导航:首页 > 程序命令 > matlab常用命令

matlab常用命令

发布时间:2022-07-08 08:42:57

A. matlab中 load命令

oad filename:读取一个完整路径或MATLAB相对路径文件中的内容,函数默认的文件格式为(.mat),当文件的扩展名不是(.mat)时,MATLAB将以ASCII格式处理该文件。

MATLAB的运行环境 硬件环境:

1、CPU。

2 、内存。

3、 硬盘 。

4、CD-ROM驱动器和鼠标。

软件环境:

1、Windows 98/NT/2000 或Windows XP。

2、其他软件根据需要选用。

安装MATLAB 6.5系统,需运行系统自带的安装程序setup.exe,可以按照安装提示依次操作。

拓展资料:

1、save test.mat 把当前工作空间的所有变量保存到test.mat。

2、save('mydata', '-regexp', '^Mon|^Tue|^Wed');使用匹配符匹配变量应的信息在文件中,这里匹配的是变量.

3、在使用 -append 选项时涉及到的文件,需要已经存在,否在会报错。

B. MATLAB中的命令clc和clear什么区别

clc是清除当前command区域的命令,表示清空,看着舒服些 。而clear用于清空环境变量。两者是不同的。

C. matlab软件的矩阵常用指令介绍

方法/步骤
1、单位矩阵创建
在线性代数运算时,常需要单位矩阵E,在matlab中可使用eyes函数,如下所示即为其语法:
Y
=
eye(n)
Y
=
eye(m,n)
Y
=
eye([m
n])
Y
=
eye(size(A))
Y
=
eye
Y
=
eye(m,
n,
classname)
作为示例,常用Y
=
eye(n)指令,比如要3x3单位矩阵,则可以如下指令:
>>
Y
=
eye(3)
输出:
Y
=
1

0

0
0

1

0
0

0

1
2、全零矩阵
在线性代数运算时,有时候需要全零矩阵,可使用zeros函数。
B
=
zeros(n)
B
=
zeros(m,n)
B
=
zeros([m
n])
B
=
zeros(m,n,p,...)
B
=
zeros([m
n
p
...])
B
=
zeros(size(A))
Y
=
zeros
zeros(m,
n,...,classname)
zeros([m,n,...],classname)
以上是其全部语法,常用的指令是:B
=
zeros(n)与
B
=
zeros(m,n)如下:
>>
B
=
zeros(3)
输出:
B
=
0

0

0
0

0

0
0

0

0
3、元素全为1阵
在矩阵运算时,会遇到元素全为1矩阵,此时可以借助于ones函数。
Y
=
ones(n)
Y
=
ones(m,n)
Y
=
ones([m
n])
Y
=
ones(m,n,p,...)
Y
=
ones([m
n
p
...])
Y
=
ones(size(A))
Y
=
ones
ones(m,
n,...,classname)
ones([m,n,...],classname)
如上是其全部语法,其中常用的还是:Y
=
ones(n)

Y
=
ones(m,n)
如下示例:
>>
Y
=
ones(3)
输出:
Y
=
1

1

1
1

1

1
1

1

1
4、随机矩阵
在概率分析或是数理推断时常需要借助随机矩阵,在matlab中可使用rand函数实现,其语法如下:
r
=
rand(n)
r
=
rand(m,n)
r
=
rand([m,n])
r
=
rand(m,n,p,...)
r
=
rand([m,n,p,...])
r
=
rand
r
=
rand(size(A))
r
=
rand(...,
'double')
r
=
rand(...,
'single')
当然,常用的指令还是:
r
=
rand(n)

r
=
rand(m,n)
示例:
>>
r
=
rand(3,2)
输出的是3行2列的随机矩阵:
r
=
0.8147

0.9134
0.9058

0.6324
0.1270

0.0975
5、对角阵
在矩阵分析与计算时,尤其是计算矩阵的秩时,常会化简矩阵为对角阵,尤其是方阵分析。在matlab中可借助diag函数求特定矩阵的对角阵,如下示例:
>>
A
=
[1,2,3;
4,5,6;
7,8,9];
输入的矩阵A是3x3方阵,输入如下指令:
>>
diag(A)
函数输出如下图所示:
6、提取矩阵三角部分
有时候需要提取矩阵的下三角亦或是下三角元素,可以使用tril或triu提取。
输入矩阵:
>>
A
=
[1,2,3;
4,5,6;
7,8,9];
下三角提取:
>>
trilow
=
tril(A)
输出:
trilow
=
1

0

0
4

5

0
7

8

9
上三角提取:
>>
triup
=
triu(A)
输出:
triup
=
1

2

3
0

5

6
0

0

9
7、其它
作为矩阵运算实验室,matlab提供许多矩阵运算指令例如矩阵翻转指令flipud、fliplr,矩阵重排reshape、矩阵求秩rank等,大家可以查阅帮助文件了解其语法。

D. matlab 常用命令有哪些

matlab命令
一、常用对象操作:除了一般windows窗口的常用功能键外。
1、!dir 可以查看当前工作目录的文件。 !dir& 可以在dos状态下查看。
2、who 可以查看当前工作空间变量名, whos 可以查看变量名细节。
3、功能键:
功能键 快捷键 说明
方向上键 Ctrl+P 返回前一行输入
方向下键 Ctrl+N 返回下一行输入
方向左键 Ctrl+B 光标向后移一个字符
方向右键 Ctrl+F 光标向前移一个字符
Ctrl+方向右键 Ctrl+R 光标向右移一个字符
Ctrl+方向左键 Ctrl+L 光标向左移一个字符
home Ctrl+A 光标移到行首
End Ctrl+E 光标移到行尾
Esc Ctrl+U 清除一行
Del Ctrl+D 清除光标所在的字符
Backspace Ctrl+H 删除光标前一个字符
Ctrl+K 删除到行尾
Ctrl+C 中断正在执行的命令
4、clc可以命令窗口显示的内容,但并不清除工作空间。
二、函数及运算
1、运算符:
+:加, -:减, *:乘, /: 除, \:左除 ^: 幂,‘:复数的共轭转置, ():制定运算顺序。
2、常用函数表:
sin( ) 正弦(变量为弧度)
Cot( ) 余切(变量为弧度)
sind( ) 正弦(变量为度数)
Cotd( ) 余切(变量为度数)
asin( ) 反正弦(返回弧度)
acot( ) 反余切(返回弧度)
Asind( ) 反正弦(返回度数)
acotd( ) 反余切(返回度数)
cos( ) 余弦(变量为弧度)
exp( ) 指数
cosd( ) 余弦(变量为度数)
log( ) 对数
acos( ) 余正弦(返回弧度)
log10( ) 以10为底对数
acosd( ) 余正弦(返回度数)
sqrt( ) 开方
tan( ) 正切(变量为弧度)
realsqrt( ) 返回非负根
tand( ) 正切(变量为度数)
abs( ) 取绝对值
atan( ) 反正切(返回弧度)
angle( ) 返回复数的相位角
atand( ) 反正切(返回度数)
mod(x,y) 返回x/y的余数
sum( ) 向量元素求和
3、其余函数可以用help elfun和help specfun命令获得。
4、常用常数的值:
pi 3.1415926…….
realmin 最小浮点数,2^-1022
i 虚数单位
realmax 最大浮点数,(2-eps)2^1022
j 虚数单位
Inf 无限值
eps 浮点相对经度=2^-52
NaN 空值
三、数组和矩阵:
1、构造数组的方法:增量发和linspace(first,last,num)first和last为起始和终止数,num为需要的数组元素个数。
2、构造矩阵的方法:可以直接用[ ]来输入数组,也可以用以下提供的函数来生成矩阵。
ones( ) 创建一个所有元素都为1的矩阵,其中可以制定维数,1,2….个变量
zeros() 创建一个所有元素都为0的矩阵
eye() 创建对角元素为1,其他元素为0的矩阵
diag() 根据向量创建对角矩阵,即以向量的元素为对角元素
magic() 创建魔方矩阵
rand() 创建随机矩阵,服从均匀分布
randn() 创建随机矩阵,服从正态分布
randperm() 创建随机行向量
horcat C=[A,B],水平聚合矩阵,还可以用cat(1,A,B)
vercat C=[A;B],垂直聚合矩阵, 还可以用cat(2,A,B)
repmat(M,v,h) 将矩阵M在垂直方向上聚合v次,在水平方向上聚合h次
blkdiag(A,B) 以A,和B为块创建块对角矩阵
length 返回矩阵最长维的的长度
ndims 返回维数
numel 返回矩阵元素个数
size 返回每一维的长度,[rows,cols]=size(A)
reshape 重塑矩阵,reshape(A,2,6),将A变为2×6的矩阵,按列排列。
rot90 旋转矩阵90度,逆时针方向
fliplr 沿垂轴翻转矩阵
flipud 沿水平轴翻转矩阵
transpose 沿主对角线翻转矩阵
ctranspose 转置矩阵,也可用A’或A.’,这仅当矩阵为复数矩阵时才有区别
inv 矩阵的逆
det 矩阵的行列式值
trace 矩阵对角元素的和
norm 矩阵或矢量的范数,norm(a,1),norm(a,Inf)…….
normest 估计矩阵的最大范数矢量
chol 矩阵的cholesky分解
cholinc 不完全cholesky分解
lu LU分解
luinc 不完全LU分解
qr 正交分解
kron(A,B) A为m×n,B为p×q,则生成mp×nq的矩阵,A的每一个元素都会乘上B,并占据p×q大小的空间
rank 求出矩阵的刺
pinv 求伪逆矩阵
A^p 对A进行操作
A.^P 对A中的每一个元素进行操作
四、数值计算
1、线性方程组求解
(1)AX=B的解可以用X=A\B求。XA=B的解可以用X= A/B求。如果A是m×n的矩阵,当m=n时可以找到唯一解,m<n,不定解,解中至多有m个非零元素。如果m>n,超定系统,至少找到一组解。如果A是奇异的,且AX=B有解,可以用X=pinv(A)×B返回最小二乘解
(2)AX=b, A=L×U,[L,U]=lu(A), X=U\(L\b),即用LU分解求解。
(3)QR(正交)分解是将一矩阵表示为一正交矩阵和一上三角矩阵之积,A=Q×R[Q,R]=chol(A), X=Q\(U\b)
(4)cholesky分解类似。
2、特征值
D=eig(A)返回A的所有特征值组成的矩阵。[V,D]=eig(A),还返回特征向量矩阵。
3、A=U×S×UT,[U,S]=schur(A).其中S的对角线元素为A的特征值。
4、多项式Matlab里面的多项式是以向量来表示的,其具体操作函数如下:
conv 多项式的乘法
deconv 多项式的除法,【a,b】=deconv(s),返回商和余数
poly 求多项式的系数(由已知根求多项式的系数)
polyeig 求多项式的特征值
Polyfit(x,y,n) 多项式的曲线拟合,x,y为被拟合的向量,n为拟合多项式阶数。
polyder 求多项式的一阶导数,polyder(a,b)返回ab的导数
[a,b]=polyder(a,b)返回a/b的导数。
polyint 多项式的积分
polyval 求多项式的值
polyvalm 以矩阵为变量求多项式的值
resie 部分分式展开式
roots 求多项式的根(返回所有根组成的向量)
注:用ploy(A)求出矩阵的特征多项式,然后再求其根,即为矩阵的特征值。
5、插值常用的插值函数如下:
griddata 数据网格化合曲面拟合
Griddata3 三维数据网格化合超曲面拟合
interp1 一维插值(yi=interp1(x,y,xi,’method’)Method=nearest/linear/spline/pchip/cubic
Interp2 二维插值zi=interp1(x,y,z,xi,yi’method’),bilinear
Interp3 三维插值
interpft 用快速傅立叶变换进行一维插值,help fft。
mkpp 使用分段多项式
spline 三次样条插值
pchip 分段hermit插值
6、函数最值的求解
fminbnd(‘f’,x1,x2,optiset(,))求f在 x1和x2之间的最小值。Optiset选项可以有‘Display’+‘iter’/’off’/’final’,分别表示显示计算过程/不显示/只显示最后结果。fminsearch求多元函数的最小值。fzero(‘f’,x1)求一元函数的零点。X1为起始点。同样可以用上面的选项。
五、图像绘制:
1、基本绘图函数
plot 绘制二维线性图形和两个坐标轴
plot3 绘制三维线性图形和两个坐标轴
fplot 在制定区间绘制某函数的图像。fplot(‘f’,区域,线型,颜色)
loglog 绘制对数图形及两个坐标轴(两个坐标都为对数坐标)semilogx 绘制半对数坐标图形
semilogy 绘制半对数坐标图形
2、线型: 颜色 线型
y 黄色 . 圆点线 v 向下箭头
g 绿色 -. 组合 > 向右箭头
b 蓝色 + 点为加号形 < 向左箭头
m 红紫色 o 空心圆形 p 五角星形
c 蓝紫色 * 星号 h 六角星形
w 白色 . 实心小点 hold on 添加图形
r 红色 x 叉号形状 grid on 添加网格
k 黑色 s 方形 - 实线
d 菱形 -- 虚线 ^ 向上箭头
3、可以用subplot(3,3,1)表示将绘图区域分为三行三列,目前使用第一区域。此时如要画不同的图形在一个窗口里,需要hold on。

E. matlab语句中x(:,1)表示什么意思怎么用的谢谢!

这是取列的表示方法,意思是取x矩阵的第一列,可以赋给其他向量。

x(:,1)

括号中逗号左边代表行,右边代表列

而:是代表所有行,1代表第一列

所以整句是x0赋值给矩阵x的第一列

(5)matlab常用命令扩展阅读:

MATLAB中也有exp函数。

如果在命令窗口中输入:exp(0)

则输出:1

其实MATLAB和C中的exp函数和数学中以e为底的指数函数都是一样的。

F. MATLAB中的常用清除命令有哪些

方法/步骤
1
安装并打开MATLAB软件
2
常用清除clc命令,即可清空命令窗口中的内容。
3
常用clf命令:清除当前figure中的内容,前后对比图如图
4
常用close命令:关闭当前打开的figure图形界面
5
常用clear命令:清空workspace中的变量
6
常用exit命令:退出MATLAB,执行后直接退出软件

G. MATLAB 中有哪些命令,让人相见恨晚

一、常用对象操作:除了一般windows窗口的常用功能键外。
1、!dir 可以查看当前工作目录的文件。 !dir& 可以在dos状态下查看。
2、who 可以查看当前工作空间变量名, whos 可以查看变量名细节。
3、功能键:
功能键 快捷键 说明
方向上键 Ctrl+P 返回前一行输入
方向下键 Ctrl+N 返回下一行输入
方向左键 Ctrl+B 光标向后移一个字符
方向右键 Ctrl+F 光标向前移一个字符
Ctrl+方向右键 Ctrl+R 光标向右移一个字符
Ctrl+方向左键 Ctrl+L 光标向左移一个字符
home Ctrl+A 光标移到行首
End Ctrl+E 光标移到行尾
Esc Ctrl+U 清除一行
Del Ctrl+D 清除光标所在的字符
Backspace Ctrl+H 删除光标前一个字符 Ctrl+K 删除到行尾
Ctrl+C 中断正在执行的命令
4、clc可以命令窗口显示的内容,但并不清除工作空间。
二、函数及运算
1、运算符:
+:加, -:减, *:乘, /: 除, \:左除 ^: 幂,‘:复数的共轭转置, ():制定运算顺序。
2、常用函数表:
sin( ) 正弦(变量为弧度)
Cot( ) 余切(变量为弧度)
sind( ) 正弦(变量为度数)
Cotd( ) 余切(变量为度数)
asin( ) 反正弦(返回弧度)
acot( ) 反余切(返回弧度)
Asind( ) 反正弦(返回度数)
acotd( ) 反余切(返回度数)
cos( ) 余弦(变量为弧度)
exp( ) 指数
cosd( ) 余弦(变量为度数)
log( ) 对数
acos( ) 余正弦(返回弧度)
log10( ) 以10为底对数
acosd( ) 余正弦(返回度数)
sqrt( ) 开方
tan( ) 正切(变量为弧度)
realsqrt( ) 返回非负根
tand( ) 正切(变量为度数)
abs( ) 取绝对值
atan( ) 反正切(返回弧度)
angle( ) 返回复数的相位角
atand( ) 反正切(返回度数)
mod(x,y) 返回x/y的余数
sum( ) 向量元素求和
3、其余函数可以用help elfun和help specfun命令获得。
4、常用常数的值:
pi 3.1415926…….
realmin 最小浮点数,2^-1022
i 虚数单位
realmax 最大浮点数,(2-eps)2^1022
j 虚数单位
Inf 无限值
eps 浮点相对经度=2^-52
NaN 空值
三、数组和矩阵:
1、构造数组的方法:增量发和linspace(first,last,num)first和last为起始和终止数,num为需要的数组元素个数。
2、构造矩阵的方法:可以直接用[ ]来输入数组,也可以用以下提供的函数来生成矩阵。
ones( ) 创建一个所有元素都为1的矩阵,其中可以制定维数,1,2….个变量
zeros() 创建一个所有元素都为0的矩阵
eye() 创建对角元素为1,其他元素为0的矩阵
diag() 根据向量创建对角矩阵,即以向量的元素为对角元素
magic() 创建魔方矩阵
rand() 创建随机矩阵,服从均匀分布
randn() 创建随机矩阵,服从正态分布
randperm() 创建随机行向量
horcat C=[A,B],水平聚合矩阵,还可以用cat(1,A,B)
vercat C=[A;B],垂直聚合矩阵, 还可以用cat(2,A,B)
repmat(M,v,h) 将矩阵M在垂直方向上聚合v次,在水平方向上聚合h次
blkdiag(A,B) 以A,和B为块创建块对角矩阵
length 返回矩阵最长维的的长度
ndims 返回维数
numel 返回矩阵元素个数
size 返回每一维的长度,[rows,cols]=size(A)
reshape 重塑矩阵,reshape(A,2,6),将A变为2×6的矩阵,按列排列。
rot90 旋转矩阵90度,逆时针方向
fliplr 沿垂轴翻转矩阵
flipud 沿水平轴翻转矩阵
transpose 沿主对角线翻转矩阵
ctranspose 转置矩阵,也可用A’或A.’,这仅当矩阵为复数矩阵时才有区别
inv 矩阵的逆
det 矩阵的行列式值
trace 矩阵对角元素的和
norm 矩阵或矢量的范数,norm(a,1),norm(a,Inf)…….
normest 估计矩阵的最大范数矢量
chol 矩阵的cholesky分解
cholinc 不完全cholesky分解
lu LU分解
luinc 不完全LU分解
qr 正交分解
kron(A,B) A为m×n,B为p×q,则生成mp×nq的矩阵,A的每一个元素都会乘上B,并占据p×q大小的空间
rank 求出矩阵的刺
pinv 求伪逆矩阵
A^p 对A进行操作
A.^P 对A中的每一个元素进行操作
四、数值计算
1、线性方程组求解
(1)AX=B
的解可以用X=A\B求。XA=B的解可以用X=
A/B求。如果A是m×n的矩阵,当m=n时可以找到唯一解,m<n,不定解,解中至多有m个非零元素。如果m>n,超定系统,至少找到一组
解。如果A是奇异的,且AX=B有解,可以用X=pinv(A)×B返回最小二乘解
(2)AX=b, A=L×U,[L,U]=lu(A), X=U\(L\b),即用LU分解求解。
(3)QR(正交)分解是将一矩阵表示为一正交矩阵和一上三角矩阵之积,A=Q×R[Q,R]=chol(A), X=Q\(U\b)
(4)cholesky分解类似。
2、特征值
D=eig(A)返回A的所有特征值组成的矩阵。[V,D]=eig(A),还返回特征向量矩阵。
3、A=U×S×UT,[U,S]=schur(A).其中S的对角线元素为A的特征值。
4、多项式Matlab里面的多项式是以向量来表示的,其具体操作函数如下:
conv 多项式的乘法
deconv 多项式的除法,【a,b】=deconv(s),返回商和余数
poly 求多项式的系数(由已知根求多项式的系数)
polyeig 求多项式的特征值
Polyfit(x,y,n) 多项式的曲线拟合,x,y为被拟合的向量,n为拟合多项式阶数。
polyder 求多项式的一阶导数,polyder(a,b)返回ab的导数
[a,b]=polyder(a,b)返回a/b的导数。
polyint 多项式的积分
polyval 求多项式的值
polyvalm 以矩阵为变量求多项式的值
resie 部分分式展开式
roots 求多项式的根(返回所有根组成的向量)
注:用ploy(A)求出矩阵的特征多项式,然后再求其根,即为矩阵的特征值。
5、插值常用的插值函数如下:
griddata 数据网格化合曲面拟合
Griddata3 三维数据网格化合超曲面拟合
interp1 一维插值(yi=interp1(x,y,xi,’method’)Method=nearest/linear/spline/pchip/cubic
Interp2 二维插值zi=interp1(x,y,z,xi,yi’method’),bilinear
Interp3 三维插值
interpft 用快速傅立叶变换进行一维插值,help fft。
mkpp 使用分段多项式
spline 三次样条插值
pchip 分段hermit插值
6、函数最值的求解
fminbnd(‘f’,x1,x2,optiset(,))
求f在
x1和x2之间的最小值。Optiset选项可以有‘Display’+‘iter’/’off’/’final’,分别表示显示计算过程/不显示/只显
示最后结果。fminsearch求多元函数的最小值。fzero(‘f’,x1)求一元函数的零点。X1为起始点。同样可以用上面的选项。
五、图像绘制:
1、基本绘图函数
plot 绘制二维线性图形和两个坐标轴
plot3 绘制三维线性图形和两个坐标轴
fplot 在制定区间绘制某函数的图像。fplot(‘f’,区域,线型,颜色)
loglog 绘制对数图形及两个坐标轴(两个坐标都为对数坐标)semilogx 绘制半对数坐标图形
semilogy 绘制半对数坐标图形
2、线型: 颜色 线型
y 黄色 . 圆点线 v 向下箭头
g 绿色 -. 组合 > 向右箭头
b 蓝色 + 点为加号形 < 向左箭头
m 红紫色 o 空心圆形 p 五角星形
c 蓝紫色 * 星号 h 六角星形
w 白色 . 实心小点 hold on 添加图形
r 红色 x 叉号形状 grid on 添加网格
k 黑色 s 方形 - 实线
d 菱形 -- 虚线 ^ 向上箭头
3、可以用subplot(3,3,1)表示将绘图区域分为三行三列,目前使用第一区域。此时如要画不同的图形在一个窗口里,需要hold on。

H. matlab清屏命令有哪些

介绍 matlab 中三种不同的清理变量、显示窗口或图形的命令。 一、比较重要的清理:清除变量命令:clear说明:运行m文件之前一般都需要该命令,否则可能出错。 二、比较常用的清理:清理当前命令窗口命令:clc说明:clc 代表 clear command window,即清空当前的 command window窗口,也就是清屏。注意,只是清屏,而并未清除内存中的变量。 三、另外一种清理:清除当前激活的figure命令:clf

阅读全文

与matlab常用命令相关的资料

热点内容
电脑qq邮箱解压的图片保存在哪里 浏览:542
嵌入命令行 浏览:91
档案为什么被加密 浏览:485
十天学会单片机13 浏览:875
荣耀怎么设置让app一直运行 浏览:992
共享文件夹能在哪里找到 浏览:433
旅游订旅店用什么app 浏览:239
一个女程序员的声音 浏览:494
魔术app怎么用 浏览:340
单片机有4个8位的io口 浏览:897
win10rar解压缩软件 浏览:167
plc教程pdf 浏览:668
pythonshell清屏命令 浏览:279
检测到加密狗注册服务器失败 浏览:205
解压后手机如何安装 浏览:519
极客学院app为什么下架 浏览:14
图片批量压缩绿色版 浏览:654
东北程序员帅哥 浏览:707
加密封条风噪小 浏览:975
安阳少儿编程市场 浏览:499