导航:首页 > 编程语言 > pythonnumpylog

pythonnumpylog

发布时间:2022-06-23 12:42:58

python实现对CSV文件多维不同单位数据的归一化处理

1)线性归一化
这种归一化比较适用在数值比较集中的情况,缺陷就是如果max和min不稳定,很容易使得归一化结果不稳定,使得后续的效果不稳定,实际使用中可以用经验常量来代替max和min。
2)标准差标准化
经过处理的数据符合标准正态分布,即均值为0,标准差为1。
3)非线性归一化
经常用在数据分化较大的场景,有些数值大,有些很小。通过一些数学函数,将原始值进行映射。该方法包括log、指数、反正切等。需要根据数据分布的情况,决定非线性函数的曲线。
log函数:x = lg(x)/lg(max)
反正切函数:x = atan(x)*2/pi
Python实现
线性归一化
定义数组:x = numpy.array(x)
获取二维数组列方向的最大值:x.max(axis = 0)
获取二维数组列方向的最小值:x.min(axis = 0)
对二维数组进行线性归一化:
def max_min_normalization(data_value, data_col_max_values, data_col_min_values):
""" Data normalization using max value and min value

Args:
data_value: The data to be normalized
data_col_max_values: The maximum value of data's columns
data_col_min_values: The minimum value of data's columns
"""
data_shape = data_value.shape
data_rows = data_shape[0]
data_cols = data_shape[1]

for i in xrange(0, data_rows, 1):
for j in xrange(0, data_cols, 1):
data_value[i][j] = \
(data_value[i][j] - data_col_min_values[j]) / \
(data_col_max_values[j] - data_col_min_values[j])

标准差归一化
定义数组:x = numpy.array(x)
获取二维数组列方向的均值:x.mean(axis = 0)
获取二维数组列方向的标准差:x.std(axis = 0)
对二维数组进行标准差归一化:
def standard_deviation_normalization(data_value, data_col_means,
data_col_standard_deviation):
""" Data normalization using standard deviation

Args:
data_value: The data to be normalized
data_col_means: The means of data's columns
data_col_standard_deviation: The variance of data's columns
"""
data_shape = data_value.shape
data_rows = data_shape[0]
data_cols = data_shape[1]

for i in xrange(0, data_rows, 1):
for j in xrange(0, data_cols, 1):
data_value[i][j] = \
(data_value[i][j] - data_col_means[j]) / \
data_col_standard_deviation[j]

非线性归一化(以lg为例)
定义数组:x = numpy.array(x)
获取二维数组列方向的最大值:x.max(axis=0)
获取二维数组每个元素的lg值:numpy.log10(x)
获取二维数组列方向的最大值的lg值:numpy.log10(x.max(axis=0))
对二维数组使用lg进行非线性归一化:
def nonlinearity_normalization_lg(data_value_after_lg,
data_col_max_values_after_lg):
""" Data normalization using lg

Args:
data_value_after_lg: The data to be normalized
data_col_max_values_after_lg: The maximum value of data's columns
"""

data_shape = data_value_after_lg.shape
data_rows = data_shape[0]
data_cols = data_shape[1]

for i in xrange(0, data_rows, 1):
for j in xrange(0, data_cols, 1):
data_value_after_lg[i][j] = \
data_value_after_lg[i][j] / data_col_max_values_after_lg[j]

㈡ 如何用Python画各种着名数学图案

如何用Python画各种着名数学图案 | 附图+代码

用Python绘制着名的数学图片或动画,展示数学中的算法魅力。
Mandelbrot 集

'''
A fast Mandelbrot set wallpaper renderer

reddit discussion:
'''
importnumpy asnp
fromPILimportImage
fromnumba importjit

MAXITERS=200
RADIUS=100

@jit
defcolor(z, i):
v =np.log2(i +1-np.log2(np.log2(abs(z)))) /5
ifv <1.0:
returnv**4, v**2.5, v
else:
v =max(0, 2-v)
returnv, v**1.5, v**3

@jit
defiterate(c):
z =0j
fori inrange(MAXITERS):
ifz.real*z.real +z.imag*z.imag >RADIUS:
returncolor(z, i)
z =z*z +c
return0, 0,0

defmain(xmin, xmax, ymin, ymax, width, height):
x =np.linspace(xmin, xmax, width)
y =np.linspace(ymax, ymin, height)
z =x[None, :] +y[:, None]*1j
red, green, blue =np.asarray(np.frompyfunc(iterate, 1, 3)(z)).astype(np.float)
img =np.dstack((red, green, blue))
Image.fromarray(np.uint8(img*255)).save('mandelbrot.png')

if__name__=='__main__':
main(-2.1, 0.8, -1.16, 1.16, 1200, 960)

㈢ 怎么用numpy计算债券到期收益率

1、NumPy中的diff函数可以返回一个由相邻数组元素的差值构成的数组。不过需要注意的是,diff返回的数组比收盘价数组少一个元素。2、对数收益率计算起来甚至更简单一些。我们先用log函数得到每一个收盘价的对数,再对结果使用diff函数即可。一般情况下,我们应该检查输入数组以确保不含有零和负数。3、股票波动率是对价格变动的一种衡量。计算波动率(年波动率和月波动率)时,需要用到对数波动率。 年波动率等于对数波动率的标准差除以其均值,再除以交易日倒数的平方根,通常交易日取252天。

㈣ Python含义解释

Python(英国发音:/ˈpaɪθən/美国发音:ˈpaɪθɑːn/),是一种面向对象的解释型计算机程序设计语言,由荷兰人GuidovanRossum于1989年发明,第一个公开发行版发行于1991年。
Python是纯粹的自由软件,源代码和解释器CPython遵GPL(GNUGeneralPublicLicense)协议。Python语法简洁清晰,特色之一是强制用空白符(whitespace)作为语句缩进。
Python具有丰富和强大的库。它常被昵称为胶水语言,能够把用其他语言制作的各种模块(尤其是C/C++)很轻松地联结在一起。常见的一种应用情形是,使用Python快速生成程序的原型(有时甚至是程序的最终界面),然后对其中有特别要求的部分,用更合适的语言改写,比如3D游戏中的图形渲染模块,性能要求特别高,就可以用C/C++重写,而后封装为Python可以调用的扩展类库。需要注意的是在您使用扩展类库时可能需要考虑平台问题,某些可能不提供跨平台的实现。

㈤ python里怎模对复数取对数log,对矩阵实现log以3为底,怎么做

#coding=utf-8
importmath
importnumpyasnp

#复数
aComplex=4.23+8.5j
#对复数的实数部分取对数
math.log(aComplex.real)
#对复数的虚数部分取对数
math.log(aComplex.imag)

#矩阵
aArray=np.array([1.0,2.0,3.0])
#对矩阵求log以3为底
foriinrange(len(aArray)):
aArray[i]=math.log(aArray[i],3)

㈥ Python 怎样写一个函数使得返回值服从指数分布

不是服从指数分别, 你可以随机出来十万个数值, 然后绘制一下统计直方图, 就能很明显的看到了.


可以直接用

exprnd=random.expovariate


或者非要自己实现的话, 好好去推倒一下公式, 能发现其实是

defexprnd(mu):
return-1./mu*math.log(1-random.random())

㈦ 如何解决numpy安装问题的RunTimeError问题

那是没有安装 log 相关的模块 现在我不确定,你的系统详情 不过很有可能加载的模块是 twisted的log 命令应该是 from twisted.python import log 你试试先安装Twisted 另外,请确定,在C编译过程中 没有错误 python setup.py build

㈧ Python中如何对series里所有的值取对数

以后应多使用论坛中的Eviews专区。
ln在Eviews中表示为log,如数学中的ln(Q)在Eviews中表示为log(Q)
直接定义啊 y=log(x) 在软件中log,论文模型中ln不用取对数直接在估计的时候用 log( )就好了
如果真要取的话
quick\ generate series\
输入新变量,比如 r=log( )
r就是取完对数后的序列
在工作文件中先定义一个新的变量Y(假设原变量是w,已存在的变量),然后在工作文件中点击genr,在方程中输入Y=log(w),确定。
series y=log(x)
在最小二乘里面输入log(y) log(x) c也可以
产生个新变量:输入命令y=log()

㈨ python关于numpy基础问题

Python发展至今,已经有越来越多的人使用python进行科学技术,NumPY是python中的一款高性能科学计算和数据分析的基础包。
ndarray
ndarray(以下简称数组)是numpy的数组对象,需要注意的是,它是同构的,也就是说其中的所有元素必须是相同的类型。其中每个数组都有一个shape和dtype。
shape既是数组的形状,比如
复制代码
1 import numpy as np
2 from numpy.random import randn
3
4 arr = randn(12).reshape(3, 4)
5
6 arr
7
8 [[ 0.98655235 1.20830283 -0.72135183 0.40292924]
9 [-0.05059849 -0.02714873 -0.62775486 0.83222997]
10 [-0.84826071 -0.29484606 -0.76984902 0.09025059]]
11
12 arr.shape
13 (3, 4)
复制代码
其中(3, 4)即代表arr是3行4列的数组,其中dtype为float64
一下函数可以用来创建数组
array将输入数据转换为ndarray,类型可制定也可默认
asarray将输入转换为ndarray
arange类似内置range
ones、ones_like根据形状创建一个全1的数组、后者可以复制其他数组的形状
zeros、zeros_like类似上面,全0
empty、empty_like创建新数组、只分配空间
eye、identity创建对角线为1的对角矩阵
数组的转置和轴对称
转置是多维数组的基本运算之一。可以使用.T属性或者transpose()来实现。.T就是进行轴对换而transpose则可以接收参数进行更丰富的变换
复制代码
arr = np.arange(6).reshape((2,3))
print arr
[[0 1 2]
[3 4 5]]
print arr.T
[[0 3]
[1 4]
[2 5]]
arr = np.arange(24).reshape((2,3,4))
print arr
[[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
[[12 13 14 15]
[16 17 18 19]
[20 21 22 23]]]
print arr.transpose((0,1,2))
[[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
[[12 13 14 15]
[16 17 18 19]
[20 21 22 23]]]
复制代码
数组的运算
大小相等的数组之间做任何算术运算都会将运算应用到元素级别。
复制代码
1 arr = np.arange(9).reshape(3, 3)
2 print arr
3
4 [[0 1 2]
5 [3 4 5]
6 [6 7 8]]
7
8 print arr*arr
9
10 [[ 0 1 4]
11 [ 9 16 25]
12 [36 49 64]]
13
14 print arr+arr
15
16 [[ 0 2 4]
17 [ 6 8 10]
18 [12 14 16]]
19
20 print arr*4
21
22 [[ 0 4 8]
23 [12 16 20]
24 [24 28 32]]
复制代码
numpy的简单计算中,ufunc通用函数是对数组中的数据执行元素级运算的函数。
如:
复制代码
arr = np.arange(6).reshape((2,3))
print arr
[[0 1 2]
[3 4 5]]
print np.square(arr)
[[ 0 1 4]
[ 9 16 25]]
复制代码
类似的有:abs,fabs,sqrt,square,exp,log,sign,ceil,floor,rint,modf,isnan,isfinite,isinf,cos,cosh,sin,sinh,tan,tanh,
add,subtract,multiply,power,mod,equal,等等

㈩ 最受欢迎的 15 大 Python 库有哪些

1、Pandas:是一个Python包,旨在通过“标记”和“关系”数据进行工作,简单直观。它设计用于快速简单的数据操作、聚合和可视化,是数据整理的完美工具。
2、Numpy:是专门为Python中科学计算而设计的软件集合,它为Python中的n维数组和矩阵的操作提供了大量有用的功能。该库提供了NumPy数组类型的数学运算向量化,可以改善性能,从而加快执行速度。
3、SciPy:是一个工程和科学软件库,包含线性代数,优化,集成和统计的模块。SciPy库的主要功能是建立在NumPy上,通过其特定子模块提供有效的数值例程,并作为数字积分、优化和其他例程。
4、Matplotlib:为轻松生成简单而强大的可视化而量身定制,它使Python成为像MatLab或Mathematica这样的科学工具的竞争对手。
5、Seaborn:主要关注统计模型的可视化(包括热图),Seaborn高度依赖于Matplotlib。
6、Bokeh:独立于Matplotlib,主要焦点是交互性,它通过现代浏览器以数据驱动文档的风格呈现。
7、Plotly:是一个基于Web用于构建可视化的工具箱,提供API给一些编程语言(Python在内)。
8、Scikits:是Scikits
Stack额外的软件包,专为像图像处理和机器学习辅助等特定功能而设计。它建立在SciPy之上,中集成了有质量的代码和良好的文档、简单易用并且十分高效,是使用Python进行机器学习的实际行业标准。
9、Theano:是一个Python软件包,它定义了与NumPy类似的多维数组,以及数学运算和表达式。此库是被编译的,可实现在所有架构上的高效运行。
10、TensorFlow:是数据流图计算的开源库,旨在满足谷歌对训练神经网络的高需求,并且是基于神经网络的机器学习系统DistBelief的继任者,可以在大型数据集上快速训练神经网络。
11、Keras:是一个用Python编写的开源的库,用于在高层的接口上构建神经网络。它简单易懂,具有高级可扩展性。
12、NLTK:主要用于符号学和统计学自然语言处理(NLP) 的常见任务,旨在促进NLP及相关领域(语言学,认知科学人工智能等)的教学和研究。
13、Gensim:是一个用于Python的开源库,为有向量空间模型和主题模型的工作提供了使用工具。这个库是为了高效处理大量文本而设计,不仅可以进行内存处理,还可以通过广泛使用NumPy数据结构和SciPy操作来获得更高的效率。

阅读全文

与pythonnumpylog相关的资料

热点内容
程序员如何不被废 浏览:803
二进制流转pdf 浏览:915
php判断爬虫 浏览:569
960除24除4简便算法 浏览:786
关于解压英语翻译 浏览:565
python控制键盘右键 浏览:920
php没有libmysqldll 浏览:828
时政新闻app哪个好 浏览:906
手机已加密怎么办 浏览:201
安卓手机截屏怎么传到苹果 浏览:527
京管家app哪里下载 浏览:33
文件夹横向排列的竖向排列 浏览:453
51单片机驱动摄像头模块 浏览:689
政府文件加密没法转换 浏览:373
android判断栈顶 浏览:331
凭证软件源码 浏览:860
androidwebview滚动事件 浏览:11
如何将电脑上的图片压缩成文件包 浏览:899
程序员转金融IT 浏览:839
黑马程序员培训效果如何 浏览:915