导航:首页 > 编程语言 > python爬虫提取最新数据

python爬虫提取最新数据

发布时间:2022-05-02 20:27:26

1. python爬虫数据提取

理论上可以,实际要看目标网页的情况,反爬虫机制、js动态刷新抓取都是比较头疼的。
当然如果不考虑效率,selenium 之类的网页自动化方式,通常都可以实现。

2. 如何用Python爬取数据

方法/步骤

3. python爬虫登录知乎后怎样爬取数据

模拟登录
很多网站,比如知乎、微博、豆瓣,都需要登录之后,才能浏览某些内容。所以想要爬取这类网站,必须先模拟登录。比较简单的方式是利用这个网站的 cookie。cookie 相当于是一个密码箱,里面储存了用户在该网站的基本信息。在一次登录之后,网站会记住你的信息,把它放到cookie里,方便下次自动登录。所以,要爬取这类网站的策略是:先进行一次手动登录,获取cookie,然后再次登录时,调用上一次登录得到的cookie,实现自动登录。
动态爬取
在爬取知乎某个问题的时候,需要将滑动鼠标滚轮到底部,以显示新的回答。静态的爬取方法无法做到这一点,可以引入selenium库来解决这一问题。selenium库模拟人浏览网站、进行操作,简单易懂。

4. 怎样用python爬取疫情数据

import requests
from bs4 import BeautifulSoup
import re
import json

# 1.发送请求,获取疫情首页(数据来源于丁香园)
response = requests.get('https://ncov.dxy.cn/ncovh5/view/pneumonia')
home_page = response.content.decode()

# 2.从疫情首页提取最近一日数据
soup = BeautifulSoup(home_page, 'lxml')
script = soup.find(id='getAreaStat')
text = script.string

# 3.提取数据获取json格式数据
json_str = re.findall(r'\[.+\]', text)[0]

# 4.把json格式转换为python类型
last_day_corona_virus = json.loads(json_str)

# 5.以json格式保存最近一日数据
with open('data/last_day_coronavirus.json', 'w') as fp:
json.mp(last_day_corona_virus, fp, ensure_ascii=False)

5. 如何一个月入门Python爬虫,轻松爬取大规模数据

链接:https://pan..com/s/1wMgTx-M-Ea9y1IYn-UTZaA

提取码:2b6c

课程简介

毕业不知如何就业?工作效率低经常挨骂?很多次想学编程都没有学会?

Python 实战:四周实现爬虫系统,无需编程基础,二十八天掌握一项谋生技能。

带你学到如何从网上批量获得几十万数据,如何处理海量大数据,数据可视化及网站制作。

课程目录

开始之前,魔力手册 for 实战学员预习

第一周:学会爬取网页信息

第二周:学会爬取大规模数据

第三周:数据统计与分析

第四周:搭建 Django 数据可视化网站

......

6. 如何利用python爬虫获取数据

python是一款应用非常广泛的脚本程序语言,谷歌公司的网页就是用python编写。python在生物信息、统计、网页制作、计算等多个领域都体现出了强大的功能。python和其他脚本语言如java、R、Perl一样,都可以直接在命令行里运行脚本程序。工具/原料python;CMD命令行;windows操作系统方法/步骤1、首先下载安装python,建议安装2.7版本以上,3.0版本以下,由于3.0版本以上不向下兼容,体验较差。2、打开文本编辑器,推荐editplus,notepad等,将文件保存成.py格式,editplus和notepad支持识别python语法。脚本第一行一定要写上#!usr/bin/python表示该脚本文件是可执行python脚本如果python目录不在usr/bin目录下,则替换成当前python执行程序的目录。3、编写完脚本之后注意调试、可以直接用editplus调试。调试方法可自行网络。脚本写完之后,打开CMD命令行,前提是python已经被加入到环境变量中,如果没有加入到环境变量,请网络4、在CMD命令行中,输入“python”+“空格”,即”python“;将已经写好的脚本文件拖拽到当前光标位置,然后敲回车运行即可。

7. 如何用python 爬虫抓取金融数据

获取数据是数据分析中必不可少的一部分,而网络爬虫是是获取数据的一个重要渠道之一。鉴于此,我拾起了Python这把利器,开启了网络爬虫之路。

本篇使用的版本为python3.5,意在抓取证券之星上当天所有A股数据。程序主要分为三个部分:网页源码的获取、所需内容的提取、所得结果的整理。

一、网页源码的获取

很多人喜欢用python爬虫的原因之一就是它容易上手。只需以下几行代码既可抓取大部分网页的源码。

为了减少干扰,我先用正则表达式从整个页面源码中匹配出以上的主体部分,然后从主体部分中匹配出每只股票的信息。代码如下。

pattern=re.compile('<tbody[sS]*</tbody>')
body=re.findall(pattern,str(content)) #匹配<tbody和</tbody>之间的所有代码pattern=re.compile('>(.*?)<')
stock_page=re.findall(pattern,body[0]) #匹配>和<之间的所有信息

其中compile方法为编译匹配模式,findall方法用此匹配模式去匹配出所需信息,并以列表的方式返回。正则表达式的语法还挺多的,下面我只罗列所用到符号的含义。

语法 说明

. 匹配任意除换行符“ ”外的字符

* 匹配前一个字符0次或无限次

? 匹配前一个字符0次或一次

s 空白字符:[<空格> fv]

S 非空白字符:[^s]

[...] 字符集,对应的位置可以是字符集中任意字符

(...) 被括起来的表达式将作为分组,里面一般为我们所需提取的内容

正则表达式的语法挺多的,也许有大牛只要一句正则表达式就可提取我想提取的内容。在提取股票主体部分代码时发现有人用xpath表达式提取显得更简洁一些,看来页面解析也有很长的一段路要走。

三、所得结果的整理

通过非贪婪模式(.*?)匹配>和<之间的所有数据,会匹配出一些空白字符出来,所以我们采用如下代码把空白字符移除。

stock_last=stock_total[:] #stock_total:匹配出的股票数据for data in stock_total: #stock_last:整理后的股票数据
if data=='':
stock_last.remove('')

最后,我们可以打印几列数据看下效果,代码如下

print('代码',' ','简称',' ',' ','最新价',' ','涨跌幅',' ','涨跌额',' ','5分钟涨幅')for i in range(0,len(stock_last),13): #网页总共有13列数据
print(stock_last[i],' ',stock_last[i+1],' ',' ',stock_last[i+2],' ',' ',stock_last[i+3],' ',' ',stock_last[i+4],' ',' ',stock_last[i+5])

8. 如何利用Python爬虫从网页上批量获取想要的信息

稍微说一下背景,当时我想研究蛋白质与小分子的复合物在空间三维结构上的一些规律,首先得有数据啊,数据从哪里来?就是从一个涵盖所有已经解析三维结构的蛋白质-小分子复合物的数据库里面下载。这时候,手动一个个去下显然是不可取的,我们需要写个脚本,能从特定的网站选择性得批量下载需要的信息。python是不错的选择。

import urllib #python中用于获取网站的模块
import urllib2, cookielib

有些网站访问时需要cookie的,python处理cookie代码如下:
cj = cookielib.CookieJar ( )
opener = urllib2.build_opener( urllib2.HttpCookieProcessor(cj) )
urllib2.install_opener (opener)

通常我们需要在网站中搜索得到我们需要的信息,这里分为二种情况:

1. 第一种,直接改变网址就可以得到你想要搜索的页面:

def GetWebPage( x ): #我们定义一个获取页面的函数,x 是用于呈递你在页面中搜索的内容的参数
url = 'http://xxxxx/xxx.cgi?&' + ‘你想要搜索的参数’ # 结合自己页面情况适当修改
page = urllib2.urlopen(url)
pageContent = page.read( )
return pageContent #返回的是HTML格式的页面信息

2.第二种,你需要用到post方法,将你搜索的内容放在postdata里面,然后返回你需要的页面

def GetWebPage( x ): #我们定义一个获取页面的函数,x 是用于呈递你在页面中搜索的内容的参数
url = 'http://xxxxx/xxx' #这个网址是你进入搜索界面的网址
postData = urllib.urlencode( { 各种‘post’参数输入 } ) #这里面的post参数输入需要自己去查
req= urllib2.Request (url, postData)
pageContent = urllib2.urlopen (req). read( )
return pageContent #返回的是HTML格式的页面信息

在获取了我们需要的网页信息之后,我们需要从获得的网页中进一步获取我们需要的信息,这里我推荐使用 BeautifulSoup 这个模块, python自带的没有,可以自行网络谷歌下载安装。 BeautifulSoup 翻译就是‘美味的汤’,你需要做的是从一锅汤里面找到你喜欢吃的东西。

import re # 正则表达式,用于匹配字符
from bs4 import BeautifulSoup # 导入BeautifulSoup 模块

soup = BeautifulSoup(pageContent) #pageContent就是上面我们搜索得到的页面

soup就是 HTML 中所有的标签(tag)BeautifulSoup处理格式化后的字符串,一个标准的tag形式为:

hwkobe24

通过一些过滤方法,我们可以从soup中获取我们需要的信息:

(1) find_all ( name , attrs , recursive , text , **kwargs)
这里面,我们通过添加对标签的约束来获取需要的标签列表, 比如 soup.find_all ('p') 就是寻找名字为‘p’的 标签,而soup.find_all (class = "tittle") 就是找到所有class属性为"tittle" 的标签,以及soup.find_all ( class = re.compile('lass')) 表示 class属性中包含‘lass’的所有标签,这里用到了正则表达式(可以自己学习一下,非常有用滴)

当我们获取了所有想要标签的列表之后,遍历这个列表,再获取标签中你需要的内容,通常我们需要标签中的文字部分,也就是网页中显示出来的文字,代码如下:

tagList = soup.find_all (class="tittle") #如果标签比较复杂,可以用多个过滤条件使过滤更加严格

for tag in tagList:
print tag.text
f.write ( str(tag.text) ) #将这些信息写入本地文件中以后使用

(2)find( name , attrs , recursive , text , **kwargs )

它与 find_all( ) 方法唯一的区别是 find_all() 方法的返回结果是值包含一个元素的列表,而 find() 方法直接返回结果

(3)find_parents( ) find_parent( )

find_all() 和 find() 只搜索当前节点的所有子节点,孙子节点等. find_parents() 和 find_parent() 用来搜索当前节点的父辈节点,搜索方法与普通tag的搜索方法相同,搜索文档搜索文档包含的内容

(4)find_next_siblings() find_next_sibling()

这2个方法通过 .next_siblings 属性对当 tag 的所有后面解析的兄弟 tag 节点进代, find_next_siblings() 方法返回所有符合条件的后面的兄弟节点,find_next_sibling() 只返回符合条件的后面的第一个tag节点

(5)find_previous_siblings() find_previous_sibling()

这2个方法通过 .previous_siblings 属性对当前 tag 的前面解析的兄弟 tag 节点进行迭代, find_previous_siblings()方法返回所有符合条件的前面的兄弟节点, find_previous_sibling() 方法返回第一个符合条件的前面的兄弟节点

(6)find_all_next() find_next()

这2个方法通过 .next_elements 属性对当前 tag 的之后的 tag 和字符串进行迭代, find_all_next() 方法返回所有符合条件的节点, find_next() 方法返回第一个符合条件的节点

(7)find_all_previous() 和 find_previous()

这2个方法通过 .previous_elements 属性对当前节点前面的 tag 和字符串进行迭代, find_all_previous() 方法返回所有符合条件的节点, find_previous()方法返回第一个符合条件的节点

具体的使用方法还有很多,用到这里你应该可以解决大部分问题了,如果要更深入了解可以参考官方的使用说明哈!

9. Python爬虫常用的几种数据提取方式

数据解析方式
- 正则
- xpath
- bs4
数据解析的原理:
标签的定位
提取标签中存储的文本数据或者标签属性中存储的数据

10. Python爬虫:如何在一个月内学会爬取大规模数

爬虫是入门Python最好的方式,没有之一。Python有很多应用的方向,比如后台开发、web开发、科学计算等等,但爬虫对于初学者而言更友好,原理简单,几行代码就能实现基本的爬虫,学习的过程更加平滑,你能体会更大的成就感。
掌握基本的爬虫后,你再去学习Python数据分析、web开发甚至机器学习,都会更得心应手。因为这个过程中,Python基本语法、库的使用,以及如何查找文档你都非常熟悉了。
对于小白来说,爬虫可能是一件非常复杂、技术门槛很高的事情。比如有人认为学爬虫必须精通 Python,然后哼哧哼哧系统学习 Python 的每个知识点,很久之后发现仍然爬不了数据;有的人则认为先要掌握网页的知识,遂开始 HTMLCSS,结果入了前端的坑,瘁……
但掌握正确的方法,在短时间内做到能够爬取主流网站的数据,其实非常容易实现,但建议你从一开始就要有一个具体的目标。
在目标的驱动下,你的学习才会更加精准和高效。那些所有你认为必须的前置知识,都是可以在完成目标的过程中学到的。这里给你一条平滑的、零基础快速入门的学习路径。
1.学习 Python 包并实现基本的爬虫过程
2.了解非结构化数据的存储
3.学习scrapy,搭建工程化爬虫
4.学习数据库知识,应对大规模数据存储与提取
5.掌握各种技巧,应对特殊网站的反爬措施
6.分布式爬虫,实现大规模并发采集,提升效率
- -
学习 Python 包并实现基本的爬虫过程
大部分Python爬虫都是按“发送请求——获得页面——解析页面——抽取并储存内容”这样的流程来进行,这其实也是模拟了我们使用浏览器获取网页信息的过程。
Python爬虫相关的包很多:urllib、requests、bs4、scrapy、pyspider 等,建议从requests+Xpath 开始,requests 负责连接网站,返回网页,Xpath 用于解析网页,便于抽取数据。
如果你用过 BeautifulSoup,会发现 Xpath 要省事不少,一层一层检查元素代码的工作,全都省略了。这样下来基本套路都差不多,一般的静态网站根本不在话下,豆瓣、糗事网络、腾讯新闻等基本上都可以上手了。
当然如果你需要爬取异步加载的网站,可以学习浏览器抓包分析真实请求或者学习Selenium来实现自动化,这样,知乎、时光网、猫途鹰这些动态的网站也可以迎刃而解。
- -
了解非结构化数据的存储
爬回来的数据可以直接用文档形式存在本地,也可以存入数据库中。
开始数据量不大的时候,你可以直接通过 Python 的语法或 pandas 的方法将数据存为csv这样的文件。
当然你可能发现爬回来的数据并不是干净的,可能会有缺失、错误等等,你还需要对数据进行清洗,可以学习 pandas 包的基本用法来做数据的预处理,得到更干净的数据。
- -
学习 scrapy,搭建工程化的爬虫
掌握前面的技术一般量级的数据和代码基本没有问题了,但是在遇到非常复杂的情况,可能仍然会力不从心,这个时候,强大的 scrapy 框架就非常有用了。
scrapy 是一个功能非常强大的爬虫框架,它不仅能便捷地构建request,还有强大的 selector 能够方便地解析 response,然而它最让人惊喜的还是它超高的性能,让你可以将爬虫工程化、模块化。
学会 scrapy,你可以自己去搭建一些爬虫框架,你就基本具备爬虫工程师的思维了。
- -
学习数据库基础,应对大规模数据存储
爬回来的数据量小的时候,你可以用文档的形式来存储,一旦数据量大了,这就有点行不通了。所以掌握一种数据库是必须的,学习目前比较主流的 MongoDB 就OK。
MongoDB 可以方便你去存储一些非结构化的数据,比如各种评论的文本,图片的链接等等。你也可以利用PyMongo,更方便地在Python中操作MongoDB。
因为这里要用到的数据库知识其实非常简单,主要是数据如何入库、如何进行提取,在需要的时候再学习就行。
- -
掌握各种技巧,应对特殊网站的反爬措施
当然,爬虫过程中也会经历一些绝望啊,比如被网站封IP、比如各种奇怪的验证码、userAgent访问限制、各种动态加载等等。
遇到这些反爬虫的手段,当然还需要一些高级的技巧来应对,常规的比如访问频率控制、使用代理IP池、抓包、验证码的OCR处理等等。
往往网站在高效开发和反爬虫之间会偏向前者,这也为爬虫提供了空间,掌握这些应对反爬虫的技巧,绝大部分的网站已经难不到你了。
- -
分布式Python爬虫,实现大规模并发采集
爬取基本数据已经不是问题了,你的瓶颈会集中到爬取海量数据的效率。这个时候,相信你会很自然地接触到一个很厉害的名字:分布式爬虫。
分布式这个东西,听起来很恐怖,但其实就是利用多线程的原理让多个爬虫同时工作,需要你掌握 Scrapy + MongoDB + Redis 这三种工具。
Scrapy 前面我们说过了,用于做基本的

阅读全文

与python爬虫提取最新数据相关的资料

热点内容
职业生涯pdf 浏览:953
ubuntu安装软件php 浏览:158
黑马程序员退学流程 浏览:361
网页服务器崩溃怎么回事 浏览:650
cnc编程前景怎么样 浏览:319
lniux命令详解 浏览:493
linuxmysql查询日志 浏览:368
老捷达伙伴压缩比 浏览:93
改后缀加密 浏览:432
邮局选址问题算法 浏览:14
河北服务器内存云主机 浏览:12
在电脑上怎么找到加密狗图标 浏览:435
电脑的浏览器怎么打开pdf文件怎么打开 浏览:142
pdf卡片库下载 浏览:11
单片机中二进制表示什么 浏览:725
java网络编程推荐 浏览:795
施耐德开关编程 浏览:66
组织胚胎学pdf 浏览:844
linux查看发包 浏览:496
加密货币交易所暴利时代 浏览:824