭О锷犲瘑鎶链锛屼娇鐢ㄥ叕阍ュ拰绉侀挜杩涜屽姞瀵嗗拰瑙e瘑镎崭綔锛屽彲浠ョ‘淇濅俊鎭镄勬潵婧愬拰瀹屾暣镐с
㈤ 常用的非对称加密算法有哪些
称加密技术的优点加密一计算量下,速度快。缺点是,加密方和解密方必须协商好秘钥,且保证秘钥安全,如果一方泄露了秘钥整个通信就会被破解,加密信息就不再安全了。
和对称加密技术只使用一个秘钥不同,非对称机密技术使用两个秘钥进行加解密,一个叫做公钥,一个叫做私钥,私钥自己来保管,公钥可以公开,使用公钥加密的数据必须使用私钥解密,反之亦然公钥和私钥是两个不同的秘钥,因为这种加密方法被称为非对称几秒技术。相比于对称加密技术,非对称加密技术安全性更好,但性能更慢。
在互联网后端技术中非对称加密技术主要用于登录、数字签名、数字证书认证等场景。
常用的非对称加密算法有:
RSA:RSA 是一种目前应用非常广泛、历史也比较悠久的非对称秘钥加密技术,在1977年被麻省理工学院的罗纳德·李维斯特(Ron Rivest)、阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)三位科学家提出,由于难于破解,RSA 是目前应用最广泛的数字加密和签名技术,比如国内的支付宝就是通过RSA算法来进行签名验证。它的安全程度取决于秘钥的长度,目前主流可选秘钥长度为 1024位、2048位、4096位等,理论上秘钥越长越难于破解,按照维基网络上的说法,小于等于256位的秘钥,在一台个人电脑上花几个小时就能被破解,512位的秘钥和768位的秘钥也分别在1999年和2009年被成功破解,虽然目前还没有公开资料证实有人能够成功破解1024位的秘钥,但显然距离这个节点也并不遥远,所以目前业界推荐使用 2048 位或以上的秘钥,不过目前看 2048 位的秘钥已经足够安全了,支付宝的官方文档上推荐也是2048位,当然更长的秘钥更安全,但也意味着会产生更大的性能开销。
DSA:既 Digital Signature Algorithm,数字签名算法,他是由美国国家标准与技术研究所(NIST)与1991年提出。和 RSA 不同的是 DSA 仅能用于数字签名,不能进行数据加密解密,其安全性和RSA相当,但其性能要比RSA快。
ECDSA:Elliptic Curve Digital Signature Algorithm,椭圆曲线签名算法,是ECC(Elliptic curve cryptography,椭圆曲线密码学)和 DSA 的结合,椭圆曲线在密码学中的使用是在1985年由Neal Koblitz和Victor Miller分别独立提出的,相比于RSA算法,ECC 可以使用更小的秘钥,更高的效率,提供更高的安全保障,据称256位的ECC秘钥的安全性等同于3072位的RSA秘钥,和普通DSA相比,ECDSA在计算秘钥的过程中,部分因子使用了椭圆曲线算法。
㈥ 关于加解密、加签验签的那些事
关于加解密、加签验签的科普说明:
加解密技术:
加签验签技术:
数据摘要算法:
密码学的发展:
综上所述,加解密、加签验签是数据安全领域的重要技术,它们通过不同的算法和机制确保信息的机密性、完整性和真实性。
㈦ 图文彻底搞懂非对称加密(公钥密钥)
前文详细讲解了对称加密及算法原理。那么是不是对称加密就万无一失了呢?对称加密有一个天然的缺点,就是加密方和解密方都要持有同样的密钥。你可以能会提出疑问:既然要加、解密,当然双方都要持有密钥,这有什么问题呢?别急,我们继续往下看。
我们先看一个例子,小明和小红要进行通信,但是不想被其他人知道通信的内容,所以双方决定采用对称加密的方式。他们做了下面的事情:
1、双方商定了加密和解密的算法
2、双方确定密钥
3、通信过程中采用这个密钥进行加密和解密
这是不是一个看似完美的方案?但其中有一个步骤存在漏洞!
问题出在步骤2:双方确定密钥!
你肯定会问,双方不确定密钥,后面的加、解密怎么做?
问题在于确定下来的密钥如何让双方都知道。密钥在传递过程中也是可能被盗取的!这里引出了一个经典问题:密钥配送问题。
小明和小红在商定密钥的过程中肯定会多次沟通密钥是什么。即使单方一次确定下来,也要发给对方。加密是为了保证信息传输的安全,但密钥本身也是信息,密钥的传输安全又该如何保证呢?难不成还要为密钥的传输再做一次加密?这样不就陷入了死循环?
你是不是在想,密钥即使被盗取,不还有加密算法保证信息安全吗?如果你真的有这个想法,那么赶紧复习一下上一篇文章讲的杜绝隐蔽式安全性。任何算法最终都会被破译,所以不能依赖算法的复杂度来保证安全。
小明和小红现在左右为难,想加密就要给对方发密钥,但发密钥又不能保证密钥的安全。他们应该怎么办呢?
有如下几种解决密钥配送问题的方案:
非对称加密也称为公钥密码。我更愿意用非对称加密这种叫法。因为可以体现出加密和解密使用不同的密钥。
对称加密中,我们只需要一个密钥,通信双方同时持有。而非对称加密需要4个密钥。通信双方各自准备一对公钥和私钥。其中公钥是公开的,由信息接受方提供给信息发送方。公钥用来对信息加密。私钥由信息接受方保留,用来解密。既然公钥是公开的,就不存在保密问题。也就是说非对称加密完全不存在密钥配送问题!你看,是不是完美解决了密钥配送问题?
回到刚才的例子,小明和下红经过研究发现非对称加密能解决他们通信的安全问题,于是做了下面的事情:
1、小明确定了自己的私钥 mPrivateKey,公钥 mPublicKey。自己保留私钥,将公钥mPublicKey发给了小红
2、小红确定了自己的私钥 hPrivateKey,公钥 hPublicKey。自己保留私钥,将公钥 hPublicKey 发给了小明
3、小明发送信息 “周六早10点soho T1楼下见”,并且用小红的公钥 hPublicKey 进行加密。
4、小红收到信息后用自己的私钥 hPrivateKey 进行解密。然后回复 “收到,不要迟到” 并用小明的公钥mPublicKey加密。
5、小明收到信息后用自己的私钥 mPrivateKey 进行解密。读取信息后心里暗想:还提醒我不迟到?每次迟到的都是你吧?
以上过程是一次完整的request和response。通过这个例子我们梳理出一次信息传输的非对称加、解密过程:
1、消息接收方准备好公钥和私钥
2、私钥接收方自己留存、公钥发布给消息发送方
3、消息发送方使用接收方公钥对消息进行加密
4、消息接收方用自己的私钥对消息解密
公钥只能用做数据加密。公钥加密的数据,只能用对应的私钥才能解密。这是非对称加密的核心概念。
下面我用一个更为形象的例子来帮助大家理解。
我有下图这样一个信箱。
由于我只想接收我期望与之通信的朋友信件。于是我在投递口加了一把锁,这把锁的钥匙(公钥)我可以复制n份,发给我想接受其信件的人。只有这些人可以用这把钥匙打开寄信口,把信件投入。
相信通过这个例子,可以帮助大家彻底理解公钥和私钥的概念。
RSA 是现在使用最为广泛的非对称加密算法,本节我们来简单介绍 RSA 加解密的过程。
RSA 加解密算法其实很简单:
密文=明文^E mod N
明文=密文^D mod N
RSA 算法并不会像对称加密一样,用玩魔方的方式来打乱原始信息。RSA 加、解密中使用了是同样的数 N。公钥是公开的,意味着 N 也是公开的。所以私钥也可以认为只是 D。
我们接下来看一看 N、E、D 是如何计算的。
1、求 N
首先需要准备两个很大质数 a 和 b。太小容易破解,太大计算成本太高。我们可以用 512 bit 的数字,安全性要求高的可以使用 1024,2048 bit。
N=a*b
2、求 L
L 只是生成密钥对过程中产生的数,并不参与加解密。L 是 (a-1) 和 (b-1) 的最小公倍数
3、求 E(公钥)
E 有两个限制:
1<E<
E和L的最大公约数为1
第一个条件限制了 E 的取值范围,第二个条件是为了保证有与 E 对应的解密时用到的 D。
4、求 D(私钥)
D 也有两个限制条件:
1<D<L
E*D mod L = 1
第二个条件确保密文解密时能够成功得到原来的明文。
由于原理涉及很多数学知识,这里就不展开细讲,我们只需要了解这个过程中用到这几个数字及公式。这是理解RSA 安全性的基础。
由于 N 在公钥中是公开的,那么只需要破解 D,就可以解密得到明文。
在实际使用场景中,质数 a,b 一般至少1024 bit,那么 N 的长度在 2048 bit 以上。D 的长度和 N 接近。以现在计算机的算力,暴力破解 D 是非常困难的。
公钥是公开的,也就是说 E 和 N 是公开的,那么是否可以通过 E 和 N 推断出 D 呢?
E*D mod L = 1
想要推算出 D 就需要先推算出 L。L 是 (a-1) 和 (b-1) 的最小公倍数。想知道 L 就需要知道质数 a 和 b。破解者并不知道这两个质数,想要破解也只能通过暴力破解。这和直接破解 D 的难度是一样的。
等等,N 是公开的,而 N = a*b。那么是否可以对 N 进行质因数分解求得 a 和 b 呢?好在人类还未发现高效进行质因数分解的方法,因此可以认为做质因数分解非常困难。
但是一旦某一天发现了快速做质因数分解的算法,那么 RSA 就不再安全
我们可以看出大质数 a 和 b 在 RSA 算法中的重要性。保证 a 和 b 的安全也就确保了 RSA 算法的安全性。a 和 b 是通过伪随机生成器生成的。一旦伪随机数生成器的算法有问题,导致随机性很差或者可以被推断出来。那么 RSA 的安全性将被彻底破坏。
中间人攻击指的是在通信双方的通道上,混入攻击者。他对接收方伪装成发送者,对放送放伪装成接收者。
他监听到双方发送公钥时,偷偷将消息篡改,发送自己的公钥给双方。然后自己则保存下来双方的公钥。
如此操作后,双方加密使用的都是攻击者的公钥,那么后面所有的通信,攻击者都可以在拦截后进行解密,并且篡改信息内容再用接收方公钥加密。而接收方拿到的将会是篡改后的信息。实际上,发送和接收方都是在和中间人通信。
要防范中间人,我们需要使用公钥证书。这部分内容在下一篇文章里会做介绍。
和对称加密相比较,非对称加密有如下特点:
1、非对称加密解决了密码配送问题
2、非对称加密的处理速度只有对称加密的几百分之一。不适合对很长的消息做加密。
3、1024 bit 的 RSA不应该在被新的应用使用。至少要 2048 bit 的 RSA。
RSA 解决了密码配送问题,但是效率更低。所以有些时候,根据需求可能会配合使用对称和非对称加密,形成混合密码系统,各取所长。
最后提醒大家,RSA 还可以用于签名,但要注意是私钥签名,公钥验签。发信方用自己的私钥签名,收信方用对方公钥验签。关于签名,后面的文章会再详细讲解。