贪心是人类自带的能力,贪心算法是在贪心决策上进行统筹规划的统称。
比如一道常见的算法笔试题---- 跳一跳 :
我们自然而然能产生一种解法:尽可能的往右跳,看最后是否能到达。
本文即是对这种贪心决策的介绍。
狭义的贪心算法指的是解最优化问题的一种特殊方法,解决过程中总是做出当下最好的选择,因为具有最优子结构的特点,局部最优解可以得到全局最优解;这种贪心算法是动态规划的一种特例。 能用贪心解决的问题,也可以用动态规划解决。
而广义的贪心指的是一种通用的贪心策略,基于当前局面而进行贪心决策。以 跳一跳 的题目为例:
我们发现的题目的核心在于 向右能到达的最远距离 ,我们用maxRight来表示;
此时有一种贪心的策略:从第1个盒子开始向右遍历,对于每个经过的盒子,不断更新maxRight的值。
贪心的思考过程类似动态规划,依旧是两步: 大事化小 , 小事化了 。
大事化小:
一个较大的问题,通过找到与子问题的重叠,把复杂的问题划分为多个小问题;
小事化了:
从小问题找到决策的核心,确定一种得到最优解的策略,比如跳一跳中的 向右能到达的最远距离 ;
在证明局部的最优解是否可以推出全局最优解的时候,常会用到数学的证明方式。
如果是动态规划:
要凑出m元,必须先凑出m-1、m-2、m-5、m-10元,我们用dp[i]表示凑出i元的最少纸币数;
有 dp[i]=min(dp[i-1], dp[i-2], dp[i-5], dp[i-10]) + 1 ;
容易知道 dp[1]=dp[2]=dp[5]=dp[10]=1 ;
根据以上递推方程和初始化信息,可以容易推出dp[1~m]的所有值。
似乎有些不对? 平时我们找零钱有这么复杂吗?
从贪心算法角度出发,当m>10且我们有10元纸币,我们优先使用10元纸币,然后再是5元、2元、1元纸币。
从日常生活的经验知道,这么做是正确的,但是为什么?
假如我们把题目变成这样,原来的策略还能生效吗?
接下来我们来分析这种策略:
已知对于m元纸币,1,2,5元纸币使用了a,b,c张,我们有a+2b+5c=m;
假设存在一种情况,1、2、5元纸币使用数是x,y,z张,使用了更少的5元纸币(z<c),且纸币张数更少(x+y+z<a+b+c),即是用更少5元纸币得到最优解。
我们令k=5*(c-z),k元纸币需要floor(k/2)张2元纸币,k%2张1元纸币;(因为如果有2张1元纸币,可以使用1张2元纸币来替代,故而1元纸币只能是0张或者1张)
容易知道,减少(c-z)张5元纸币,需要增加floor(5*(c-z)/2)张2元纸币和(5*(c-z))%2张纸币,而这使得x+y+z必然大于a+b+c。
由此我们知道不可能存在使用更少5元纸币的更优解。
所以优先使用大额纸币是一种正确的贪心选择。
对于1、5、7元纸币,比如说要凑出10元,如果优先使用7元纸币,则张数是4;(1+1+1+7)
但如果只使用5元纸币,则张数是2;(5+5)
在这种情况下,优先使用大额纸币是不正确的贪心选择。(但用动态规划仍能得到最优解)
如果是动态规划:
前i秒的完成的任务数,可以由前面1~i-1秒的任务完成数推过来。
我们用 dp[i]表示前i秒能完成的任务数 ;
在计算前i秒能完成的任务数时,对于第j个任务,我们有两种决策:
1、不执行这个任务,那么dp[i]没有变化;
2、执行这个任务,那么必须腾出来(Sj, Tj)这段时间,那么 dp[i] = max(dp[i], dp[ S[j] ] ) + 1 ;
比如说对于任务j如果是第5秒开始第10秒结束,如果i>=10,那么有 dp[i]=max(dp[i], dp[5] + 1); (相当于把第5秒到第i秒的时间分配给任务j)
再考虑贪心的策略,现实生活中人们是如何安排这种多任务的事情?我换一种描述方式:
我们自然而然会想到一个策略: 先把结束时间早的兼职给做了!
为什么?
因为先做完这个结束时间早的,能留出更多的时间做其他兼职。
我们天生具备了这种优化决策的能力。
这是一道 LeetCode题目 。
这个题目不能直接用动态规划去解,比如用dp[i]表示前i个人需要的最少糖果数。
因为(前i个人的最少糖果数)这种状态表示会收到第i+1个人的影响,如果a[i]>a[i+1],那么第i个人应该比第i+1个人多。
即是 这种状态表示不具备无后效性。
如果是我们分配糖果,我们应该怎么分配?
答案是: 从分数最低的开始。
按照分数排序,从最低开始分,每次判断是否比左右的分数高。
假设每个人分c[i]个糖果,那么对于第i个人有 c[i]=max(c[i-1],c[c+1])+1 ; (c[i]默认为0,如果在计算i的时候,c[i-1]为0,表示i-1的分数比i高)
但是,这样解决的时间复杂度为 O(NLogN) ,主要瓶颈是在排序。
如果提交,会得到 Time Limit Exceeded 的提示。
我们需要对贪心的策略进行优化:
我们把左右两种情况分开看。
如果只考虑比左边的人分数高时,容易得到策略:
从左到右遍历,如果a[i]>a[i-1],则有c[i]=c[i-1]+1;否则c[i]=1。
再考虑比右边的人分数高时,此时我们要从数组的最右边,向左开始遍历:
如果a[i]>a[i+1], 则有c[i]=c[i+1]+1;否则c[i]不变;
这样讲过两次遍历,我们可以得到一个分配方案,并且时间复杂度是 O(N) 。
题目给出关键信息:1、两个人过河,耗时为较长的时间;
还有隐藏的信息:2、两个人过河后,需要有一个人把船开回去;
要保证总时间尽可能小,这里有两个关键原则: 应该使得两个人时间差尽可能小(减少浪费),同时船回去的时间也尽可能小(减少等待)。
先不考虑空船回来的情况,如果有无限多的船,那么应该怎么分配?
答案: 每次从剩下的人选择耗时最长的人,再选择与他耗时最接近的人。
再考虑只有一条船的情况,假设有A/B/C三个人,并且耗时A<B<C。
那么最快的方案是:A+B去, A回;A+C去;总耗时是A+B+C。(因为A是最快的,让其他人来回时间只会更长, 减少等待的原则 )
如果有A/B/C/D四个人,且耗时A<B<C<D,这时有两种方案:
1、最快的来回送人方式,A+B去;A回;A+C去,A回;A+D去; 总耗时是B+C+D+2A (减少等待原则)
2、最快和次快一起送人方式,A+B先去,A回;C+D去,B回;A+B去;总耗时是 3B+D+A (减少浪费原则)
对比方案1、2的选择,我们发现差别仅在A+C和2B;
为何方案1、2差别里没有D?
因为D最终一定要过河,且耗时一定为D。
如果有A/B/C/D/E 5个人,且耗时A<B<C<D<E,这时如何抉择?
仍是从最慢的E看。(参考我们无限多船的情况)
方案1,减少等待;先送E过去,然后接着考虑四个人的情况;
方案2,减少浪费;先送E/D过去,然后接着考虑A/B/C三个人的情况;(4人的时候的方案2)
到5个人的时候,我们已经明显发了一个特点:问题是重复,且可以由子问题去解决。
根据5个人的情况,我们可以推出状态转移方程 dp[i] = min(dp[i - 1] + a[i] + a[1], dp[i - 2] + a[2] + a[1] + a[i] + a[2]);
再根据我们考虑的1、2、3、4个人的情况,我们分别可以算出dp[i]的初始化值:
dp[1] = a[1];
dp[2] = a[2];
dp[3] = a[2]+a[1]+a[3];
dp[4] = min(dp[3] + a[4] + a[1], dp[2]+a[2]+a[1]+a[4]+a[2]);
由上述的状态转移方程和初始化值,我们可以推出dp[n]的值。
贪心的学习过程,就是对自己的思考进行优化。
是把握已有信息,进行最优化决策。
这里还有一些收集的 贪心练习题 ,可以实践练习。
这里 还有在线分享,欢迎报名。
B. 大学要学会这8种算法程序员
程序员8条程序算法必须掌握
算法一: 快速排序算法
快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序n个项目要O(nlogn)次比较。在最坏状况下则需要O(n2)次比较,但这种状况并不常见。事实上,快速排序通常明显比其他O(nlogn)算法更快,因为它的内部循环 (innerloop)可以在大部分的架构上很有效率地被实现出来。快速排序使用分治法(Divideandconquer)策略来把一个串行(list)分为两个子串行(sub-lists)。
算法二: 堆排序算法
堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小干(或者大干)它的父节点。堆排序的平均时间复杂度为O(nlogn)。
算法步骤:
1.创建一个堆H[0.n-1]
2.把堆首(最大值)和堆尾互换
3.把堆的尺寸缩小1,并调用shift_down(0),目的是把新的数组顶端数据调整到相应位置4.重复步骤2,直到堆的尺寸为1
算法三: 归并排序
归并排序(Mergesort,台湾译作: 合并排序)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(DivideandConquer)的一个非常典型的应用。
算法步骤:
1.申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
2.设定两个指针,最初位置分别为两个已经排序序列的起始位置
3.比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置4.重复步骤3直到某一指针达到序列尾5.将另一序列剩下的所有元素直接复制到合并序列尾
算法四: 二分查找算法二分查找算法
是一种在有序数组中查找某一特定元素的搜索算法。
搜素过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束:如果某一特定元素大干或者小干中间元素,则在数组大于或小千中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。如果在某一步骤数组为空,则代表找不到。这种搜索算法每一次比较都使搜索范围缩小一半。折半搜索每次把搜索区域减少一半,时间复杂度为O(logn)
如果在某一步骤数组为空,则代表找不到。这种搜索算法每一次比较都使搜索范围缩小一半。折半搜索每次把搜索区域减少一半,时间复杂度为O(logn) 。
算法五: BFPRT(线性查找算法)
BFPRT算法解决的问题十分经典,即从某n个元素的序列中选出第k大(第k小)的元素,通过巧妙的分析BFPRT可以保证在最坏情况下仍为线性时间复杂度该算法的思想与快速排序思想相似,当然,为使得算法在最坏情况下,依然能达到o(n)的时间复杂度,五位算法作者做了精妙的处理。
算法六: DFS(深度优先搜索)
深度优先搜索算法(Depth-First-Search),是搜索算法的一种。它沿着树的深度遍历树的节点,尽可能深的搜索树的分支。当节点v的所有边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。这一过程一直进行到已发现从源节点可达的所有节点为止。
如果还存在未被发现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访问为止。DFS属于盲目搜索。深度优先搜索是图论中的经典算法,利用深度优先搜索算法可以产生目标图的相应拓扑排序表,利用拓扑排序表可以方便的解决很多相关的图论问题,如最大路径问题等等。一般用堆数据结构来辅助实现DFS算法。
算法七: BFS广度优先搜索算法
(Breadth-First-Search),是一种图形搜索算法。简单的说,BFS是从根节点开始,沿着树(图)的宽度遍历树(图)的节点。如果所有节点均被访问,则算法中止BFS同样属干盲目搜索。一般用队列数据结构来辅助实现BFS算法。
算法步骤:
1.首先将根节点放入队列中。
2.从队列中取出第一个节点,并检验它是否为目标。如果找到目标,则结束搜寻并回传结果。否则将它所有尚未检验过的直接子节点加入队列中。
3.若队列为空,表示整张图都检查过了一一亦即图中没有欲搜寻的目标。结束搜寻并回传“找不到目标”4.重复步骤2。
算法八: 动态规划算法
动态规划(Dynamicprogramming)是一种在数学、计算机科学和经济学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。动态规划常常适用干有重叠子问题和最优子结构性质的问题,动态规划方法所耗时间往往远少于朴素解法。
动态规划背后的基本思想非常简单。大致上,若要解一个给定问题,我们需要解其不同部分(即子问题),再合并子问题的解以得出原问题的解。通常许多子问题非常相似,为此动态规划法试图仅仅解决每个子问题一次,从而减少计算量:一旦某个给定子问题的解已经算出,则将其记忆化存储,以便下次需要同一个子问题解之时直接查表。
C. 大学里程序员必须掌握的核心算法
程序员必须掌握的核心算法
十大排序算法
简单排序插入排序、
选择排序、冒泡排序(必学)
分治排序:快速排序、归并排序(必学,快速排序还要关注中轴的选取方式)
分配排序桶排序、基数排序
树状排序:堆排序(必学)
其他:计数排序(必学)、希尔排序
图论算法
图的表示:邻接矩阵和邻接表
遍历算法:深度搜索和广度搜索(必学)
最短路径算法:FLOYD,DIJKSTRA(必学)
最小生成树算法:PRIM,KRUSKAL(必学)
实际算法:关键路径、拓抖排序(原理与应用)
二分图匹配:配对、匈牙利算法(原理与应用)
拓展:中心性算法、社区发现算法(原理与应用)
搜索与回溯算法
贪心算法(必学)
信发式搜索算法:A*寻路算法(了解)
地图着色算法、N皇后问题、最优加工顺序旅行商问题
动态规划
树形DP:01背包问题
线性DP:最长公共千序列、最长公共子串
区间DP:矩阵最大值(和以及积)
数位DP:数字游戏
状态压缩DP:旅行商
字符匹配算法
正则表达式
模式匹配:KMP、BOYER-MOORE
流相关算法
最大流:最短增广路、DINIC算法
最大流最小割:最大收盆问题、方格取数问题
最小费用最大流:最小费用路、消遣
D. 程序员都应该精通的六种算法,你会了吗
对于一名优秀的程序员来说,面对一个项目的需求的时候,一定会在脑海里浮现出最适合解决这个问题的方法是什么,选对了算法,就会起到事半功倍的效果,反之,则可能会使程序运行效率低下,还容易出bug。因此,熟悉掌握常用的算法,是对于一个优秀程序员最基本的要求。
那么,常用的算法都有哪些呢?一般来讲,在我们日常工作中涉及到的算法,通常分为以下几个类型:分治、贪心、迭代、枚举、回溯、动态规划。下面我们来一一介绍这几种算法。
一、分治算法
分治算法,顾名思义,是将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。
分治算法一般分为三个部分:分解问题、解决问题、合并解。
分治算法适用于那些问题的规模缩小到一定程度就可以解决、并且各子问题之间相互独立,求出来的解可以合并为该问题的解的情况。
典型例子比如求解一个无序数组中的最大值,即可以采用分治算法,示例如下:
def pidAndConquer(arr,leftIndex,rightIndex):
if(rightIndex==leftIndex+1 || rightIndex==leftIndex){
return Math.max(arr[leftIndex],arr[rightIndex]);
}
int mid=(leftIndex+rightIndex)/2;
int leftMax=pidAndConquer(arr,leftIndex,mid);
int rightMax=pidAndConquer(arr,mid,rightIndex);
return Math.max(leftMax,rightMax);
二、贪心算法
贪心算法是指在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。
贪心算法的基本思路是把问题分成若干个子问题,然后对每个子问题求解,得到子问题的局部最优解,最后再把子问题的最优解合并成原问题的一个解。这里要注意一点就是贪心算法得到的不一定是全局最优解。这一缺陷导致了贪心算法的适用范围较少,更大的用途在于平衡算法效率和最终结果应用,类似于:反正就走这么多步,肯定给你一个值,至于是不是最优的,那我就管不了了。就好像去菜市场买几样菜,可以经过反复比价之后再买,或者是看到有卖的不管三七二十一先买了,总之最终结果是菜能买回来,但搞不好多花了几块钱。
典型例子比如部分背包问题:有n个物体,第i个物体的重量为Wi,价值为Vi,在总重量不超过C的情况下让总价值尽量高。每一个物体可以只取走一部分,价值和重量按比例计算。
贪心策略就是,每次都先拿性价比高的,判断不超过C。
三、迭代算法
迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程。迭代算法是用计算机解决问题的一种基本方法,它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值。最终得到问题的结果。
迭代算法适用于那些每步输入参数变量一定,前值可以作为下一步输入参数的问题。
典型例子比如说,用迭代算法计算斐波那契数列。
四、枚举算法
枚举算法是我们在日常中使用到的最多的一个算法,它的核心思想就是:枚举所有的可能。枚举法的本质就是从所有候选答案中去搜索正确地解。
枚举算法适用于候选答案数量一定的情况。
典型例子包括鸡钱问题,有公鸡5,母鸡3,三小鸡1,求m钱n鸡的所有可能解。可以采用一个三重循环将所有情况枚举出来。代码如下:
五、回溯算法
回溯算法是一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。
许多复杂的,规模较大的问题都可以使用回溯法,有“通用解题方法”的美称。
典型例子是8皇后算法。在8 8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问一共有多少种摆法。
回溯法是求解皇后问题最经典的方法。算法的思想在于如果一个皇后选定了位置,那么下一个皇后的位置便被限制住了,下一个皇后需要一直找直到找到安全位置,如果没有找到,那么便要回溯到上一个皇后,那么上一个皇后的位置就要改变,这样一直递归直到所有的情况都被举出。
六、动态规划算法
动态规划过程是:每次决策依赖于当前状态,又随即引起状态的转移。一个决策序列就是在变化的状态中产生出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划。
动态规划算法适用于当某阶段状态给定以后,在这阶段以后的过程的发展不受这段以前各段状态的影响,即无后效性的问题。
典型例子比如说背包问题,给定背包容量及物品重量和价值,要求背包装的物品价值最大。