导航:首页 > 编程语言 > python文件分词

python文件分词

发布时间:2022-05-06 02:52:45

‘壹’ python中对csv文件某一列的每一行文本进行分词后再写到该文件另一列怎么做

#-*-coding:utf8-*-
importcsv
l=[['1','WonderfulSpam'],['2','LovelySpam']]
#模拟数据写入一个csv
withopen('eggs.csv','w',newline='')ascsvfile:
spamwriter=csv.writer(csvfile,delimiter=',',
quotechar='"',quoting=csv.QUOTE_MINIMAL)
forrowinl:
spamwriter.writerow(row)
#从文件读取
l=[]
withopen('eggs.csv',newline='')ascsvfile:
spamreader=csv.reader(csvfile,delimiter=',',quotechar='"')
forrowinspamreader:
l=l+[row]
#把两列拼接增加为第三列写回到文件
withopen('eggs.csv','w',newline='')ascsvfile:
spamwriter=csv.writer(csvfile,delimiter=',',
quotechar='"',quoting=csv.QUOTE_MINIMAL)
forrowinl:
print(row)
spamwriter.writerow(row+[row[0]+row[1]])

‘贰’ 如何用python进行中文分词

安装jieba
pipinstalljieba

然后

>>>importjieba
>>>seg_list=jieba.cut("我来到北京清华大学",cut_all=True)
>>>print("FullMode:"+"/".join(seg_list))
...
DumpingmodeltofilecacheC:.cache
Loadingmodelcost0.902seconds.
.
FullMode:我/来到/北京/清华/清华大学/华大/大学
>>>seg_list=jieba.cut("我来到北京清华大学",cut_all=False)
>>>print("PreciseMode:"+"/".join(seg_list))
PreciseMode:我/来到/北京/清华大学

还有更多的模式和细节,自己去网络吧

‘叁’ python3怎么使用结巴分词

下面这个程序是对一个文本文件里的内容进行分词的程序:test.py

[python] view plain

#!/usr/bin/python

#-*-encoding:utf-8-*-

importjieba#导入jieba模块

defsplitSentence(inputFile,outputFile):

fin=open(inputFile,'r')#以读的方式打开文件

fout=open(outputFile,'w')#以写得方式打开文件

foreachLineinfin:

line=eachLine.strip().decode('utf-8','ignore')#去除每行首尾可能出现的空格,并转为Unicode进行处理

wordList=list(jieba.cut(line))#用结巴分词,对每行内容进行分词

outStr=''

forwordinwordList:

outStr+=word

outStr+='/'

fout.write(outStr.strip().encode('utf-8')+' ')#将分词好的结果写入到输出文件

fin.close()

fout.close()

splitSentence('myInput.txt','myOutput.txt')

写完程序之后,在Linux重点输入:python test.py即可运行程序进行分词。


输入的文件内容如下所示:

注意:第11行的 jieba.cut()返回的结构是一个可迭代的generator,可以用list(jieba.cut(...))转化为list

‘肆’ python如何利用已有的语料库,对一篇新闻文本进行分词

把自己的语料库(sogou文本分类语料库)放在LTK_DATA/corpora/目录下;
然后在命令行输入以下之后,即可看到所有的txt文件名列表了。

‘伍’ 如何用PYTHON做分词处理

可以利用python的jieba分词,得到文本中出现次数较多的词。

首先pip安装一下jieba,这个可以分词

然后用计数器Counter()统计一下得到的分词中各词的数量

最后most_common(5),是打印出排名前五位的词(包括特殊符号)

#encoding:utf-8
importsys
reload(sys)
sys.setdefaultencoding('utf-8')


importjieba
fromcollectionsimportCounter

str1=open('tips.txt').read()

wordlist_after_jieba=jieba.cut(str1,cut_all=True)

list_wl=Counter(wordlist_after_jieba)
foriinlist_wl.most_common(5):
printi[0],i[1]

‘陆’ 怎么是用python 语言 使用结巴分词 呢

Python代码

#encoding=utf-8
importjieba

seg_list=jieba.cut("我来到北京清华大学",cut_all=True)
print"FullMode:","/".join(seg_list)#全模式

seg_list=jieba.cut("我来到北京清华大学",cut_all=False)
print"DefaultMode:","/".join(seg_list)#默认模式

seg_list=jieba.cut("他来到了网易杭研大厦")
print",".join(seg_list)

输出:

FullMode:我/来/来到/到/北/北京/京/清/清华/清华大学/华/华大/大/大学/学

DefaultMode:我/来到/北京/清华大学

他,来到,了,网易,杭研,大厦(此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了)

‘柒’ 如何用python和jieba分词,统计词频

#!python3
#-*-coding:utf-8-*-
importos,codecs
importjieba
fromcollectionsimportCounter

defget_words(txt):
seg_list=jieba.cut(txt)
c=Counter()
forxinseg_list:
iflen(x)>1andx!=' ':
c[x]+=1
print('常用词频度统计结果')
for(k,v)inc.most_common(100):
print('%s%s%s%d'%(''*(5-len(k)),k,'*'*int(v/3),v))

if__name__=='__main__':
withcodecs.open('19d.txt','r','utf8')asf:
txt=f.read()
get_words(txt)

‘捌’ Python中文分词的原理你知道吗

中文分词,即 Chinese Word Segmentation,即将一个汉字序列进行切分,得到一个个单独的词。表面上看,分词其实就是那么回事,但分词效果好不好对信息检索、实验结果还是有很大影响的,同时分词的背后其实是涉及各种各样的算法的。

中文分词与英文分词有很大的不同,对英文而言,一个单词就是一个词,而汉语是以字为基本的书写单位,词语之间没有明显的区分标记,需要人为切分。根据其特点,可以把分词算法分为四大类:

基于规则的分词方法

基于统计的分词方法

基于语义的分词方法

基于理解的分词方法

下面我们对这几种方法分别进行总结。

基于规则的分词方法

这种方法又叫作机械分词方法、基于字典的分词方法,它是按照一定的策略将待分析的汉字串与一个“充分大的”机器词典中的词条进行匹配。若在词典中找到某个字符串,则匹配成功。该方法有三个要素,即分词词典、文本扫描顺序和匹配原则。文本的扫描顺序有正向扫描、逆向扫描和双向扫描。匹配原则主要有最大匹配、最小匹配、逐词匹配和最佳匹配。

最大匹配法(MM)。基本思想是:假设自动分词词典中的最长词条所含汉字的个数为 i,则取被处理材料当前字符串序列中的前 i 个字符作为匹配字段,查找分词词典,若词典中有这样一个 i 字词,则匹配成功,匹配字段作为一个词被切分出来;若词典中找不到这样的一个 i 字词,则匹配失败,匹配字段去掉最后一个汉字,剩下的字符作为新的匹配字段,再进行匹配,如此进行下去,直到匹配成功为止。统计结果表明,该方法的错误率 为 1/169。

逆向最大匹配法(RMM)。该方法的分词过程与 MM 法相同,不同的是从句子(或文章)末尾开始处理,每次匹配不成功时去掉的是前面的一个汉字。统计结果表明,该方法的错误率为 1/245。

逐词遍历法。把词典中的词按照由长到短递减的顺序逐字搜索整个待处理的材料,一直到把全部的词切分出来为止。不论分词词典多大,被处理的材料多么小,都得把这个分词词典匹配一遍。

设立切分标志法。切分标志有自然和非自然之分。自然切分标志是指文章中出现的非文字符号,如标点符号等;非自然标志是利用词缀和不构成词的词(包 括单音词、复音节词以及象声词等)。设立切分标志法首先收集众多的切分标志,分词时先找出切分标志,把句子切分为一些较短的字段,再用 MM、RMM 或其它的方法进行细加工。这种方法并非真正意义上的分词方法,只是自动分词的一种前处理方式而已,它要额外消耗时间扫描切分标志,增加存储空间存放那些非 自然切分标志。

最佳匹配法(OM)。此法分为正向的最佳匹配法和逆向的最佳匹配法,其出发点是:在词典中按词频的大小顺序排列词条,以求缩短对分词词典的检索时 间,达到最佳效果,从而降低分词的时间复杂度,加快分词速度。实质上,这种方法也不是一种纯粹意义上的分词方法,它只是一种对分词词典的组织方式。OM 法的分词词典每条词的前面必须有指明长度的数据项,所以其空间复杂度有所增加,对提高分词精度没有影响,分词处理的时间复杂度有所降低。

此种方法优点是简单,易于实现。但缺点有很多:匹配速度慢;存在交集型和组合型歧义切分问题;词本身没有一个标准的定义,没有统一标准的词集;不同词典产生的歧义也不同;缺乏自学习的智能性。

基于统计的分词方法

该方法的主要思想:词是稳定的组合,因此在上下文中,相邻的字同时出现的次数越多,就越有可能构成一个词。因此字与字相邻出现的概率或频率能较好地反映成词的可信度。可以对训练文本中相邻出现的各个字的组合的频度进行统计,计算它们之间的互现信息。互现信息体现了汉字之间结合关系的紧密程度。当紧密程 度高于某一个阈值时,便可以认为此字组可能构成了一个词。该方法又称为无字典分词。

该方法所应用的主要的统计模型有:N 元文法模型(N-gram)、隐马尔可夫模型(Hiden Markov Model,HMM)、最大熵模型(ME)、条件随机场模型(Conditional Random Fields,CRF)等。

在实际应用中此类分词算法一般是将其与基于词典的分词方法结合起来,既发挥匹配分词切分速度快、效率高的特点,又利用了无词典分词结合上下文识别生词、自动消除歧义的优点。

基于语义的分词方法

语义分词法引入了语义分析,对自然语言自身的语言信息进行更多的处理,如扩充转移网络法、知识分词语义分析法、邻接约束法、综合匹配法、后缀分词法、特征词库法、矩阵约束法、语法分析法等。

扩充转移网络法

该方法以有限状态机概念为基础。有限状态机只能识别正则语言,对有限状态机作的第一次扩充使其具有递归能力,形成递归转移网络 (RTN)。在RTN 中,弧线上的标志不仅可以是终极符(语言中的单词)或非终极符(词类),还可以调用另外的子网络名字分非终极符(如字或字串的成词条件)。这样,计算机在 运行某个子网络时,就可以调用另外的子网络,还可以递归调用。词法扩充转移网络的使用, 使分词处理和语言理解的句法处理阶段交互成为可能,并且有效地解决了汉语分词的歧义。

矩阵约束法

其基本思想是:先建立一个语法约束矩阵和一个语义约束矩阵, 其中元素分别表明具有某词性的词和具有另一词性的词相邻是否符合语法规则, 属于某语义类的词和属于另一词义类的词相邻是否符合逻辑,机器在切分时以之约束分词结果。

基于理解的分词方法

基于理解的分词方法是通过让计算机模拟人对句子的理解,达到识别词的效果。其基本思想就是在分词的同时进行句法、语义分析,利用句法信息和语义信息来处理歧义现象。它通常包括三个部分:分词子系统、句法语义子系统、总控部分。在总控部分的协调下,分词子系统可以获得有关词、句子等的句法和语义信息来对分词歧义进行判断,即它模拟了人对句子的理解过程。这种分词方法需要使用大量的语言知识和信息。目前基于理解的分词方法主要有专家系统分词法和神经网络分词法等。

专家系统分词法

从专家系统角度把分词的知识(包括常识性分词知识与消除歧义切分的启发性知识即歧义切分规则)从实现分词过程的推理机中独立出来,使知识库的维护与推理机的实现互不干扰,从而使知识库易于维护和管理。它还具有发现交集歧义字段和多义组合歧义字段的能力和一定的自学习功能。

神经网络分词法

该方法是模拟人脑并行,分布处理和建立数值计算模型工作的。它将分词知识所分散隐式的方法存入神经网络内部,通过自学习和训练修改内部权值,以达到正确的分词结果,最后给出神经网络自动分词结果,如使用 LSTM、GRU 等神经网络模型等。

神经网络专家系统集成式分词法

该方法首先启动神经网络进行分词,当神经网络对新出现的词不能给出准确切分时,激活专家系统进行分析判断,依据知识库进行推理,得出初步分析,并启动学习机制对神经网络进行训练。该方法可以较充分发挥神经网络与专家系统二者优势,进一步提高分词效率。

以上便是对分词算法的基本介绍。

‘玖’ 如何利用Python对中文进行分词处理

python做中文分词处理主要有以下几种:结巴分词、NLTK、THULAC
1、fxsjy/jieba
结巴的标语是:做最好的 Python 中文分词组件,或许从现在来看它没做到最好,但是已经做到了使用的人最多。结巴分词网上的学习资料和使用案例比较多,上手相对比较轻松,速度也比较快。
结巴的优点:
支持三种分词模式
支持繁体分词
支持自定义词典
MIT 授权协议

2、THULAC:一个高效的中文词法分析工具包
前两天我在做有关于共享单车的用户反馈分类,使用jieba分词一直太过零散,分类分不好。后来江兄给我推荐了THULAC: 由清华大学自然语言处理与社会人文计算实验室研制推出的一套中文词法分析工具包 。THULAC的接口文档很详细,简单易上手。
THULAC分词的优点:
能力强。利用规模最大的人工分词和词性标注中文语料库(约含5800万字)训练而成,模型标注能力强大。
准确率高。该工具包在标准数据集Chinese Treebank(CTB5)上分词的F1值可达97.3%,词性标注的F1值可达到92.9%
速度较快。同时进行分词和词性标注速度为300KB/s,每秒可处理约15万字。只进行分词速度达到1.3MB/s,速度比jieba慢

Python 解决中文编码问题基本可以用以下逻辑:
utf8(输入) ——> unicode(处理) ——> (输出)utf8
Python 里面处理的字符都是都是unicode 编码,因此解决编码问题的方法是把输入的文本(无论是什么编码)解码为(decode)unicode编码,然后输出时再编码(encode)成所需编码。
由于处理的一般为txt 文档,所以最简单的方法,是把txt 文档另存为utf-8 编码,然后使用Python 处理的时候解码为unicode(sometexts.decode('utf8')),输出结果回txt 的时候再编码成utf8(直接用str() 函数就可以了)。

阅读全文

与python文件分词相关的资料

热点内容
python操作zookeeper 浏览:705
苹果手机dcim文件夹显示不出来 浏览:430
如何压缩文件夹联想电脑 浏览:583
程序员的学习之旅 浏览:440
apkdb反编译 浏览:922
雪花算法为什么要二进制 浏览:825
在文档中打开命令行工具 浏览:608
android图标尺寸规范 浏览:369
python实用工具 浏览:208
流量计pdf 浏览:936
科东加密认证价格 浏览:532
dos命令读文件 浏览:996
成为程序员需要什么学历 浏览:672
pdf农药 浏览:228
canal加密 浏览:497
日本安卓系统和中国有什么区别 浏览:137
linux命令行修改文件 浏览:838
从编译和解释的角度看 浏览:649
徐志摩pdf 浏览:651
夏天解压球视频 浏览:304