❶ 《linux高性能服务器编程》pdf下载在线阅读全文,求百度网盘云资源
《Linux高性能服务器编程》(游双)电子书网盘下载免费在线阅读
链接:
书名:Linux高性能服务器编程
作者:游双
豆瓣评分:7.9
出版社:机械工业出版社
出版年份:2013-5-1
页数:360
内容简介:
本书是Linux服务器编程领域的经典着作,由资深Linux软件开发工程师撰写,从网络协议、服务器编程核心要素、原理机制、工具框架等多角度全面阐释了编写高性能Linux服务器应用的方法、技巧和思想。不仅理论全面、深入,抓住了重点和难点,还包含两个综合性案例,极具实战意义。
全书共17章,分为3个部分:第一部分对Linux服务器编程的核心基础——TCP/IP协议进行了深入的解读和阐述,包括TCP/IP协议族、TCP/IP协议,以及一个经典的TCP/IP通信案例;第二部分对高性能服务器编程的核心要素进行了全面深入的剖析,包含Linux网络编程API、高级I/O函数、Linux服务器程序规范、高性能服务器程序框架、I/O复用、信号、定时器、高性能I/O框架库Libevent、多进程编程、多线程编程、进程池和线程池等内容,原理、技术与方法并重;第三部分从侧重实战的角度讲解了高性能服务器的优化与监测,包含服务器的调制、调试和测试,以及各种实用系统监测工具的使用等内容。
作者简介:
游双,资深Linux软件开发工程师,对Linux网络编程,尤其是服务器端的编程,有非常深入的研究,实战经验也十分丰富。曾就职于摩托罗拉,担任高级Linux软件工程师。此外,他还精通C++、Android、QT等相关的技术。活跃于Chinaunix等专业技术社区,发表了大量关于Linux网络编程的文章,深受社区欢迎。
❷ 我为什么说 python 是大数据全栈式开发语言 怎样成为数据分析师
就像只要会javaScript就可以写出完整的Web应用,只要会Python,就可以实现一个完整的大数据处理平台。
云基础设施
这年头,不支持云平台,不支持海量数据,不支持动态伸缩,根本不敢说自己是做大数据的,顶多也就敢跟人说是做商业智能(BI)。
云平台分为私有云和公有云。私有云平台如日中天的 OpenStack
,就是Python写的。曾经的追赶者CloudStack,在刚推出时大肆强调自己是Java写的,比Python有优势。结果,搬石砸脚,2015年
初,CloudStack的发起人Citrix宣布加入OpenStack基金会,CloudStack眼看着就要寿终正寝。
如果嫌麻烦不想自己搭建私有云,用公有云,不论是AWS,GCE,Azure,还是阿里云,青云,在都提供了Python SDK,其中GCE只提供Python和JavaScript的SDK,而青云只提供Python SDK。可见各家云平台对Python的重视。
提到基础设施搭建,不得不提Hadoop,在今天,Hadoop因为其MapRece数据处理速度不够快,已经不再作为大数据处理的首选,但
是HDFS和Yarn——Hadoop的两个组件——倒是越来越受欢迎。Hadoop的开发语言是Java,没有官方提供Python支持,不过有很多第
三方库封装了Hadoop的API接口(pydoop,hadoopy等等)。
Hadoop MapRece的替代者,是号称快上100倍的 Spark ,其开发语言是Scala,但是提供了Scala,Java,Python的开发接口,想要讨好那么多用Python开发的数据科学家,不支持Python,真是说不过去。HDFS的替代品,比如GlusterFS, Ceph 等,都是直接提供Python支持。Yarn的替代者, Mesos 是C++实现,除C++外,提供了Java和Python的支持包。
DevOps
DevOps有个中文名字,叫做 开发自运维 。互联网时代,只有能够快速试验新想法,并在第一时间,安全、可靠的交付业务价值,才能保持竞争力。DevOps推崇的自动化构建/测试/部署,以及系统度量等技术实践,是互联网时代必不可少的。
自动化构建是因应用而易的,如果是Python应用,因为有setuptools, pip, virtualenv, tox,
flake8等工具的存在,自动化构建非常简单。而且,因为几乎所有Linux系统都内置Python解释器,所以用Python做自动化,不需要系统预
安装什么软件。
自动化测试方面,基于Python的 Robot Framework 企业级应用最喜欢的自动化测试框架,而且和语言无关。Cucumber也有很多支持者,Python对应的Lettuce可以做到完全一样的事情。 Locust 在自动化性能测试方面也开始受到越来越多的关注。
自动化配置管理工具,老牌的如Chef和Puppet,是Ruby开发,目前仍保持着强劲的势头。不过,新生代 Ansible 和 SaltStack ——均为Python开发——因为较前两者设计更为轻量化,受到越来越多开发这的欢迎,已经开始给前辈们制造了不少的压力。
在系统监控与度量方面,传统的Nagios逐渐没落,新贵如 Sensu 大受好评,云服务形式的New Relic已经成为创业公司的标配,这些都不是直接通过Python实现的,不过Python要接入这些工具,并不困难。
除了上述这些工具,基于Python,提供完整DevOps功能的PaaS平台,如 Cloudify 和 Deis ,虽未成气候,但已经得到大量关注。
网络爬虫
大数据的数据从哪里来?除了部分企业有能力自己产生大量的数据,大部分时候,是需要靠爬虫来抓取互联网数据来做分析。
网络爬虫是Python的传统强势领域,最流行的爬虫框架Scrapy,HTTP工具包urlib2,HTML解析工具beautifulsoup,XML解析器lxml,等等,都是能够独当一面的类库。
不过,网络爬虫并不仅仅是打开网页,解析HTML这么简单。高效的爬虫要能够支持大量灵活的并发操作,常常要能够同时几千甚至上万个网页同时抓取,传统的
线程池方式资源浪费比较大,线程数上千之后系统资源基本上就全浪费在线程调度上了。Python由于能够很好的支持协程( Coroutine )操作,基于此发展起来很多并发库,如Gevent,Eventlet,还有Celery之类的分布式任务框架。被认为是比AMQP更高效的ZeroMQ也是最早就提供了Python版本。有了对高并发的支持,网络爬虫才真正可以达到大数据规模。
抓取下来的数据,需要做分词处理,Python在这方面也不逊色,着名的自然语言处理程序包NLTK,还有专门做中文分词的Jieba,都是做分词的利器。
数据处理
万事俱备,只欠东风。这东风,就是数据处理算法。从统计理论,到数据挖掘,机器学习,再到最近几年提出来的深度学习理论,数据科学正处于百花齐放的时代。数据科学家们都用什么编程?
如果是在理论研究领域,R语言也许是最受数据科学家欢迎的,但是R语言的问题也很明显,因为是统计学家们创建了R语言,所以其语法略显怪异。而且
R语言要想实现大规模分布式系统,还需要很长一段时间的工程之路要走。所以很多公司使用R语言做原型试验,算法确定之后,再翻译成工程语言。
Python也是数据科学家最喜欢的语言之一。和R语言不同,Python本身就是一门工程性语言,数据科学家用Python实现的算法,可以直
接用在产品中,这对于大数据初创公司节省成本是非常有帮助的。正式因为数据科学家对Python和R的热爱,Spark为了讨好数据科学家,对这两种语言
提供了非常好的支持。
Python的数据处理相关类库非常多。高性能的科学计算类库NumPy和SciPy,给其他高级算法打了非常好的基础,matploglib让
Python画图变得像Matlab一样简单。Scikit-learn和Milk实现了很多机器学习算法,基于这两个库实现的 Pylearn2 ,是深度学习领域的重要成员。 Theano 利用GPU加速,实现了高性能数学符号计算和多维矩阵计算。当然,还有 Pandas ,一个在工程领域已经广泛使用的大数据处理类库,其DataFrame的设计借鉴自R语言,后来又启发了Spark项目实现了类似机制。
对了,还有 iPython ,这个工具如此有用,以至于我差点把他当成标准库而忘了介绍。iPython是一个交互式Python运行环境,能够实时看到每一段Python代码的结果。默认情况下,iPython运行在命令行,可以执行 ipython notebook 在网页中运行。用matplotlib绘制的图可以直接嵌入式的显示在iPython Notebook中。
iPython Notebook的笔记本文件可以共享给其他人,这样其他人就可以在自己的环境中重现你的工作成果;如果对方没有运行环境,还可以直接转换成HTML或者PDF。
为什么是Python
正是因为应用开发工程师、运维工程师、数据科学家都喜欢Python,才使得Python成为大数据系统的全栈式开发语言。
对于开发工程师而言,Python的优雅和简洁无疑是最大的吸引力,在Python交互式环境中,执行 import this
,读一读Python之禅,你就明白Python为什么如此吸引人。Python社区一直非常有活力,和NodeJS社区软件包爆炸式增长不
同,Python的软件包增长速度一直比较稳定,同时软件包的质量也相对较高。有很多人诟病Python对于空格的要求过于苛刻,但正是因为这个要求,才
使得Python在做大型项目时比其他语言有优势。OpenStack项目总共超过200万行代码,证明了这一点。
对于运维工程师而言,Python的最大优势在于,几乎所有Linux发行版都内置了Python解释器。Shell虽然功能强大,但毕竟语法不够优雅,写比较复杂的任务会很痛苦。用Python替代Shell,做一些复杂的任务,对运维人员来说,是一次解放。
对于数据科学家而言,Python简单又不失强大。和C/C++相比,不用做很多的底层工作,可以快速进行模型验证;和Java相比,Python语法简
洁,表达能力强,同样的工作只需要1/3代码;和Matlab,Octave相比,Python的工程成熟度更高。不止一个编程大牛表达过,Python
是最适合作为大学计算机科学编程课程使用的语言——MIT的计算机入门课程就是使用的Python——因为Python能够让人学到编程最重要的东西——
如何解决问题。
❸ 《深入理解Nginx模块开发与架构解析》pdf下载在线阅读,求百度网盘云资源
《深入理解Nginx》(陶辉)电子书网盘下载免费在线阅读
资源链接:
链接:
书名:深入理解Nginx
作者:陶辉
豆瓣评分:8.4
出版社:机械工业出版社
出版年份:2013-4-15
页数:584
内容简介:
本书是阿里巴巴资深Nginx技术专家呕心沥血之作,是作者多年的经验结晶,也是目前市场上唯一一本通过还原Nginx设计思想,剖析Nginx架构来帮助读者快速高效开发HTTP模块的图书。
本书首先通过介绍官方Nginx的基本用法和配置规则,帮助读者了解一般Nginx模块的用法,然后重点介绍如何开发HTTP模块(含HTTP过滤模块)来得到定制的Nginx,其中包括开发一个功能复杂的模块所需要了解的各种知识,如Nginx的基础数据结构、配置项的解析、记录日志的工具以及upstream、subrequest的使用方法等。在此基础上,综合Nginx框架代码分析Nginx的架构,介绍其设计理念和技巧,进一步帮助读者自由、有效地开发出功能丰富、性能一流的Nginx模块。
作者简介:
陶辉,毕业于西安交通大学计算机科学与技术专业,曾就职于华为中央软件部、腾讯QQ空间、思科中国CRDC等公司,目前在阿里巴巴云计算公司的飞天团队工作,研究方向为介于IaaS和PaaS间的弹性计算,多年以来专注于Nginx的定制化应用,对Nginx的设计与特性有深刻认识,实战经验丰富,编写过许多优秀的Nginx模块并应用于企业级产品中,同时撰写了大量关于Nginx的技术文章。擅长Linux环境下高性能服务器的开发,以及分布式环境下海量数据存储的设计开发。
❹ 《Node.js实战》pdf下载在线阅读,求百度网盘云资源
《Node.js实战》([美] Mike Cantelon)电子书网盘下载免费在线阅读
链接:
书名:Node.js实战
作者:[美] Mike Cantelon
译者:吴海星
豆瓣评分:8.1
出版社:人民邮电出版社
出版年份:2014-5
页数:356
内容简介:
服务器端JavaScript?没错。Node.js是一个JavaScript服务器,支持可伸缩的高性能Web应用。借助异步I/O,这个服务器可以同时做很多事情,能满足聊天、游戏和实时统计等应用的需求。并且既然是JavaScript,那你就可以全栈使用一种语言。
本书向读者展示了如何构建产品级应用,对关键概念的介绍清晰明了,贴近实际的例子,涵盖从安装到部署的各个环节,是一部讲解与实践并重的优秀着作。通过学习本书,读者将深入异步编程、数据存储、输出模板、读写文件系统,掌握创建TCP/IP服务器和命令行工具等非HTTP程序的技术。本书同样非常适合熟悉Rails、Django或php开发的读者阅读学习。
本书主要内容:
Node.js及其扩展的安装配置;
全面理解异步编程和事件循环;
学会开发微博、聊天和游戏等热门应用。
作者简介:
作者简介:
Mike Cantelon
Node.js核心框架贡献者、Node社区活跃分子、资深培训师和演讲人。
Marc Harter
Node.js核心框架贡献者。
T.J. Holowaychuk
参与开发了很多Node.js模块,包括流行的Express框架。
Nathan Rajlich
大名鼎鼎的TooTallNate,Node.js核心代码提交者。
译者简介:
吴海星
2001年毕业于南京理工大学。编程数载代码不过几十万,翻译几年码字不过几百万。项目不过十几个,带队不到五十人。年过而立,惴惴不安,愈加发奋,孜孜求学,愿凭绵薄之力,贡献于IT社区。
❺ 谁帮我推荐几本linux运维方面的 项目实战文档、经验总结文档和 好的shell脚本编程 的书啊
根据楼主口述,楼主需要的是linux进阶的书籍。显然鸟哥私房菜一类的Linux启蒙书籍不能很好满足楼主。本身作为一个linux运维人员,强烈给你推荐两本书:
余洪春老师(抚琴煮酒)的《构建高可用Linux服务器》 机械工业出版社
高俊峰老师(南非蚂蚁)的《高性能Linux服务器构建实战 运维监控、性能调优与集群应用》 机械工业出版社
两位51CTO、CU技术论坛的明星博主的经验给了在运维上很多启迪,建议楼主可以先看电子书,但一定要买实体书,在工作之余或者应急响应的时候可以随手拈来。
❻ 求《NodeWeb开发》全文免费下载百度网盘资源,谢谢~
《NodeWeb开发》网络网盘pdf最新全集下载:
链接:https://pan..com/s/1B_gfb04H5WmuJYfOkHzwkA
❼ 有哪些关于C++高性能服务器开发的高质量博客
第零步
C语言,推荐:《C语言程序设计:现代方法》
第一步
UNIX/Linux系统编程,
推荐《UNIX环境高级编程:第三版》《Linux/UNIX系统编程手册》
第二步
TCP-IP详解卷一
卷二
卷三
第四步
精研nginx源码
❽ 《NodeWeb开发》pdf下载在线阅读全文,求百度网盘云资源
《NodeWeb开发》网络网盘pdf最新全集下载:
链接:https://pan..com/s/1B_gfb04H5WmuJYfOkHzwkA
❾ GitHub上面有哪些经典的java框架源码
Bazel:来自Google的构建工具,可以快速、可靠地构建代码。官网
Gradle:使用Groovy(非XML)进行增量构建,可以很好地与Maven依赖管理配合工作。官网
Buck:Facebook构建工具。官网
字节码操作
编程方式操作字节码的开发库。
ASM:通用底层字节码操作和分析开发库。官网
Byte Buddy:使用流式API进一步简化字节码生成。官网
Byteman:在运行时通过DSL(规则)操作字节码进行测试和故障排除。官网
Javassist:一个简化字节码编辑尝试。官网
集群管理
在集群内动态管理应用程序的框架。
Apache Aurora:Apache Aurora是一个Mesos框架,用于长时间运行服务和定时任务(cron job)。官网
Singularity:Singularity是一个Mesos框架,方便部署和操作。它支持Web Service、后台运行、调度作业和一次性任务。官网
代码分析
测量代码指标和质量工具。
Checkstyle:代码编写规范和标准静态分析工具。官网
Error Prone:将常见编程错误作为运行时错误报告。官网
FindBugs:通过字节码静态分析查找隐藏bug。官网
jQAssistant:使用基于Neo4J查询语言进行代码静态分析。官网
PMD:对源代码分析查找不良的编程习惯。官网
SonarQube:通过插件集成其它分析组件,对过去一段时间内的数据进行统计。官网
编译器生成工具
用来创建解析器、解释器或编译器的框架。
ANTLR:复杂的全功能自顶向下解析框架。官网
JavaCC:JavaCC是更加专门的轻量级工具,易于上手且支持语法超前预测。官网
外部配置工具
支持外部配置的开发库。
config:针对JVM语言的配置库。官网
owner:减少冗余配置属性。官网
约束满足问题求解程序
帮助解决约束满足问题的开发库。
Choco:可直接使用的约束满足问题求解程序,使用了约束规划技术。官网
JaCoP:为FlatZinc语言提供了一个接口,可以执行MiniZinc模型。官网
OptaPlanner:企业规划与资源调度优化求解程序。官网
Sat4J:逻辑代数与优化问题最先进的求解程序。官网
持续集成
Bamboo:Atlassian解决方案,可以很好地集成Atlassian的其他产品。可以选择开源许可,也可以购买商业版。官网
CircleCI:提供托管服务,可以免费试用。官网
Codeship:提供托管服务,提供有限的免费模式。官网
fabric8:容器集成平台。官网
Go:ThoughtWork开源解决方案。官网
Jenkins:支持基于服务器的部署服务。官网
TeamCity:JetBrain的持续集成解决方案,有免费版。官网
Travis:通常用作开源项目的托管服务。官网
Buildkite: 持续集成工具,用简单的脚本就能设置pipeline,而且能快速构建,可以免费试用。官网
CSV解析
简化CSV数据读写的框架与开发库
uniVocity-parsers:速度最快功能最全的CSV开发库之一,同时支持TSV与固定宽度记录的读写。官网
数据库
简化数据库交互的相关工具。
Apache Phoenix:HBase针对低延时应用程序的高性能关系数据库层。官网
Crate:实现了数据同步、分片、缩放、复制的分布式数据存储。除此之外还可以使用基于SQL的语法跨集群查询。官网
Flyway:简单的数据库迁移工具。官网
H2:小型SQL数据库,以可以作为内存数据库使用着称。官网
HikariCP:高性能JDBC连接工具。官网
JDBI:便捷的JDBC抽象。官网
Protobuf:Google数据交换格式。官网
SBE:简单二进制编码,是最快速的消息格式之一。官网
Wire:整洁轻量级协议缓存。官网
帮实现依赖翻转范式的开发库。官网
Apache DeltaSpike:CDI扩展框架。官网
Dagger2:编译时注入框架,不需要使用反射。官网
Guice:可以匹敌Dagger的轻量级注入框架。官网
HK2:轻量级动态依赖注入框架。官网
开发流程增强工具
从最基本的层面增强开发流程。
ADT4J:针对代数数据类型的JSR-269代码生成器。官网
AspectJ:面向切面编程(AOP)的无缝扩展。官网
Auto:源代码生成器集合。官网
DCEVM:通过修改JVM在运行时支持对已加载的类进行无限次重定义。官网
HotswapAgent:支持无限次重定义运行时类与资源。官网
Immutables:类似Scala的条件类。官网
JHipster:基于Spring Boot与AngularJS应用程序的Yeoman源代码生成器。官网
JRebel:无需重新部署,可以即时重新加载代码与配置的商业软件。官网
Lombok:减少冗余的代码生成器。官网
Spring Loaded:类重载代理。官网
vert.x:多语言事件驱动应用框架。官网
分布式应用
用来编写分布式容错应用的开发库和框架。
Akka:用来编写分布式容错并发事件驱动应用程序的工具和运行时。官网
Apache Storm:实时计算系统。官网
Apache ZooKeeper:针对大型分布式系统的协调服务,支持分布式配置、同步和名称注册。官网
Hazelcast:高可扩展内存数据网格。官网
Hystrix:提供延迟和容错。官网
JGroups:提供可靠的消息传递和集群创建的工具。官网
Orbit:支持虚拟角色(Actor),在传统角色的基础上增加了另外一层抽象。官网
Quasar:为JVM提供轻量级线程和角色。官网
分布式数据库
对应用程序而言,在分布式系统中的数据库看起来就像是只有一个数据源。
Apache Cassandra:列式数据库,可用性高且没有单点故障。官网
Apache HBase:针对大数据的Hadoop数据库。官网
Druid:实时和历史OLAP数据存储,在聚集查询和近似查询方面表现不俗。官网
Infinispan:针对缓存的高并发键值对数据存储。官网
发布
以本机格式发布应用程序的工具。
Bintray:发布二进制文件版本控制工具。可以于Maven或Gradle一起配合使用。提供开源免费版本和几种商业收费版本。官网
Central Repository:最大的二进制组件仓库,面向开源社区提供免费服务。Apache Maven默认使用Central官网Repository,也可以在所有其他构建工具中使用。
IzPack:为跨平台部署建立创作工具(Authoring Tool)。官网
JitPack:打包GitHub仓库的便捷工具。可根据需要构建Maven、Gradle项目,发布可立即使用的组件。官网
Launch4j:将JAR包装为轻量级本机Windows可执行程序。官网
Nexus:支持代理和缓存功能的二进制管理工具。官网
packr:将JAR、资源和JVM打包成Windows、Linux和Mac OS X本地发布文件。官网
文档处理工具
处理Office文档的开发库。
Apache POI:支持OOXML规范(XLSX、DOCX、PPTX)以及OLE2规范(XLS、DOC、PPT)。官网
documents4j:使用第三方转换器进行文档格式转换,转成类似MS Word这样的格式。官网
jOpenDocument:处理OpenDocument格式(由Sun公司提出基于XML的文档格式)。官网
函数式编程
函数式编程支持库。
Cyclops:支持一元(Monad)操作和流操作工具类、comprehension(List语法)、模式匹配、trampoline等特性。官网
Fugue:Guava的函数式编程扩展。官网
Functional Java:实现了多种基础和高级编程抽象,用来辅助面向组合开发(composition-oriented development)。官网
Javaslang:一个函数式组件库,提供持久化数据类型和函数式控制结构。官网
jOOλ:旨在填补Java 8 lambda差距的扩展,提供了众多缺失的类型和一组丰富的顺序流API。官网
游戏开发
游戏开发框架。
jMonkeyEngine:现代3D游戏开发引擎。官网
libGDX:全面的跨平台高级框架。官网
LWJGL:对OpenGL/CL/AL等技术进行抽象的健壮框架。官网
GUI
现代图形化用户界面开发库。
JavaFX:Swing的后继者。官网
Scene Builder:开发JavaFX应用的可视化布局工具。官网
高性能计算
涵盖了从集合到特定开发库的高性能计算相关工具。
Agrona:高性能应用中常见的数据结构和工具方法。官网
Disruptor:线程间消息传递开发库。官网
fastutil:快速紧凑的特定类型集合(Collection)。官网
GS Collections:受Smalltalk启发的集合框架。官网
HPPC:基础类型集合。官网
Javolution:实时和嵌入式系统的开发库。官网
JCTools:JDK中缺失的并发工具。官网
Koloboke:Hash set和hash map。官网
Trove:基础类型集合。官网
High-scale-bli:Cliff Click 个人开发的高性能并发库官网
IDE
简化开发的集成开发环境。
Eclipse:老牌开源项目,支持多种插件和编程语言。官网
IntelliJ IDEA:支持众多JVM语言,是安卓开发者好的选择。商业版主要针对企业客户。官网
NetBeans:为多种技术提供集成化支持,包括Java SE、Java EE、数据库访问、HTML5
Imgscalr:纯Java 2D实现,简单、高效、支持硬件加速的图像缩放开发库。官网
Picasso:安卓图片下载和图片缓存开发库。官网
Thumbnailator:Thumbnailator是一个高质量Java缩略图开发库。官网
ZXing:支持多种格式的一维、二维条形码图片处理开发库。官网
im4java: 基于ImageMagick或GraphicsMagick命令行的图片处理开发库,基本上ImageMagick能够支持的图片格式和处理方式都能够处理。官网
Apache Batik:在Java应用中程序以SVG格式显示、生成及处理图像的工具集,包括SVG解析器、SVG生成器、SVG DOM等模块,可以集成使用也可以单独使用,还可以扩展自定义的SVG标签。官网
JSON
简化JSON处理的开发库。
Genson:强大且易于使用的Java到JSON转换开发库。官网
Gson:谷歌官方推出的JSON处理库,支持在对象与JSON之间双向序列化,性能良好且可以实时调用。官网
Jackson:与GSON类似,在频繁使用时性能更佳。官网
LoganSquare:基于Jackson流式API,提供对JSON解析和序列化。比GSON与Jackson组合方式效果更好。官网
Fastjson:一个Java语言编写的高性能功能完善的JSON库。官网
Kyro:快速、高效、自动化的Java对象序列化和克隆库。官网
JVM与JDK
目前的JVM和JDK实现。
JDK 9:JDK 9的早期访问版本。官网
OpenJDK:JDK开源实现。官网
基于JVM的语言
除Java外,可以用来编写JVM应用程序的编程语言。
Scala:融合了面向对象和函数式编程思想的静态类型编程语言。官网
Groovy:类型可选(Optionally typed)的动态语言,支持静态类型和静态编译。目前是一个Apache孵化器项目。官网
Clojure:可看做现代版Lisp的动态类型语言。官网
Ceylon:RedHat开发的面向对象静态类型编程语言。官网
Kotlin:JetBrain针对JVM、安卓和浏览器提供的静态类型编程语言。官网
Xtend:一种静态编程语言,能够将其代码转换为简洁高效的Java代码,并基于JVM运行。官网
日志
记录应用程序行为日志的开发库。
Apache Log4j 2:使用强大的插件和配置架构进行完全重写。官网
kibana:分析及可视化日志文件。官网
Logback:强健的日期开发库,通过Groovy提供很多有趣的选项。官网
logstash:日志文件管理工具。官网
Metrics:通过JMX或HTTP发布参数,并且支持存储到数据库。官网
SLF4J:日志抽象层,需要与具体的实现配合使用。官网
机器学习
提供具体统计算法的工具。其算法可从数据中学习。
Apache Flink:快速、可靠的大规模数据处理引擎。官网
Apache Hadoop:在商用硬件集群上用来进行大规模数据存储的开源软件框架。官网
Apache Mahout:专注协同过滤、聚类和分类的可扩展算法。官网
Apache Spark:开源数据分析集群计算框架。官网
DeepDive:从非结构化数据建立结构化信息并集成到已有数据库的工具。官网
Deeplearning4j:分布式多线程深度学习开发库。官网
H2O:用作大数据统计的分析引擎。官网
Weka:用作数据挖掘的算法集合,包括从预处理到可视化的各个层次。官网
QuickML:高效机器学习库。官网、GitHub
消息传递
在客户端之间进行消息传递,确保协议独立性的工具。
Aeron:高效可扩展的单播、多播消息传递工具。官网
Apache ActiveMQ:实现JMS的开源消息代理(broker),可将同步通讯转为异步通讯。官网
Apache Camel:通过企业级整合模式(Enterprise Integration Pattern EIP)将不同的消息传输API整合在一起。官网
Apache Kafka:高吞吐量分布式消息系统。官网
Hermes:快速、可靠的消息代理(Broker),基于Kafka构建。官网
JBoss HornetQ:清晰、准确、模块化,可以方便嵌入的消息工具。官网
JeroMQ:ZeroMQ的纯Java实现。官网
Smack:跨平台XMPP客户端函数库。官网
Openfire:是开源的、基于XMPP、采用Java编程语言开发的实时协作服务器。 Openfire安装和使用都非常简单,并可利用Web界面进行管理。官网GitHub
Spark:是一个开源,跨平台IM客户端。它的特性支持集组聊天,电话集成和强大安全性能。如果企业内部部署IM使用Openfire+Spark是最佳的组合。官网GitHub
Tigase: 是一个轻量级的可伸缩的 Jabber/XMPP 服务器。无需其他第三方库支持,可以处理非常高的复杂和大量的用户数,可以根据需要进行水平扩展。官网
杂项
未分类其它资源。
Design Patterns:实现并解释了最常见的设计模式。官网
Jimfs:内存文件系统。官网
Lanterna:类似curses的简单console文本GUI函数库。官网
LightAdmin:可插入式CRUD UI函数库,可用来快速应用开发。官网
OpenRefine:用来处理混乱数据的工具,包括清理、转换、使用Web Service进行扩展并将其关联到数据库。官网
RoboVM:Java编写原生iOS应用。官网
Quartz:强大的任务调度库.官网
应用监控工具
监控生产环境中应用程序的工具。
AppDynamics:性能监测商业工具。官网
JavaMelody:性能监测和分析工具。官网
Kamon:Kamon用来监测在JVM上运行的应用程序。官网
New Relic:性能监测商业工具。官网
SPM:支持对JVM应用程序进行分布式事务追踪的性能监测商业工具。官网
Takipi:产品运行时错误监测及调试商业工具。官网
原生开发库
用来进行特定平台开发的原生开发库。
JNA:不使用JNI就可以使用原生开发库。此外,还为常见系统函数提供了接口。官网
自然语言处理
用来专门处理文本的函数库。
Apache OpenNLP:处理类似分词等常见任务的工具。官网
CoreNLP:斯坦佛CoreNLP提供了一组基础工具,可以处理类似标签、实体名识别和情感分析这样的任务。官网
LingPipe:一组可以处理各种任务的工具集,支持POS标签、情感分析等。官网
Mallet:统计学自然语言处理、文档分类、聚类、主题建模等。官网
网络
网络编程函数库。
Async Http Client:异步HTTP和WebSocket客户端函数库。官网
Grizzly:NIO框架,在Glassfish中作为网络层使用。官网
Netty:构建高性能网络应用程序开发框架。官网
OkHttp:一个Android和Java应用的HTTP+SPDY客户端。官网
Undertow:基于NIO实现了阻塞和非阻塞API的Web服务器,在WildFly中作为网络层使用。官网
ORM
处理对象持久化的API。
Ebean:支持快速数据访问和编码的ORM框架。官网
EclipseLink:支持许多持久化标准,JPA、JAXB、JCA和SDO。官网
Hibernate:广泛使用、强健的持久化框架。Hibernate的技术社区非常活跃。官网
MyBatis:带有存储过程或者SQL语句的耦合对象(Couples object)。官网
OrmLite:轻量级开发包,免除了其它ORM产品中的复杂性和开销。官网
Nutz:另一个SSH。官网,Github
JFinal:JAVA WEB + ORM框架。官网,Github
用来帮助创建PDF文件的资源。
Apache FOP:从XSL-FO创建PDF。官网
Apache PDFBox:用来创建和操作PDF的工具集。官网
DynamicReports:JasperReports的精简版。官网
flyingsaucer:XML/XHTML和CSS 2.1渲染器。官网
iText:一个易于使用的PDF函数库,用来编程创建PDF文件。注意,用于商业用途时需要许可证。官网
JasperReports:一个复杂的报表引擎。官网
性能分析
性能分析、性能剖析及基准测试工具。
jHiccup:提供平台中JVM暂停的日志和记录。官网
JMH:JVM基准测试工具。官网
JProfiler:商业分析器。官网
LatencyUtils:测量和报告延迟的工具。官网
VisualVM:对运行中的应用程序信息提供了可视化界面。官网
YourKit Java Profiler:商业分析器。官网
响应式开发库
用来开发响应式应用程序的开发库。
Reactive Streams:异步流处理标准,支持非阻塞式反向压力(backpressure)。官网
Reactor:构建响应式快速数据(fast-data)应用程序的开发库。官网
RxJava:通过JVM可观察序列(observable sequence)构建异步和基于事件的程序。官网
REST框架
用来创建RESTful 服务的框架。
Dropwizard:偏向于自己使用的Web框架。用来构建Web应用程序,使用了Jetty、Jackson、Jersey和Metrics。官网
Feign:受Retrofit、JAXRS-2.0和WebSocket启发的HTTP客户端连接器(binder)。官网
Jersey:JAX-RS参考实现。官网
RESTEasy:经过JAX-RS规范完全认证的可移植实现。官网
RestExpress:一个Java类型安全的REST客户端。官网
RestX:基于注解处理和编译时源码生成的框架。官网
Retrofit:类型安全的REST客户端。官网
Spark:受到Sinatra启发的Java REST框架。官网
Swagger:Swagger是一个规范且完整的框架,提供描述、生产、消费和可视化RESTful Web Service。官网
Blade:国人开发的一个轻量级的MVC框架. 它拥有简洁的代码,优雅的设计。官网
科学计算与分析
用于科学计算和分析的函数库。
DataMelt:用于科学计算、数据分析及数据可视化的开发环境。官网
JGraphT:支持数学图论对象和算法的图形库。官网
JScience:用来进行科学测量和单位的一组类。官网
搜索引擎
文档索引引擎,用于搜索和分析。
Apache Solr:一个完全的企业搜索引擎。为高吞吐量通信进行了优化。官网
Elasticsearch:一个分布式、支持多租户(multitenant)全文本搜索引擎。提供了RESTful Web接口和无schema的JSON文档。官网
Apache Lucene:是一个开放源代码的全文检索引擎工具包,是一个全文检索引擎的架构,提供了完整的查询引擎和索引引擎,部分文本分析引擎。官网
安全
用于处理安全、认证、授权或会话管理的函数库。
Apache Shiro:执行认证、授权、加密和会话管理。官网
Bouncy Castle,涵盖了从基础的帮助函数到PGP/SMIME操作。官网:多途加密开发库。支持JCA提供者(JCA provider)
Cryptomator:在云上进行客户端跨平台透明加密。官网
Keycloak:为浏览器应用和RESTful Web Service集成SSO和IDM。目前还处于beta版本,但是看起来非常有前途。官网
PicketLink:PicketLink是一个针对Java应用进行安全和身份认证管理的大型项目(Umbrella Project)。官网
序列化
用来高效处理序列化的函数库。
FlatBuffers:高效利用内存的序列化函数库,无需解包和解析即可高效访问序列化数据。官网
Kryo:快速、高效的对象图形序列化框架。官网
FST:提供兼容JDK的高性能对象图形序列化。官网
MessagePack:一种高效的二进制序列化格式。官网
应用服务器
用来部署应用程序的服务器。
Apache Tomcat:针对Servlet和JSP的应用服务器,健壮性好且适用性强。官网
Apache TomEE:Tomcat加Java EE。官网
Jetty:轻量级、小巧的应用服务器,通常会嵌入到项目中。官网
WebSphere Liberty:轻量级、模块化应用服务器,由IBM开发。官网
WildFly:之前被称作JBoss,由Red Hat开发。支持很多Java EE功能。官网
模板引擎
在模板中替换表达式的工具。
Apache Velocity:提供HTML页面模板、email模板和通用开源代码生成器模板。官网
FreeMarker:通用模板引擎,不需要任何重量级或自己使用的依赖关系。官网
Handlebars.java:使用Java编写的模板引擎,逻辑简单,支持语义扩展(semantic Mustache)。官网
Thymeleaf:旨在替换JSP,支持XML文件的工具。官网
测试
测试内容从对象到接口,涵盖性能测试和基准测试工具。
Apache JMeter:功能性测试和性能评测。官网
Arquillian:集成测试和功能行测试平台,集成Java EE容器。官网
AssertJ:支持流式断言提高测试的可读性。官网
Awaitility:用来同步异步操作的DSL。官网
Cucumber:BDD测试框架。官网
Gatling:设计为易于使用、可维护的和高性能负载测试工具。官网
Hamcrest:可用来灵活创建意图(intent)表达式的匹配器。官网
JMockit:用来模拟静态、final方法等。官网
JUnit:通用测试框架。官网
Mockito:在自动化单元测试中创建测试对象,为TDD或BDD提供支持。官网
PowerMock: 支持模拟静态方法、构造函数、final类和方法、私有方法以及移除静态初始化器的模拟工具。官网
REST Assured:为REST/HTTP服务提供方便测试的Java DSL。官网
Selenide:为Selenium提供精准的周边API,用来编写稳定且可读的UI测试。官网
Selenium:为Web应用程序提供可移植软件测试框架。官网
Spock:JUnit-compatible framework featuring an expressive Groovy-derived specification language.官网兼容JUnit框架,支持衍生的Groovy范的语言。
TestNG:测试框架。官网
Truth:Google的断言和命题(proposition)框架。官网
Unitils:模块化测试函数库,支持单元测试和集成测试。官网
WireMock:Web Service测试桩(Stub)和模拟函数。官网
通用工具库
通用工具类函数库。
Apache Commons:提供各种用途的函数,比如配置、验证、集合、文件上传或XML处理等。官网
args4j:命令行参数解析器。官网
CRaSH:为运行进行提供CLI。官网
Gephi:可视化跨平台网络图形化操作程序。官网
Guava:集合、缓存、支持基本类型、并发函数库、通用注解、字符串处理、I/O等。官网
JADE:构建、调试多租户系统的框架和环境。官网
javatuples:正如名字表示的那样,提供tuple支持。尽管目前tuple的概念还有留有争议。官网
JCommander:命令行参数解析器。官网
Protégé:提供存在论(ontology)编辑器以及构建知识系统的框架。官网
网络爬虫
用于分析网站内容的函数库。
Apache Nutch:可用于生产环境的高度可扩展、可伸缩的网络爬虫。官网
Crawler4j:简单的轻量级网络爬虫。官网
JSoup:刮取、解析、操作和清理HTML。官网
Web框架
用于处理Web应用程序不同层次间通讯的框架。
Apache Tapestry:基于组件的框架,使用Java创建动态、强健的、高度可扩展的Web应用程序。官网
Apache Wicket:基于组件的Web应用框架,与Tapestry类似带有状态显示GUI。官网
Google Web Toolkit:一组Web开发工具集,包含在客户端将Java代码转为JavaScript的编译器、XML解析器、RCP官网API、JUnit集成、国际化支持和GUI控件。
Grails:Groovy框架,旨在提供一个高效开发环境,使用约定而非配置、没有XML并支持混入(mixin)。官网
Ninja:Java全栈Web开发框架。非常稳固、快速和高效。官网
Pippo:小型、高度模块化的类Sinatra框架。官网
Play:使用约定而非配置,支持代码热加载并在浏览器中显示错误。官网
PrimeFaces:JSF框架,提供免费和带支持的商业版本。包括若干前端组件。官网
Ratpack:一组Java开发函数库,用于构建快速、高效、可扩展且测试完备的HTTP应用程序。官网
Spring Boot:微框架,简化了Spring新程序的开发过程。官网
Spring:旨在简化Java EE的开发过程,提供依赖注入相关组件并支持面向切面编程。官网
Vaadin:基于GWT构建的事件驱动框架。使用服务端架构,客户端使用Ajax。官网
Blade:国人开发的一个轻量级的MVC框架. 它拥有简洁的代码,优雅的设计。官网
业务流程管理套件
流程驱动的软件系统构建。
jBPM:非常灵活的业务流程管理框架,致力于构建开发与业务分析人员之间的桥梁。官网
Activity:轻量级工作流和业务流程管理框架。官网github
资源
社区
❿ 懂编程的来
各种语言的介绍(第二版)
在介绍编程语言之前,先说说开放源代码的必要性。现在,在软件生产领域存在巨大的智利浪费,大家把大量的精力用在编写别人已经实现的 程序代码上。看看,文本编辑器有多少,看看ftp程序有多少,看看字处理程序有多少,这些程序虽然有差别,但主要的功能都是一样的。要实 现个性化的功能,在已有的软件基础上修改会节省多少时间呀!而每个程序各编一套,又浪费多少时间?如果,没有这些重复的工作量,世界 上的程序员至少可以节省80%的工作量。同时,开放源代码也方便了大家的交流,阅读源代码应该是最直接最有效的学习途径。尤其是比较专业 的领域。
要开放源代码,下面几点比较重要: ×、语言要流行。 ×、语言的函数和类库统一。 ×、语言的语法和编译器要统一。 ×、编译器是否开 放源代码。 ×、API是否开放源代码。 ×、语言的可重用性、功能、友好性。
语言统一的必要性:如果大家都用一种编程语言,都用同样的函数,同样的类库,那么,大家的共同语言就会很多。大家只要学会一种语言, 一套函数,一套类库,就可以相互读懂源代码,这样,学习量是最少的。学习新的API浪费程序员大量的时间和精力,尤其是当这个API有大量 和其他API重复的功能的时候。
要增加代码的可重用性,要从下面几点着手: ×、代码的可读性。如格式、是否接近英语语法和单词。 ×、代码的表达能力,也就是简单性 ,能用最少的语句和单词实现同样的功能。 ×、代码的结构性,如函数、模块、类。
语言功能的强大从下面几点来说: ×、是否拥有大量的库支持。这是最重要的,要求编写任何功能的程序都有强大的库支持。 ×、语法功能 是否强大,比如是否有出错处理。是否有指针。
语言的友好性: ×、语言包的大小,语言包越小,学习越简单。 ×、语言是否有友好的编辑调试环境。 ×、语言的可视化和集成编程环境。
c语言:
从性能上说,除了汇编语言,c语言是最接近机器的语言。各种操作系统的编程接口的默认语言都是c语言。因此,用c语言编程,可以最大限 度发挥操作系统的能力。同时,由于绝大部分的商品软件都是c实现的,都有c编程接口,可以说,没有c不能实现的功能。
在linux环境中,c具有很好的开放源代码的条件,它有统一的编译器gcc,有强大但比较难掌握的编程环境emacs,有统一的API:posix和 linux接口。并且编译器和API是开放源代码的。
在linux上编写图形界面程序,有两个选择KDE和gnome,KDE更成熟,gnome支持多语言和面向对象的程序间的协同。
在windows环境中,现在统一到了vc上,但有一个缺点,windows的升级换代太快,从dos环境到windows31
,从windows31到windows95,到windows2000,到.net。API常常变换,这样,在windows上的程序代码的寿命会比较短。并且vc的编译器和API 太复杂,难于掌握。
同时,由于c具有现代语言的大量特征,现在常常代替pasical作为教学的编程语言。
实际上,如果不深入学习,c也是一种很简单的语言。不学basic,直接学c完全没有问题。
和其他语言相比,c有多种编译器,多种操作系统API,多种语法和函数。学习的难度大,统一性差。
和java相比,c的语法不够丰富、现代。
java:
相对c,java作为现代语言,具有非常丰富的语法特征,如模块和类,不像c随操作系统和编译器的不同有极大差异,java是一个公司的产品 ,具有唯一的API,因此,java程序员没有语言隔阂。
相对跨平台的语言来说,java具有最好的图形界面编程API。
java所有的API都是类库,相对c的函数来说,是非常大的进步。java具有现代语言几乎所有的特征。
perl:
perl的最大特点是有强大的字符串模式匹配,是最好的文本文件的读取和生成语言。
perl具有很大的自由性,象英语一样有很大的随意性,
perl有一个强大的数据库接口和其他各种接口。
perl有最大量的程序库。
perl不适合编写大程序。
perl有一个着名的缺点是难懂,也有一个着名的优点是简练。
php:
我感到php是个怪胎,本来perl加嵌入html的功能就完全能实现php的功能,还要另创一种语言,加重了大家的学习负担。
php可以嵌入html,更容易编写服务器端程序。
php天然和web服务器以及mysql数据库相结合。
php可以动态生成图像。
python:
首先,python是和basic一样面向初学者的语言,和英语一样容易懂。
python具有和java一样的最丰富的语法。
python有和perl类似的简单性,但没有模式匹配。
python适合编写大程序。
python有和lisp相似的地方,它有将字符串作为程序执行的eval函数,可以对一个对象的所有数据进行保存,可以把函数作为参数传给另一 个函数。
python具有非常好的扩充性,python程序可以和c程序,以及java程序很好地结合。
tcl:
tcl具有最简单的语法,最好的和其他程序交互的能力,有编写图形界面程序的tk。
javascript:
编写动态网页的最佳工具。
lisp:
lisp的语法非常简单,只有简单的函数和参数的语句结构。
lisp数据和程序的界限模糊。
lisp可以深度嵌套。
prolog:
prolog是一种专门的语言。专门用来处理知识。
我感觉prolog是一种数据库的处理工具。
也是根据一些知识衍生出更多知识的推理工具。
basic:
现在最着名的basic是vb,
basic是简单的初级语言。
vb是快速的界面生成语言,是快速的数据库程序开发语言。
vba是vb的应用版,嵌入在offic中。编写offic上的程序很好用。
vbscript是vb的脚本语言,可以产生服务器端和客户端的动态网页。
basic的丑陋在于参数还是默认传地址。太危险。
delphi:
和vb一样是快速开发环境,但性能更好,功能更强大。
.net:
支持多种语言的统一的API类库,
可以编写webform程序,即所有的逻辑都在服务器端,传到客户端的是标准的html3.0,可以被各种浏览器支持。各程序组件间通过soap交换 消息。
2002-04-12新增内容:
除了汇编语言外,c是最接近系统底层的语言,因此它是大部分程序的编程语言。c的缺点是没有统一的函数库,标准不统一,因此,同样是c程 序员,相互看不懂代码是很平常的事。
ada的出现就是为了解决统一标准的问题。有一个国际组织专门进行严格ada语言的认证来保证ada的统一。因此,ada编译器有很多种,但ada语 言程序用任何ada编译器编译都能通过。同时,ada的执行程序的效率和c比较接近。有人说比c要快,我想不可能,除非c用的库有问题。ada比c 排错能力更强,但c也有类似的功能。ada还有一个缺点,就是语言罗索,象cobol一样非常难看。
java是对c的大大的改进。有统一的标准,丰富的库,完全的面向对象。也继承了c的一些特点,无所不包的全功能,深入系统底层的编程的灵 活性。但因为java学习了c的深入系统底层的特点,它的语言就严格、呆板、罗索。另外,java要跨平台,它的速度就非常令人不满意,只能局 限在高级应用方面。在速度上,可以选择微软的.net和苹果的coco(可能拼写有错误)。他们也同样是底层的面向对象语言。
作为高级的应用程序,如果没有保密要求,脚本语言是最合适的。脚本语言因为不用编译,因此开发速度会比编译语言快很多。
basic和perl都是古老的脚本语言。basic被微软发扬光大了,但它的缺点是没有完整的面向对象特性,因此编写大型程序很困难。另外,微软 的产品肯定是“肿件”。perl被特别设计来进行文本的处理,文本处理能力非常强,但不适合编写大程序,语言风格也比较令人费解。
python定位于入门的编程语言,是basic的代替品,它具有和basic同样的简单性,并且编程语句更优雅。python有比较完整的面向对象特性, 可以用来编写大程序,因此有些大型的实用程序是python完成的,从加快开发速度的角度,可以代替c和java。python的另一个巨大的应用领域 是用来操作定制其他程序,这个能力basic也有,从这个角度说,python就是unix世界的basic。但python更进一步,和c的沟通能力非常好,任 何为c编写的接口能够很容易转化为python的接口。和java的接口有专门的python的java版,就是jython,jython可以和java本身一样使用各种 java资源。
ruby首先是smalltalk的替代品。有彻底的面向对象特性。另外,也努力作为perl、php、basic、python的替代品。
rebol是lisp的替代品,同时作为脚本语言的一员,有自己的独特之处,他的网络编程和图形用户界面编程是最强大的。
语言解析语言yacc、 html、xml、xlt、xul等也可以算作语言。
[edit]
各种语言的选择
如果编写对性能要求苛刻,或和操作系统结合紧密的程序,必然选择c。
如果编写到处可用的程序,选java。
如果编写大程序,可能的化尽量用python,不行了再用java和c。因为python带来了生产力。
编写文本的处理程序用perl。
编写知识的处理程序用prolog。
编写最灵活,最模糊的程序用lisp。
编写office程序用vba。
编写服务器端程序,php、perl、python、asp都是选择。
编写数据库程序用vb或delphi。
[edit]
各种语言的选择
如果要追求性能和程序的能力,要完全发挥操作系统的能力,使用c语言是合适的。在windows环境下用vc,在linux环境下用gcc。
如果不是追求和操作系统完美结合,而只是性能,又要追求跨平台性,那么仍然选择c,但可以选择跨平台的库,如qt、gtk、fox、wxwindows 。如果要编写游戏也有跨平台选择:SDL。
如果不满意c领域标准的不统一,不满意c的容易出错,不满意c的面向对象特征不彻底。如果不在乎跨平台,windows平台可以选择c#,mac平台 可以选择coco。如果需要跨平台,可以选择java。
如果需要跨平台,又要广泛的支持的话,选择java。
如果不在乎商业机密,应用目标也不是太苛刻的话,编写大型跨平台程序还有一个选择就是python或ruby。脚本语言,但是具有全面的库的支 持,有和c语言的方便的交互能力。他们和java相比,编程效率更高。同时因为没有编译,程序更方便修改。因为他们的库都是c实现的,也比 java有更高性能。同时,他们都是开源的,都是对商业应用友好的,也是简单的、方便定制的。也是不满意java的不可控制的越来越庞大的库 的又一个选择。
在linux下,最方便的工具语言是perl,它有强大的社区和代码库的支持。
如果只作为简单应用的工具语言,python和ruby是更好的选择,他们的跨平台移植性好,应用也比较广泛。其中python更适合入门和交流,长 期使用也不错。ruby是对python不满意的另一个选择,它提供了很多额外的功能。
如果要选择一个程序的嵌入语言,原来有lisp、basic和java,现在还可以选择python和ruby。
如果在要求动态解释执行语言,而又不想学其他语言的话,c程序员的选择是pike,java程序员的选择是beanshell。
在java平台,又想用脚本语言的话,可以用jython。
最正统的基于文档的语言或叫动态页面语言是javascript。
最专门的服务器端语言是php,当然也有很多其他选择。
xml语言以xul为最着名,dtml也算一个,你自己也可以用xml作为自己特殊用途的语言。比如jedit就用xml作为一种模式定制语言。xml语言是 一种比较先进的趋势,比现有的语言在特殊领域更高效。
要找容易实现的语言,lisp和tcl是选择。
lisp的数据和程序融为一体的能力和自由是其他语言都没有的。现在出现了一个lisp的现代化的变种:rebol。
如果有基于事实的编程的需要的话,prolog和clips是必然。
[edit]
我为什么选择了python
首先声明,我编程只编应用程序,就是代替自己工作的小程序。如果编写系统程序总会用到c或java的。
我喜欢脚本语言,脚本语言不用编译就可以运行,非常便于修改,而编程序是一种经常性的活动,程序编完后总在不断的修改中,没必要搞的 很隆重,还要编译。另外,脚本程序每个使用的人都可以随手拿来修改,不会出现还要去找源代码的情况。因此,c和java就被排除了。
我喜欢简单的语言,不喜欢为了编写简单的程序而去学习大量复杂的规定,需要大量的学习才会的语言不是好语言,是把人当机器看。c和java 都有严格但罗索的语法,有永远学不完的函数、类、库。让人看到就头大。而perl有各种怪里怪气的速记符号,程序常常让人头晕。简单的含 义除了容易学,还要功能丰富,常用到的东西要早就准备好,不用每个人都去写同样的数据结构程序等。python有丰富的数据类型,有完备的 面向对象的结构,有规则表达式等各种方便编程的模块。这个逻辑就是程序做的多,人做的就少,如果程序做的少,就要人做的多。这就是界 面友好的问题。容易上手,功能丰富是程序设计的很重要的目标,windows就是靠这个流行的。而python也很好的体现了这点。而perl象unix的 emac之类其它工具一样,功能强大,但太难学,太难懂。是比较违背人性的。
关于性能。现在cpu已经很强大了。除了很大的程序和系统程序,没必要关心性能。
关于功能。如果不是编写系统程序和贴近系统的程序,没必要使用操作系统特别提供的功能。c是可以干任何事情,但它编程效率低,复杂。
至于我为什么不用vb,因为vb太庞大了。我没必要实现一个小功能启动这么庞大的程序。太夸张。另外,vb没有类继承,虽然是应用编程,但 如果要编稍微大的程序,总会用到类继承的。
python得强大得扩展能力使对python得学习不会浪费。python经过简单得处理能使用各种得c和c++库,也可以被c和c++调用。python可以直接 使用java得类,也可以直接被java调用。这样,对python、java、c得学习和使用经验都不会被浪费,还能相互补充。python可以提高java和c 得编程效率,java和c可以补充python功能上得不足。python还可以和tcl直接交互,这种功能是内置得。期待python能简单的调用perl和php得 功能。能使用lisp和prolog更好。
[edit]
ruby 吸取了所有语言精华的语言 第二版
ruby 语言还是杂耍 ruby?:O ruby 日本人的玩意
ruby有
* perl的正则表达式
* python的语言的简单性可读性、最容易的扩展能力,强大的可移植性。
* php的嵌入功能和多种客户端
* smalltalk的纯面向对象语法和单继承
* lisp的无穷嵌套的语法,也就是函数式的语法。
* 用“块”来实现更快捷的数据结构的处理。不知道是不是scheme的宏功能。用块能更清楚的实现python的表处理功能。
* java和ada的线程编程
* java的安全编程
不得不承认ruby确实是个精彩的语言,它完全学会了lisp的所有编程都是函数的思想,smalltalk的所有东西都是对象的思想,perl的一个目的 多种手段的方法,python的简单化的“最少惊喜”的原则,java的多线程和安全控制的功能,tcl的容易扩展的功能,php的嵌入功能和强大客 户端的功能,最方便的shell命令的调用。
[edit]
ruby和python的比较
[edit]
python和ruby的相同点
* 都强调语法简单,都具有更一般的表达方式。python是缩进,ruby是类basic的表达。都大量减少了符号。
* 都是动态数据类型。都是有丰富的数据结构。
* 都具有c语言扩展能力,都具有可移植性,比perl的可移植性更好。也都可以作为嵌入语言。
* 都是面向对象的语言,都可以作为大项目的开发工具。
* 都有丰富的库支持。
* 也有最宽松的版权许可,除了一些工具属于GNU世界。
* 都有lisp特色的eval函数,也都能把函数作为参数。
* 也有图形界面的ruby的专门编辑器。
* 都获得了广泛的c库的支持。如qt、gtk、tk、SDL、FOX等,ruby计划实现SWIG接口。
* 都有完善的文档。
[edit]
和python相比ruby的优点
* 具有正则表达式和嵌入html的功能。python也有正则表达式,但没有ruby的应用方便和广泛。python的嵌入html项目才刚起步。ruby还有 apache的mod模块。ruby本身也实现和很多unix工具,如racc,doctools。比python更亲近linux。
* 比python功能更完整的面向对象的语法。
* ruby的整个库都是具有类继承的结构。
* 他的基本的数据类型和运算符都是可以重载的。
* ruby主要的功能都是通过对象的方法调用来实现的,而不是函数。python也在向这方面发展,但没有ruby做的彻底。
* ruby的类是更规范的单继承,还有接口等概念的实现。
* python可以实现在列表内的条件语句、循环语句,而ruby用“块”的方式来实现这个功能,比python的更灵活,更具有通用性。
* ruby具有类似lisp的彻底的函数方式的条件语句、循环语句等。语句的表达能力更强。
* 附带一些unix工具,如racc等。
[edit]
和python相比ruby的不足
* 最大的不足正是因为ruby的强大所引起的。它没有python的简单性好。比较复杂的面向对象语法、“块”语法的引入、正则表达式的引入、 一些简写标记都增加了语言的复杂性。
* python的缩进表达方式比ruby的basic的表达方式更让人悦目,ruby程序的满眼的end让人不舒服。当然,ruby认为end的方式比python更先 进。
* ruby还没有python的“自省”的能力,没有从程序文件中生成文档的能力。
* ruby没有国际化的支持。国际化支持在ruby的计划中。这是因为ruby的历史比python要短造成的。
* ruby没有类似jython的东西。
[edit]
python和ruby的语言的选择
从简单的就是好的来说,选python是没错的。python适合寻找简单语言的人,这很可能造成python更流行,因此也有更多的支持。但如果要追 求更强大的语法功能,则ruby是好的选择。因为ruby和python的哲学有很多相似的地方,先从python入手,尽量用python,如果python的能力 不足了,可以在找ruby。
ruby和python的比较,就像五笔和拼音输入法的比较。拼音作为入门的输入法和长久使用的输入法都没有问题。五笔适合更高要求的情况。如 果追求性能的不妨学学ruby。对编程语言感兴趣,想了解各种编程概念的学ruby也会很兴奋。
[edit]
php有什么好处
我一直认为php是一个垃圾,因为它只是实现了脚本语言得嵌入,却单独实现一种语言、实现大量得函数库,浪费了大量得开发人员得宝贵时间 来重复其他脚本已经实现了得功能,也浪费了php开发人员得大量学习时间,还要单独学一种只能存在于web服务器得语言,浪费了perl、 python得已有得使用经验。相似得还有pike,一种c得脚本语言,没什么新东西,还不如仍然用c编译器。
但我最近看书才了解php得独特得开发目标。
php为什么不直接用perl作脚本语言。是因为perl是一种unix语言,带有unix传统得字符神秘高深,让人难于学习。而编动态网页得人不见得会 用perl这种unix工具,他们可能只有html知识。php就简化了perl得语言,变成了一种简单友好得语言,免去了人们学习perl得困难。
php为什么不选python作脚本。因为python是一种面向对象得语言,大量得功能都要涉及面向对象概念,而web应用只是简单得实现客户机逻辑 和显示功能。没必要涉及面向对象得复杂概念。函数是最简单,最容易理解得,因此,php倾向于所有得功能都用函数来解决,而不是用对象来 解决。这有点象c和c++之争。应该承认,函数在实现简单功能得时候是最有利得工具,它得语句量最少。
php定位于以html为用户界面,充当各种服务器得客户端,实现得是传统得客户端编程得任务。它有pop、smtp、ftp、多种数据库等各种服务器 得客户端得函数,也有图片、pdf生成,xml处理等这种必要得功能。这些都是其他脚本比不上php得地方。
我几乎没用过php,说得不对,请指教。
[edit]
ada语言草述
ada语言我看了他的介绍。
ada语言和c一样是一种编译语言,他们最后编译出的执行文件的机器码都很小。因此现在众多的语言只有c很ada能比较。
和c相比,ada的特点是可靠、可移植。
他的可靠是通过比其他语言都强大的类型,每种类型还都可以象数据库字段一样进行强类型、范围的检查。以此来保证在编译中就发现错误。
它有强大的标准化组织,严格认证ada编译器的标准。有多线程能力。
适于编写实时程序。
但和c相比太复杂、罗嗦,因此注定不能流行。
[edit]
多脚本语言的大统一及疑问
现在各种脚本语言太多了,有必要进行整合,parrot是一个好的想法。.net也是好的想法。它为各种脚本提供了一个统一的虚机,为各种脚本 语言提供了基于“类”的相互调用,为各种脚本提供了统一的类库。
现在各种脚本语言只是提供了对c语言的交互性,这种交互也是费劲的和效果不好的。比如python、perl、ruby等都提供了对c的交互功能。脚 本语言之间的交流障碍重重。而类似.net的东西,提供了非常容易的各种脚本的相互利用的途径,避免了很多的代码的重复编写。这种标准平 台的力量是很大的,这种标准平台为什么没有在开源领域首先出现呢?众多的脚本正是开源的特点和优势,为什么这种问题要微软来解决呢? 前面有人提出了类似的问题,在linux中为什么至今没有好用的类似ODBC的东西呢?
可能这种整合只有商业公司有能力实现吧。
我的理解是,如果有创新思想的人都拿他的想法去卖钱了,因此,在开源中只剩下了模仿的人。kde是模仿windows,koffice是模仿office, linux是模仿unix,gcc、bash等也全都是模仿,以及gstep等,还有freedos、atheos等也是模仿,wxwindows、SDL也是模仿。我想知道开源社 区有没有自己的创新?我所知道的创新是zope,但zope最初也是商业产品,后来才开源的。perl是创新,python是创新,但还有什么呢?是不 是开源领域只有hack,没有creator?
[edit]
.net介绍
.net所实现的java的功能
可控代码 跨平台的虚机和伪码免费赠送命令行编译器 纯面向对象语言 对xml和xml web services的支持 和jsp对应的asp.net 网页上的程序 一套统一的中间件环境。
asp.net跟jsp不是同一个层次上的web技术, asp.net使用完善的事件响应机制,WinForms类似的 WebForm技术,只有JSF跟Asp.net有可比性。
.net未实现的java功能
免费的集成开发环境 多厂家支持,跨平台的成熟度
免费的IDE, #develop , ASP.net的有MS的WebMatrix 而免费开源的CLR实现,有MS自己的XP,FreeBSD,MacOS下的实现(原理演示不能进行商 业应用), Novell下的Mono项目,已经发布了Beta1版本,在2004-6-30 将会发布Release1; 还有GNU的一个.net实现!!
[edit]
.net实现的java不具备的功能
多语言支持 强大的集成开发环境。在windows上媲美本机程序的速度。 对COM的支持,对vs的继承 对widows form 、web form、服务器端程序 的图形直观编程。
[edit]
相对vs6的改进
统一了集成开发环境,使c++程序也具有了vb的友好性。
[edit]
xml各种技术介绍
xml:
xml是统一格式的结构化数据的文本文件。
基于xml的程序,数据结构是开放的,方便不同程序处理同一种文件,这样,程序之间可以达到高水平的协作。
xml现在成为了各行各业统一数据格式的基础。
xml发展出了完善的语法,它用DTD或scheme来界定xml的标记语言。用uri来唯一确定一个xml格式。用css或XLT来转换xml格式,xlink和 xpointer等来建立xml的链接,用xpath来定位xml中的数据。
xhtml:
是严格符合xml格式的html。
RDF:
基于xml的元数据描述语言。方便交换结构化数据。方便交换知识。
RDF是用主语、谓语、宾语来描述知识的。
SVG:
xml格式的矢量图形格式。
SMILE:
xml格式的各种多媒体在时间线上的协同。
xmath:
xml格式的公式描述语言。
xml-rpc和soap:
以http协议和xml格式来进行网络程序之间的消息通讯。
xul:
netscape的mazilla使用的程序界面语言,基于xml格式,比html强大的多的描述图形界面的xml语言。它用css来换肤,用DTD来实现多语言界 面,用javascript来实现程序逻辑,以此编写跨平台的可方便定制界面的程序,现在这个程序API功能已经很强大了,整个mazilla程序就是基 于xul的。
xaml:
MS在LongHorn平台的最新编程语言,将统一Windows与Web编程,直接使用
LongHorn下的浏览器进行执行, 跟XUL有类比性
[edit]
最先进的xml格式图形界面程序开发工具-xul
大家知道netscape程序,一个仅次于ie得浏览器,也有很多人知道mozilla,netscape得开放源代码版本。但很多人只是使用mozilla,不知道 mozilla另一个重要得功能--程序开发。在netscape开放源代码后三年mozilla得1。0版还没有问世,很多人讥笑他的超慢得开发速度,实际 上,mozilla酝酿出了一个超酷得新产品,可以看作是软件开发工具发展得另一个里程碑。
现在基于浏览器得三层开发结构非常流行,微软得.net得思路就是基于这个结构得。另外,不考虑服务器结构,就是基于网页得javascript小 程序也对人很有吸引力,这些产品得思路都是以html为用户界面,但开发人员常常苦恼于html太简陋。而mazilla得xul解决了这个问题。
xul是对html得扩展