❶ python 下有什么好用的多进程并发框架么
需要吗?直接使用multiprocessing就搞定了。这个很好用。不需要更多的框架了。
不过会有很多习惯用法。自己摸索一下。主要是Queue还有共享内存。
❷ Python中的多进程与多线程/分布式该如何使用
Python提供了非常好用的多进程包multiprocessing,你只需要定义一个函数,Python会替你完成其他所有事情。
借助这个包,可以轻松完成从单进程到并发执行的转换。
1、新建单一进程
如果我们新建少量进程,可以如下:
import multiprocessing
import time
def func(msg):
for i in xrange(3):
print msg
time.sleep(1)
if __name__ == "__main__":
p = multiprocessing.Process(target=func, args=("hello", ))
p.start()
p.join()
print "Sub-process done."12345678910111213
2、使用进程池
是的,你没有看错,不是线程池。它可以让你跑满多核CPU,而且使用方法非常简单。
注意要用apply_async,如果落下async,就变成阻塞版本了。
processes=4是最多并发进程数量。
import multiprocessing
import time
def func(msg):
for i in xrange(3):
print msg
time.sleep(1)
if __name__ == "__main__":
pool = multiprocessing.Pool(processes=4)
for i in xrange(10):
msg = "hello %d" %(i)
pool.apply_async(func, (msg, ))
pool.close()
pool.join()
print "Sub-process(es) done."12345678910111213141516
3、使用Pool,并需要关注结果
更多的时候,我们不仅需要多进程执行,还需要关注每个进程的执行结果,如下:
import multiprocessing
import time
def func(msg):
for i in xrange(3):
print msg
time.sleep(1)
return "done " + msg
if __name__ == "__main__":
pool = multiprocessing.Pool(processes=4)
result = []
for i in xrange(10):
msg = "hello %d" %(i)
result.append(pool.apply_async(func, (msg, )))
pool.close()
pool.join()
for res in result:
print res.get()
print "Sub-process(es) done."
2014.12.25更新
根据网友评论中的反馈,在Windows下运行有可能崩溃(开启了一大堆新窗口、进程),可以通过如下调用来解决:
multiprocessing.freeze_support()1
附录(自己的脚本):
#!/usr/bin/python
import threading
import subprocess
import datetime
import multiprocessing
def dd_test(round, th):
test_file_arg = 'of=/zbkc/test_mds_crash/1m_%s_%s_{}' %(round, th)
command = "seq 100 | xargs -i dd if=/dev/zero %s bs=1M count=1" %test_file_arg
print command
subprocess.call(command,shell=True,stdout=open('/dev/null','w'),stderr=subprocess.STDOUT)
def mds_stat(round):
p = subprocess.Popen("zbkc mds stat", shell = True, stdout = subprocess.PIPE)
out = p.stdout.readlines()
if out[0].find('active') != -1:
command = "echo '0205pm %s round mds status OK, %s' >> /round_record" %(round, datetime.datetime.now())
command_2 = "time (ls /zbkc/test_mds_crash/) 2>>/round_record"
command_3 = "ls /zbkc/test_mds_crash | wc -l >> /round_record"
subprocess.call(command,shell=True)
subprocess.call(command_2,shell=True)
subprocess.call(command_3,shell=True)
return 1
else:
command = "echo '0205 %s round mds status abnormal, %s, %s' >> /round_record" %(round, out[0], datetime.datetime.now())
subprocess.call(command,shell=True)
return 0
#threads = []
for round in range(1, 1600):
pool = multiprocessing.Pool(processes = 10) #使用进程池
for th in range(10):
# th_name = "thread-" + str(th)
# threads.append(th_name) #添加线程到线程列表
# threading.Thread(target = dd_test, args = (round, th), name = th_name).start() #创建多线程任务
pool.apply_async(dd_test, (round, th))
pool.close()
pool.join()
#等待线程完成
# for t in threads:
# t.join()
if mds_stat(round) == 0:
subprocess.call("zbkc -s",shell=True)
break
❸ python 多线程和多进程的区别 mutiprocessing theading
在socketserver服务端代码中有这么一句:
server = socketserver.ThreadingTCPServer((ip,port), MyServer)
ThreadingTCPServer这个类是一个支持多线程和TCP协议的socketserver,它的继承关系是这样的:
class ThreadingTCPServer(ThreadingMixIn, TCPServer): pass
右边的TCPServer实际上是主要的功能父类,而左边的ThreadingMixIn则是实现了多线程的类,ThreadingTCPServer自己本身则没有任何代码。
MixIn在Python的类命名中很常见,称作“混入”,戏称“乱入”,通常为了某种重要功能被子类继承。
我们看看一下ThreadingMixIn的源代码:
class ThreadingMixIn:
daemon_threads = False
def process_request_thread(self, request, client_address):
try:
self.finish_request(request, client_address)
self.shutdown_request(request)
except:
self.handle_error(request, client_address)
self.shutdown_request(request)
def process_request(self, request, client_address):
t = threading.Thread(target = self.process_request_thread,
args = (request, client_address))
t.daemon = self.daemon_threads
t.start()
在ThreadingMixIn类中,其实就定义了一个属性,两个方法。其中的process_request()方法实际调用的正是Python内置的多线程模块threading。这个模块是Python中所有多线程的基础,socketserver本质上也是利用了这个模块。
socketserver通过threading模块,实现了多线程任务处理能力,可以同时为多个客户提供服务。
那么,什么是线程,什么是进程?
进程是程序(软件,应用)的一个执行实例,每个运行中的程序,可以同时创建多个进程,但至少要有一个。每个进程都提供执行程序所需的所有资源,都有一个虚拟的地址空间、可执行的代码、操作系统的接口、安全的上下文(记录启动该进程的用户和权限等等)、唯一的进程ID、环境变量、优先级类、最小和最大的工作空间(内存空间)。进程可以包含线程,并且每个进程必须有至少一个线程。每个进程启动时都会最先产生一个线程,即主线程,然后主线程会再创建其他的子线程。
线程,有时被称为轻量级进程(Lightweight Process,LWP),是程序执行流的最小单元。一个标准的线程由线程ID,当前指令指针(PC),寄存器集合和堆栈组成。另外,线程是进程中的一个实体,是被系统独立调度和分派的基本单位,线程自己不独立拥有系统资源,但它可与同属一个进程的其它线程共享该进程所拥有的全部资源。每一个应用程序都至少有一个进程和一个线程。在单个程序中同时运行多个线程完成不同的被划分成一块一块的工作,称为多线程。
举个例子,某公司要生产一种产品,于是在生产基地建设了很多厂房,每个厂房内又有多条流水生产线。所有厂房配合将整个产品生产出来,单个厂房内的流水线负责生产所属厂房的产品部件,每个厂房都拥有自己的材料库,厂房内的生产线共享这些材料。公司要实现生产必须拥有至少一个厂房一条生产线。换成计算机的概念,那么这家公司就是应用程序,厂房就是应用程序的进程,生产线就是某个进程的一个线程。
线程的特点:
线程是一个execution context(执行上下文),即一个cpu执行时所需要的一串指令。假设你正在读一本书,没有读完,你想休息一下,但是你想在回来时继续先前的进度。有一个方法就是记下页数、行数与字数这三个数值,这些数值就是execution context。如果你的室友在你休息的时候,使用相同的方法读这本书。你和她只需要这三个数字记下来就可以在交替的时间共同阅读这本书了。
线程的工作方式与此类似。CPU会给你一个在同一时间能够做多个运算的幻觉,实际上它在每个运算上只花了极少的时间,本质上CPU同一时刻只能干一件事,所谓的多线程和并发处理只是假象。CPU能这样做是因为它有每个任务的execution context,就像你能够和你朋友共享同一本书一样。
进程与线程区别:
同一个进程中的线程共享同一内存空间,但进程之间的内存空间是独立的。
同一个进程中的所有线程的数据是共享的,但进程之间的数据是独立的。
对主线程的修改可能会影响其他线程的行为,但是父进程的修改(除了删除以外)不会影响其他子进程。
线程是一个上下文的执行指令,而进程则是与运算相关的一簇资源。
同一个进程的线程之间可以直接通信,但是进程之间的交流需要借助中间代理来实现。
创建新的线程很容易,但是创建新的进程需要对父进程做一次复制。
一个线程可以操作同一进程的其他线程,但是进程只能操作其子进程。
线程启动速度快,进程启动速度慢(但是两者运行速度没有可比性)。
由于现代cpu已经进入多核时代,并且主频也相对以往大幅提升,多线程和多进程编程已经成为主流。Python全面支持多线程和多进程编程,同时还支持协程。
❹ python多进程为什么一定要
前面讲了为什么Python里推荐用多进程而不是多线程,但是多进程也有其自己的限制:相比线程更加笨重、切换耗时更长,并且在python的多进程下,进程数量不推荐超过CPU核心数(一个进程只有一个GIL,所以一个进程只能跑满一个CPU),因为一个进程占用一个CPU时能充分利用机器的性能,但是进程多了就会出现频繁的进程切换,反而得不偿失。
不过特殊情况(特指IO密集型任务)下,多线程是比多进程好用的。
举个例子:给你200W条url,需要你把每个url对应的页面抓取保存起来,这种时候,单单使用多进程,效果肯定是很差的。为什么呢?
例如每次请求的等待时间是2秒,那么如下(忽略cpu计算时间):
1、单进程+单线程:需要2秒*200W=400W秒==1111.11个小时==46.3天,这个速度明显是不能接受的2、单进程+多线程:例如我们在这个进程中开了10个多线程,比1中能够提升10倍速度,也就是大约4.63天能够完成200W条抓取,请注意,这里的实际执行是:线程1遇见了阻塞,CPU切换到线程2去执行,遇见阻塞又切换到线程3等等,10个线程都阻塞后,这个进程就阻塞了,而直到某个线程阻塞完成后,这个进程才能继续执行,所以速度上提升大约能到10倍(这里忽略了线程切换带来的开销,实际上的提升应该是不能达到10倍的),但是需要考虑的是线程的切换也是有开销的,所以不能无限的启动多线程(开200W个线程肯定是不靠谱的)3、多进程+多线程:这里就厉害了,一般来说也有很多人用这个方法,多进程下,每个进程都能占一个cpu,而多线程从一定程度上绕过了阻塞的等待,所以比单进程下的多线程又更好使了,例如我们开10个进程,每个进程里开20W个线程,执行的速度理论上是比单进程开200W个线程快10倍以上的(为什么是10倍以上而不是10倍,主要是cpu切换200W个线程的消耗肯定比切换20W个进程大得多,考虑到这部分开销,所以是10倍以上)。
还有更好的方法吗?答案是肯定的,它就是:
4、协程,使用它之前我们先讲讲what/why/how(它是什么/为什么用它/怎么使用它)what:
协程是一种用户级的轻量级线程。协程拥有自己的寄存器上下文和栈。协程调度切换时,将寄存器上下文和栈保存到其他地方,在切回来的时候,恢复先前保存的寄存器上下文和栈。因此:
协程能保留上一次调用时的状态(即所有局部状态的一个特定组合),每次过程重入时,就相当于进入上一次调用的状态,换种说法:进入上一次离开时所处逻辑流的位置。
在并发编程中,协程与线程类似,每个协程表示一个执行单元,有自己的本地数据,与其它协程共享全局数据和其它资源。
why:
目前主流语言基本上都选择了多线程作为并发设施,与线程相关的概念是抢占式多任务(Preemptive multitasking),而与协程相关的是协作式多任务。
不管是进程还是线程,每次阻塞、切换都需要陷入系统调用(system call),先让CPU跑操作系统的调度程序,然后再由调度程序决定该跑哪一个进程(线程)。
而且由于抢占式调度执行顺序无法确定的特点,使用线程时需要非常小心地处理同步问题,而协程完全不存在这个问题(事件驱动和异步程序也有同样的优点)。
因为协程是用户自己来编写调度逻辑的,对CPU来说,协程其实是单线程,所以CPU不用去考虑怎么调度、切换上下文,这就省去了CPU的切换开销,所以协程在一定程度上又好于多线程。
how:
python里面怎么使用协程?答案是使用gevent,使用方法:看这里使用协程,可以不受线程开销的限制,我尝试过一次把20W条url放在单进程的协程里执行,完全没问题。
所以最推荐的方法,是多进程+协程(可以看作是每个进程里都是单线程,而这个单线程是协程化的)多进程+协程下,避开了CPU切换的开销,又能把多个CPU充分利用起来,这种方式对于数据量较大的爬虫还有文件读写之类的效率提升是巨大的。
小例子:
#-*- coding=utf-8 -*-
import requests
from multiprocessing import Process
import gevent
from gevent import monkey; monkey.patch_all()import sys
reload(sys)
sys.setdefaultencoding('utf8')
def fetch(url):
try:
s = requests.Session()
r = s.get(url,timeout=1)#在这里抓取页面
except Exception,e:
print e
return ''
def process_start(tasks):
gevent.joinall(tasks)#使用协程来执行
def task_start(filepath,flag = 100000):#每10W条url启动一个进程with open(filepath,'r') as reader:#从给定的文件中读取urlurl = reader.readline().strip()
task_list = []#这个list用于存放协程任务
i = 0 #计数器,记录添加了多少个url到协程队列while url!='':
i += 1
task_list.append(gevent.spawn(fetch,url,queue))#每次读取出url,将任务添加到协程队列if i == flag:#一定数量的url就启动一个进程并执行p = Process(target=process_start,args=(task_list,))p.start()
task_list = [] #重置协程队列
i = 0 #重置计数器
url = reader.readline().strip()
if task_list not []:#若退出循环后任务队列里还有url剩余p = Process(target=process_start,args=(task_list,))#把剩余的url全都放到最后这个进程来执行p.start()
if __name__ == '__main__':
task_start('./testData.txt')#读取指定文件细心的同学会发现:上面的例子中隐藏了一个问题:进程的数量会随着url数量的增加而不断增加,我们在这里不使用进程池multiprocessing.Pool来控制进程数量的原因是multiprocessing.Pool和gevent有冲突不能同时使用,但是有兴趣的同学可以研究一下gevent.pool这个协程池。
另外还有一个问题:每个进程处理的url是累积的而不是独立的,例如第一个进程会处理10W个,第二个进程会变成20W个,以此类推。最后定位到问题是gevent.joinall()导致的问题,有兴趣的同学可以研究一下为什么会这样。不过这个问题的处理方案是:主进程只负责读取url然后写入到list中,在创建子进程的时候直接把list传给子进程,由子进程自己去构建协程。这样就不会出现累加的问题
❺ python可以多进程吗
想要充分利用多核CPU资源,Python中大部分情况下都需要使用多进程,Python中提供了multiprocessing这个包实现多进程。multiprocessing支持子进程、进程间的同步与通信,提供了Process、Queue、Pipe、Lock等组件。
开辟子进程
multiprocessing中提供了Process类来生成进程实例
Process([group [, target [, name [, args [, kwargs]]]]])
group分组,实际上不使用
target表示调用对象,你可以传入方法的名字
args表示给调用对象以元组的形式提供参数,比如target是函数a,他有两个参数m,n,那么该参数为args=(m, n)即可
kwargs表示调用对象的字典
name是别名,相当于给这个进程取一个名字
先来个小例子:
# -*- coding:utf-8 -*-
from multiprocessing import Process, Pool
import os
import time
def run_proc(wTime):
n = 0
while n < 3:
print "subProcess %s run," % os.getpid(), "{0}".format(time.ctime()) #获取当前进程号和正在运行是的时间
time.sleep(wTime) #等待(休眠)
n += 1
if __name__ == "__main__":
p = Process(target=run_proc, args=(2,)) #申请子进程
p.start() #运行进程
print "Parent process run. subProcess is ", p.pid
print "Parent process end,{0}".format(time.ctime())
运行结果:
Parent process run. subProcess is 30196
Parent process end,Mon Mar 27 11:20:21 2017
subProcess 30196 run, Mon Mar 27 11:20:21 2017
subProcess 30196 run, Mon Mar 27 11:20:23 2017
subProcess 30196 run, Mon Mar 27 11:20:25 2017
根据运行结果可知,父进程运行结束后子进程仍然还在运行,这可能造成僵尸( zombie)进程。
通常情况下,当子进程终结时,它会通知父进程,清空自己所占据的内存,并在内核里留下自己的退出信息。父进程在得知子进程终结时,会从内核中取出子进程的退出信息。但是,如果父进程早于子进程终结,这可能造成子进程的退出信息滞留在内核中,子进程成为僵尸(zombie)进程。当大量僵尸进程积累时,内存空间会被挤占。
有什么办法可以避免僵尸进程呢?
这里介绍进程的一个属性 deamon,当其值为TRUE时,其父进程结束,该进程也直接终止运行(即使还没运行完)。
所以给上面的程序加上p.deamon = true,看看效果。
# -*- coding:utf-8 -*-
from multiprocessing import Process, Pool
import os
import time
def run_proc(wTime):
n = 0
while n < 3:
print "subProcess %s run," % os.getpid(), "{0}".format(time.ctime())
time.sleep(wTime)
n += 1
if __name__ == "__main__":
p = Process(target=run_proc, args=(2,))
p.daemon = True #加入daemon
p.start()
print "Parent process run. subProcess is ", p.pid
print "Parent process end,{0}".format(time.ctime())
执行结果:
Parent process run. subProcess is 31856
Parent process end,Mon Mar 27 11:40:10 2017
这是问题又来了,子进程并没有执行完,这不是所期望的结果。有没办法将子进程执行完后才让父进程结束呢?
这里引入p.join()方法,它使子进程执行结束后,父进程才执行之后的代码
# -*- coding:utf-8 -*-
from multiprocessing import Process, Pool
import os
import time
def run_proc(wTime):
n = 0
while n < 3:
print "subProcess %s run," % os.getpid(), "{0}".format(time.ctime())
time.sleep(wTime)
n += 1
if __name__ == "__main__":
p = Process(target=run_proc, args=(2,))
p.daemon = True
p.start()
p.join() #加入join方法
print "Parent process run. subProcess is ", p.pid
print "Parent process end,{0}".format(time.ctime())
执行结果:
subProcess 32076 run, Mon Mar 27 11:46:07 2017
subProcess 32076 run, Mon Mar 27 11:46:09 2017
subProcess 32076 run, Mon Mar 27 11:46:11 2017
Parent process run. subProcess is 32076
Parent process end,Mon Mar 27 11:46:13 2017
这样所有的进程就能顺利的执行了。
❻ 如何使用Python实现多进程编程
1.Process
创建进程的类:Process([group[,target[,name[,args[,kwargs]]]]]),target表示调用对象,args表示调用对象的位置参数元组。kwargs表示调用对象的字典。name为别名。group实质上不使用。
方法:is_alive()、join([timeout])、run()、start()、terminate()。其中,Process以start()启动某个进程。
属性:authkey、daemon(要通过start()设置)、exitcode(进程在运行时为None、如果为–N,表示被信号N结束)、name、pid。其中daemon是父进程终止后自动终止,且自己不能产生新进程,必须在start()之前设置。
例1.1:创建函数并将其作为单个进程
importmultiprocessing
importtime
defworker(interval):
n=5
whilen>0:
print("Thetimeis{0}".format(time.ctime()))
time.sleep(interval)
n-=1
if__name__=="__main__":
p=multiprocessing.Process(target=worker,args=(3,))
p.start()
print"p.pid:",p.pid
print"p.name:",p.name
print"p.is_alive:",p.is_alive()
结果
12345678p.pid:8736p.name:Process-1p.is_alive:TrueThetimeisTueApr2120:55:122015ThetimeisTueApr2120:55:152015ThetimeisTueApr2120:55:182015ThetimeisTueApr2120:55:212015ThetimeisTueApr2120:55:242015
例1.2:创建函数并将其作为多个进程
importmultiprocessing
importtime
defworker_1(interval):
print"worker_1"
time.sleep(interval)
print"endworker_1"
defworker_2(interval):
print"worker_2"
time.sleep(interval)
print"endworker_2"
defworker_3(interval):
print"worker_3"
time.sleep(interval)
print"endworker_3"
if__name__=="__main__":
p1=multiprocessing.Process(target=worker_1,args=(2,))
p2=multiprocessing.Process(target=worker_2,args=(3,))
p3=multiprocessing.Process(target=worker_3,args=(4,))
p1.start()
p2.start()
p3.start()
print("ThenumberofCPUis:"+str(multiprocessing.cpu_count()))
forpinmultiprocessing.active_children():
print("childp.name:"+p.name+" p.id"+str(p.pid))
print"END!!!!!!!!!!!!!!!!!"
结果
1234567891011ThenumberofCPUis:4childp.name:Process-3p.id7992childp.name:Process-2p.id4204childp.name:Process-1p.id6380END!!!!!!!!!!!!!!!!!worker_1worker_3worker_2endworker_1endworker_2endworker_3
例1.3:将进程定义为类
importmultiprocessing
importtime
classClockProcess(multiprocessing.Process):
def__init__(self,interval):
multiprocessing.Process.__init__(self)
self.interval=interval
defrun(self):
n=5
whilen>0:
print("thetimeis{0}".format(time.ctime()))
time.sleep(self.interval)
n-=1
if__name__=='__main__':
p=ClockProcess(3)
p.start()
注:进程p调用start()时,自动调用run()
结果
12345thetimeisTueApr2120:31:302015thetimeisTueApr2120:31:332015thetimeisTueApr2120:31:362015thetimeisTueApr2120:31:392015thetimeisTueApr2120:31:422015
❼ python 多进程和多线程配合
由于python的多线程中存在PIL锁,因此python的多线程不能利用多核,那么,由于现在的计算机是多核的,就不能充分利用计算机的多核资源。但是python中的多进程是可以跑在不同的cpu上的。因此,尝试了多进程+多线程的方式,来做一个任务。比如:从中科大的镜像源中下载多个rpm包。
#!/usr/bin/pythonimport reimport commandsimport timeimport multiprocessingimport threadingdef download_image(url):
print '*****the %s rpm begin to download *******' % url
commands.getoutput('wget %s' % url)def get_rpm_url_list(url):
commands.getoutput('wget %s' % url)
rpm_info_str = open('index.html').read()
regu_mate = '(?<=<a href=")(.*?)(?=">)'
rpm_list = re.findall(regu_mate, rpm_info_str)
rpm_url_list = [url + rpm_name for rpm_name in rpm_list] print 'the count of rpm list is: ', len(rpm_url_list) return rpm_url_
def multi_thread(rpm_url_list):
threads = [] # url = 'https://mirrors.ustc.e.cn/centos/7/os/x86_64/Packages/'
# rpm_url_list = get_rpm_url_list(url)
for index in range(len(rpm_url_list)): print 'rpm_url is:', rpm_url_list[index]
one_thread = threading.Thread(target=download_image, args=(rpm_url_list[index],))
threads.append(one_thread)
thread_num = 5 # set threading pool, you have put 4 threads in it
while 1:
count = min(thread_num, len(threads)) print '**********count*********', count ###25,25,...6707%25
res = [] for index in range(count):
x = threads.pop()
res.append(x) for thread_index in res:
thread_index.start() for j in res:
j.join() if not threads:
def multi_process(rpm_url_list):
# process num at the same time is 4
process = []
rpm_url_group_0 = []
rpm_url_group_1 = []
rpm_url_group_2 = []
rpm_url_group_3 = [] for index in range(len(rpm_url_list)): if index % 4 == 0:
rpm_url_group_0.append(rpm_url_list[index]) elif index % 4 == 1:
rpm_url_group_1.append(rpm_url_list[index]) elif index % 4 == 2:
rpm_url_group_2.append(rpm_url_list[index]) elif index % 4 == 3:
rpm_url_group_3.append(rpm_url_list[index])
rpm_url_groups = [rpm_url_group_0, rpm_url_group_1, rpm_url_group_2, rpm_url_group_3] for each_rpm_group in rpm_url_groups:
each_process = multiprocessing.Process(target = multi_thread, args = (each_rpm_group,))
process.append(each_process) for one_process in process:
one_process.start() for one_process in process:
one_process.join()# for each_url in rpm_url_list:# print '*****the %s rpm begin to download *******' %each_url## commands.getoutput('wget %s' %each_url)
def main():
url = 'https://mirrors.ustc.e.cn/centos/7/os/x86_64/Packages/'
url_paas = 'http://mirrors.ustc.e.cn/centos/7.3.1611/paas/x86_64/openshift-origin/'
url_paas2 ='http://mirrors.ustc.e.cn/fedora/development/26/Server/x86_64/os/Packages/u/'
start_time = time.time()
rpm_list = get_rpm_url_list(url_paas) print multi_process(rpm_list) # print multi_thread(rpm_list)
#print multi_process()
# print multi_thread(rpm_list)
# for index in range(len(rpm_list)):
# print 'rpm_url is:', rpm_list[index]
end_time = time.time() print 'the download time is:', end_time - start_timeprint main()123456789101112131415161718
代码的功能主要是这样的:
main()方法中调用get_rpm_url_list(base_url)方法,获取要下载的每个rpm包的具体的url地址。其中base_url即中科大基础的镜像源的地址,比如:http://mirrors.ustc.e.cn/centos/7.3.1611/paas/x86_64/openshift-origin/,这个地址下有几十个rpm包,get_rpm_url_list方法将每个rpm包的url地址拼出来并返回。
multi_process(rpm_url_list)启动多进程方法,在该方法中,会调用多线程方法。该方法启动4个多进程,将上面方法得到的rpm包的url地址进行分组,分成4组,然后每一个组中的rpm包再最后由不同的线程去执行。从而达到了多进程+多线程的配合使用。
代码还有需要改进的地方,比如多进程启动的进程个数和rpm包的url地址分组是硬编码,这个还需要改进,毕竟,不同的机器,适合同时启动的进程个数是不同的。
❽ lt;转载>为什么在Python里推荐使用多进程而不是多线程
经常有人在群里问,运维人员需不需要学开发?需不需要学 PYTHON ? PYTHON 和 SHELL 有什么区别?天天问这种好水的问题,我实在受不了,决定帮大家扫扫盲,求求新手们,以后别他妈瞎问了。
现阶段,掌握一门开发语言已经成为高级运维工程师的必备计能,不会开发,你就不能充分理解你们系统的业务流程,你就不能帮助调试、优化开发人开发的程序, 开发人员有的时候很少关注性能的问题,这些问题就得运维人员来做,一个业务上线了,导致 CPU 使用过高,内存占用过大,如果你不会开发,你可能只能查到进程级别,也就是哪个进程占用这么多,然后呢?然后就交给开发人员处理了,这样咋体现你的价值?
另外,大一点的公司,服务器都上几百,上千,甚至数万台,这种情况下怎样做自动化运维?用 SHELL 写脚本 FOR 循环?呵呵,歇了吧, SHELL 也就适合简单的系统管理工作。到复杂的自动化任务还得要用专门的开发语言。你可能说了,自动化管理有专门的开源软件\监控也有,直接拿来用下就好了,但是现有的开源软件如 puppet\saltstack\zabbix\nagio 多为通用的软件,不可能完全适用你公司的所有需求,当你需要做定制、做二次开发的时候,你咋办?找开发部门?开发部门不懂运维的实际业务逻辑,写出来的东西烂烂不能用,这活最后还得交给运维开发人员来做。
其次,不会运维开发,你就不能自己写运维平台\复杂的运维工具,一切要借助于找一些开源软件拼拼凑凑,如果是这样,那就请不要抱怨你的工资低,你的工作不受重视了。
为什么要学 PYTHON ?
PYTHON 第一是个非常牛 B 的脚本语言, 能满足绝大部分自动化运维的需求,又能做后端 C/S 架构,又能用 WEB 框架快速开发出高大上的 WEB 界面,只有当你自已有能力做出一套运维自动化系统的时候,你的价值才体现出来,你才有资格跟老板谈重视, 否则,还是老老实实回去装机器吧。
运维开发为什么要用 PYTHON ?
Good question, 为什么不用 PHP , JAVA , C++ , RUBY ,这里我只能说,见人见智, 如果你碰巧已经掌握了除 PYTHON 之外的其它语言,那你爱用啥用啥,如果你是一个连 SHELL 都还没写明白的新手,想学个语言的话,请用 PYTHON , 为什么呢?首先, PHP 是跟 PYTHON 比的最多的,其实他俩根本就不用比,为什么呢?两个语言适用性不同, PHP 主要适用于 WEB 开发,可以迅速的做出中小型,轻量级的 WEB 网站,但后端嘛,基本还是要借助其它语言, 借助什么语言呢? SHELL ? PYTHON ?呵呵。 而 PYTHON 呢, 是个综合语言, 前后端都可以,单拿出来比 WEB ,也一点不比 PHP 差,但为什么WEB方向上 PHP 比 PYTHON 要火? 先入为主嘛, PHP 90 年代诞生就是做 WEB 的, PYTHON2000 年后才出现 WEB 框架,但论优秀程度上, PYTHON 的 WEB 框架基本上出其无左,至少是跟 PHP 比。
那 JAVA 呢?好吧,一个臃肿\中庸\豪无新意的语言,还是老老实实用它来做 ERP 吧,搞个运维小平台,用 JAVA 真心没啥必要,在我看来, JAVA 就是稳定的中年男人,稳定\成熟\秃顶,而 PYTOHN 代表的就是青春, 简洁\快\干净\帅!
C++ \ C ,这个嘛,我只能说,如果你会了 PYTHON, 又会 C 的话,那你会更吃香,但是不会 C 的话,其实也无大碍,基本上做运维的人,搞搞 C 就是为了来装 B 的,因为多数情况下你都到不了看系统底层源码的程度。
RUBY ,小日本开发的,还不错,风格跟 PYTHON 有点像,因为 ruby onrails 出了名,国外用的比较多,国内,放心吧,没戏, PYTHON 已经把它的想象空间都占了。
当然还有新的语言 GO , 有些搞运维的看见做开发的人员搞 GO ,也想凑热闹,觉得是未来,我想说,别瞎没事跟风, GO 再成功,也不会变成运维开发语言。
有些人觉得 PYTHON 效率底,说他不能支持多线程, OH ,好吧,这个还有点说对了,但是我想问,看我这篇文章的有几个做过搜索引擎开发?有几个做个上亿 PV 的并发网站开发? 有几个看过 LINUX 内核源码?如果没有,请别瞎跟着传了,知道 PYTHON 为什么不支持多线程吗?这句话问错了,其实 PYTHON 支持多线程,只是不支持多 CPU 多线程,也就是一个程序 spawn 出来的多线程只能占用一个 CPU ,但是为什么呢?噢,因为 GIL , GIL 是什么东东,请自行补脑。。。但是你非得用多线程吗?你可以用多进程呀,再牛 B 你还可以用协程呀,这些 PYTOHN 支持的都很好呀,如果你的程序逻辑不好,搞个多线程也快不起来。我认识一个博士讲过一句话,我觉得不错,他说,程序效率高低, 80% 都是写程序的人决定了,语言本身就占 20% ,所以下次有人再说 PYTHON 效率低的时候,请让他先回去自己检查下自己的程序多了多少无用的逻辑、循环等等。 这个博士自己用 PYTHON 写的 WEB 程序,一台服务器每天能处理上亿请求,一秒并发近两万, 什么 WEB 框架这么牛 B ? 别问它是谁, 它叫 tornado 。
PYTHON 能否自学?
当然可以,什么都可以自学,前提是你得能学得会,见过 N 多菜鸟踏上上自学的不归路,他妈的什么都能自学的话,还用大学干什么?自己在家鳖不就行了?动不动就说 PYTHON 是个脚本语言,自己看看就不会了,说这话的只可能有两种人,一种是高手,一种是 SB ,对于高手来讲,他肯定已经会其它语言, PYTHON 在这种情况下,自学当然就很容易学会,几年前我刚接触 PYTHON 时,代码遇到问题,找了个开发的哥们帮调试,哥们帮调了十几分钟就搞定了,结果人家以前一句 PYTHON 代码也没写过,为什么,因为语言都有相通之处,一门掌握好了,其它门自己学学就会了。但对于新手来讲,没任何语言基础就开始自学,那么恭喜你,菜鸟们见此文章为证,从今天开始自学,一年后,你要是能自己做出个软件来,来找我要一千块钱。 哈哈,真的。 基本上自学是属于专业人员干的事情,就像会一门乐器了,自己学下就可能学会另一门,但我之前没音乐基础,跟着老师都没把吉它学会。
所以奉劝没基础又想学 PYTHON 的同学,花点钱去报个班学吧,拿钱换时间,时间是生命,钱没了可再挣钱,时间过去了就再也不会回来,如果你不信邪,非要自己学,那我佩服你的勇气,不过自己试试就知道了。
说了这么多,只想告诉那些迷茫不知所措该学什么语言的新手们, 在你还没学好走路的时候,不要老想着,将来我当上老板了,我是开宝马呢?还是开奔驰呢?先学会骑自行车吧。。。
转载
❾ python 多进程
os.fork()指令会创建另外一个进程,他的输出源也是你的python command line或者其他IDE。所以你会看见2个提示符。另外,IDE要处理那么多输出源,当然会很卡。还有,你连打下3次这个命令,相当于对三个进程都进行了下达指令,所以这时候你的进程数目为8(看不懂的建议看小学数学)。你的各个进程的输出会类似于打架,所以窗口会变得很慢。
建议:用pid来区分各个进程(os.fork()在父进程会返回pid,子进程会返回0),例如:
import os
import time
pid=os.fork()
if pid==0:
time.sleep(0.1);
print "Child."
else:
print "The child's pid is:"+str(pid)
//end
以上代码中子进程我给他暂停0.1秒来防止与父进程的输出“打架”,当然有更好的解决方法,由于字数限制不打出来了,具体就是锁住输出源,通过之后再解锁,可以网络。
点赞、采纳、转发,素质三连,友谊你我他!
❿ python多线程和多进程的区别有哪些
python多线程和多进程的区别有七种:
1、多线程可以共享全局变量,多进程不能。
2、多线程中,所有子线程的进程号相同;多进程中,不同的子进程进程号不同。
3、线程共享内存空间;进程的内存是独立的。
4、同一个进程的线程之间可以直接交流;两个进程想通信,必须通过一个中间代理来实现。
5、创建新线程很简单;创建新进程需要对其父进程进行一次克隆。
6、一个线程可以控制和操作同一进程里的其他线程;但是进程只能操作子进程。
7、两者最大的不同在于:在多进程中,同一个变量,各自有一份拷贝存在于每个进程中,互不影响;而多线程中,所有变量都由所有线程共享。
更多Python知识,请关注:Python自学网!!