⑴ python运行速度慢怎么办
yxhtest7772017-07-18
关注
分享
697 2
python运行速度慢怎么办?6个Python性能优化技巧
Python是一门非常酷的语言,因为很少的Python代码可以在短时间内做很多事情,并且,Python很容易就能支持多任务和多重处理。
Python的批评者声称Python性能低效、执行缓慢,但实际上并非如此:尝试以下6个小技巧,可以加快Python应用程序。
关键代码可以依赖于扩展包
Python使许多编程任务变得简单,但是对于很关键的任务并不总是提供最好的性能。使用C、C++或者机器语言扩展包来执行关键任务能极大改善性能。这些包是依赖于平台的,也就是说,你必须使用特定的、与你使用的平台相关的包。简而言之,该解决方案提供了一些应用程序的可移植性,以换取性能,您可以获得只有通过直接向底层主机编程。
下面这些扩展包你可以考虑添加到你的个人扩展库中:
Cython
PyInlne
PyPy
Pyrex
这些包有不同的作用和执行方式。例如,Pyrex 让Python处理一些内存任务变得简单高效;PyInline可以直接让你在Python应用程序中使用C代码,虽然内联代码被单独编译,但是如果你能高效的利用C代码,它可以在同一个地方处理每一件事情。
使用关键字排序
有很多古老的Python代码在执行时将花费额外的时间去创建一个自定义的排序函数。最好的排序方式是使用关键字和默认的sort()方法。
优化循环
每一种编程语言都强调循环语句的优化,Python也是一样的。尽管你可以依赖于丰富的技术让循环运行的更快,然而,开发者经常忽略的一个方法是避免在循环内部使用点拼接字符串。
使用新版本
任何一个在线上搜索Python资料的人都会发现无数关于Python版本迁移的信息。通常,Python每一个版本都针对之前的一个版本做了优化和改进,以让Python运行的更快。限制因素是你喜欢的函数库是否也针对Python的新版本做了改进。
当你使用了新的函数库,获得了Python的新版本,你需要保证代码依然能够运行,检查应用,修正差异。然后,如果你仅仅是
⑵ Python 中有哪些性能优化方法
合理使用与deep
对于dict和list等数据结构的对象,直接赋值使用的是引用的方式。
而有些情况下需要复制整个对象,这时可以使用包里的和deep,这两个函数的不同之处在于后者是递归复制的。
⑶ python 一般怎么优化响应慢的接口
外在来说,需要查看CPU, 内存,硬盘和网络的情况,如果有瓶颈只要添加相应的设备就可以;内在来说,就是改进算法,增加缓存等
⑷ 如何提高python的运行效率
窍门一:关键代码使用外部功能包
Python简化了许多编程任务,但是对于一些时间敏感的任务,它的表现经常不尽人意。使用C/C++或机器语言的外部功能包处理时间敏感任务,可以有效提高应用的运行效率。这些功能包往往依附于特定的平台,因此你要根据自己所用的平台选择合适的功能包。简而言之,这个窍门要你牺牲应用的可移植性以换取只有通过对底层主机的直接编程才能获得的运行效率。以下是一些你可以选择用来提升效率的功能包:
Cython
Pylnlne
PyPy
Pyrex
这些功能包的用处各有不同。比如说,使用C语言的数据类型,可以使涉及内存操作的任务更高效或者更直观。Pyrex就能帮助Python延展出这样的功能。Pylnline能使你在Python应用中直接使用C代码。内联代码是独立编译的,但是它把所有编译文件都保存在某处,并能充分利用C语言提供的高效率。
窍门二:在排序时使用键
Python含有许多古老的排序规则,这些规则在你创建定制的排序方法时会占用很多时间,而这些排序方法运行时也会拖延程序实际的运行速度。最佳的排序方法其实是尽可能多地使用键和内置的sort()方法。譬如,拿下面的代码来说:
import operator
somelist = [(1, 5,]
在每段例子里,list都是根据你选择的用作关键参数的索引进行排序的。这个方法不仅对数值类型有效,还同样适用于字符串类型。
窍门三:针对循环的优化
每一种编程语言都强调最优化的循环方案。当使用Python时,你可以借助丰富的技巧让循环程序跑得更快。然而,开发者们经常遗忘的一个技巧是:尽量避免在循环中访问变量的属性。譬如,拿下面的代码来说:
lowerlist = ['this', 'is', 'lowercase']
upper = str.upper
upperlist = []
append = upperlist.append
for word in lowerlist:
append(upper(word))
print(upperlist)
#Output = ['THIS', 'IS', 'LOWERCASE']
每次你调用str.upper, Python都会计算这个式子的值。然而,如果你把这个求值赋值给一个变量,那么求值的结果就能提前知道,Python程序就能运行得更快。因此,关键就是尽可能减小Python在循环中的工作量。因为Python解释执行的特性,在上面的例子中会大大减慢它的速度。
(注意:优化循环的方法还有很多,这只是其中之一。比如,很多程序员会认为,列表推导式是提高循环速度的最佳方法。关键在于,优化循环方案是提高应用程序运行速度的上佳选择。)
窍门四:使用较新的Python版本
如果你在网上搜索Python,你会发现数不尽的信息都是关于如何升级Python版本。通常,每个版本的Python都会包含优化内容,使其运行速度优于之前的版本。但是,限制因素在于,你最喜欢的函数库有没有同步更新支持新的Python版本。与其争论函数库是否应该更新,关键在于新的Python版本是否足够高效来支持这一更新。
你要保证自己的代码在新版本里还能运行。你需要使用新的函数库才能体验新的Python版本,然后你需要在做出关键性的改动时检查自己的应用。只有当你完成必要的修正之后,你才能体会新版本的不同。
然而,如果你只是确保自己的应用在新版本中可以运行,你很可能会错过新版本提供的新特性。一旦你决定更新,请分析你的应用在新版本下的表现,并检查可能出问题的部分,然后优先针对这些部分应用新版本的特性。只有这样,用户才能在更新之初就觉察到应用性能的改观。
窍门五:尝试多种编码方法
每次创建应用时都使用同一种编码方法几乎无一例外会导致应用的运行效率不尽人意。可以在程序分析时尝试一些试验性的办法。譬如说,在处理字典中的数据项时,你既可以使用安全的方法,先确保数据项已经存在再进行更新,也可以直接对数据项进行更新,把不存在的数据项作为特例分开处理。请看下面第一段代码:
n = 16
myDict = {}
for i in range(0, n):
char = 'abcd'[i%4]
if char not in myDict:
myDict[char] = 0
myDict[char] += 1
print(myDict)
当一开始myDict为空时,这段代码会跑得比较快。然而,通常情况下,myDict填满了数据,至少填有大部分数据,这时换另一种方法会更有效率。
n = 16
myDict = {}
for i in range(0, n):
char = 'abcd'[i%4]
try:
myDict[char] += 1
except KeyError:
myDict[char] = 1
print(myDict)
在两种方法中输出结果都是一样的。区别在于输出是如何获得的。跳出常规的思维模式,创建新的编程技巧能使你的应用更有效率。
窍门六:交叉编译你的应用
开发者有时会忘记计算机其实并不理解用来创建现代应用程序的编程语言。计算机理解的是机器语言。为了运行你的应用,你借助一个应用将你所编的人类可读的代码转换成机器可读的代码。有时,你用一种诸如Python这样的语言编写应用,再以C++这样的语言运行你的应用,这在运行的角度来说,是可行的。关键在于,你想你的应用完成什么事情,而你的主机系统能提供什么样的资源。
Nuitka是一款有趣的交叉编译器,能将你的Python代码转化成C++代码。这样,你就可以在native模式下执行自己的应用,而无需依赖于解释器程序。你会发现自己的应用运行效率有了较大的提高,但是这会因平台和任务的差异而有所不同。
(注意:Nuitka现在还处在测试阶段,所以在实际应用中请多加注意。实际上,当下最好还是把它用于实验。此外,关于交叉编译是否为提高运行效率的最佳方法还存在讨论的空间。开发者已经使用交叉编译多年,用来提高应用的速度。记住,每一种解决办法都有利有弊,在把它用于生产环境之前请仔细权衡。)
在使用交叉编译器时,记得确保它支持你所用的Python版本。Nuitka支持Python2.6, 2.7, 3.2和3.3。为了让解决方案生效,你需要一个Python解释器和一个C++编译器。Nuitka支持许多C++编译器,其中包括Microsoft Visual Studio,MinGW 和 Clang/LLVM。
交叉编译可能造成一些严重问题。比如,在使用Nuitka时,你会发现即便是一个小程序也会消耗巨大的驱动空间。因为Nuitka借助一系列的动态链接库(DDLs)来执行Python的功能。因此,如果你用的是一个资源很有限的系统,这种方法或许不太可行。
⑸ Python怎么做最优化
一、概观
scipy中的optimize子包中提供了常用的最优化算法函数实现。我们可以直接调用这些函数完成我们的优化问题。optimize中函数最典型的特点就是能够从函数名称上看出是使用了什么算法。下面optimize包中函数的概览:
1.非线性最优化
fmin -- 简单Nelder-Mead算法
fmin_powell -- 改进型Powell法
fmin_bfgs -- 拟Newton法
fmin_cg -- 非线性共轭梯度法
fmin_ncg -- 线性搜索Newton共轭梯度法
leastsq -- 最小二乘
2.有约束的多元函数问题
fmin_l_bfgs_b ---使用L-BFGS-B算法
fmin_tnc ---梯度信息
fmin_cobyla ---线性逼近
fmin_slsqp ---序列最小二乘法
nnls ---解|| Ax - b ||_2 for x>=0
3.全局优化
anneal ---模拟退火算法
brute --强力法
4.标量函数
fminbound
brent
golden
bracket
5.拟合
curve_fit-- 使用非线性最小二乘法拟合
6.标量函数求根
brentq ---classic Brent (1973)
brenth ---A variation on the classic Brent(1980)ridder ---Ridder是提出这个算法的人名
bisect ---二分法
newton ---牛顿法
fixed_point
7.多维函数求根
fsolve ---通用
broyden1 ---Broyden’s first Jacobian approximation.
broyden2 ---Broyden’s second Jacobian approximationnewton_krylov ---Krylov approximation for inverse Jacobiananderson ---extended Anderson mixing
excitingmixing ---tuned diagonal Jacobian approximationlinearmixing ---scalar Jacobian approximationdiagbroyden ---diagonal Broyden Jacobian approximation8.实用函数
line_search ---找到满足强Wolfe的alpha值
check_grad ---通过和前向有限差分逼近比较检查梯度函数的正确性二、实战非线性最优化
fmin完整的调用形式是:
fmin(func, x0, args=(), xtol=0.0001, ftol=0.0001, maxiter=None, maxfun=None, full_output=0, disp=1, retall=0, callback=None)不过我们最常使用的就是前两个参数。一个描述优化问题的函数以及初值。后面的那些参数我们也很容易理解。如果您能用到,请自己研究。下面研究一个最简单的问题,来感受这个函数的使用方法:f(x)=x**2-4*x+8,我们知道,这个函数的最小值是4,在x=2的时候取到。
from scipy.optimize import fmin #引入优化包def myfunc(x):
return x**2-4*x+8 #定义函数
x0 = [1.3] #猜一个初值
xopt = fmin(myfunc, x0) #求解
print xopt #打印结果
运行之后,给出的结果是:
Optimization terminated successfully.
Current function value: 4.000000
Iterations: 16
Function evaluations: 32
[ 2.00001953]
程序准确的计算得出了最小值,不过最小值点并不是严格的2,这应该是由二进制机器编码误差造成的。
除了fmin_ncg必须提供梯度信息外,其他几个函数的调用大同小异,完全类似。我们不妨做一个对比:
from scipy.optimize import fmin,fmin_powell,fmin_bfgs,fmin_cgdef myfunc(x):
return x**2-4*x+8
x0 = [1.3]
xopt1 = fmin(myfunc, x0)
print xopt1
print
xopt2 = fmin_powell(myfunc, x0)
print xopt2
print
xopt3 = fmin_bfgs(myfunc, x0)
print xopt3
print
xopt4 = fmin_cg(myfunc,x0)
print xopt4
给出的结果是:
Optimization terminated successfully.
Current function value: 4.000000
Iterations: 16
Function evaluations: 32
[ 2.00001953]
Optimization terminated successfully.
Current function value: 4.000000
Iterations: 2
Function evaluations: 53
1.99999999997
Optimization terminated successfully.
Current function value: 4.000000
Iterations: 2
Function evaluations: 12
Gradient evaluations: 4
[ 2.00000001]
Optimization terminated successfully.
Current function value: 4.000000
Iterations: 2
Function evaluations: 15
Gradient evaluations: 5
[ 2.]
我们可以根据给出的消息直观的判断算法的执行情况。每一种算法数学上的问题,请自己看书学习。个人感觉,如果不是纯研究数学的工作,没必要搞清楚那些推导以及定理云云。不过,必须了解每一种算法的优劣以及能力所及。在使用的时候,不妨多种算法都使用一下,看看效果分别如何,同时,还可以互相印证算法失效的问题。
在from scipy.optimize import fmin之后,就可以使用help(fmin)来查看fmin的帮助信息了。帮助信息中没有例子,但是给出了每一个参数的含义说明,这是调用函数时候的最有价值参考。
有源码研究癖好的,或者当你需要改进这些已经实现的算法的时候,可能需要查看optimize中的每种算法的源代码。在这里:https:/ / github. com/scipy/scipy/blob/master/scipy/optimize/optimize.py聪明的你肯定发现了,顺着这个链接往上一级、再往上一级,你会找到scipy的几乎所有源码!
⑹ 用python处理一个1G左右的数据集,运行速度非常慢,怎样优化
第一个办法,降低数据集的大小。python处理数据,如果数据结构中的数据超过2GB,通常都会很慢。如何降低数据集大小,需要修改算法。
第二个办法,将数据结构采用数组array或者是numarray存贮。这样内存数量与查找效率都会提高。尽量不要使用大的dict。使用一个省内存的blist代替list
第三个办法,将数据通过共享内存,让C++扩展模块来处理。
常用的是第二种办法。就是换个数据结构就可以提高效率。
⑺ 请问大佬们,为什么我python运行程序特别慢啊,我这个程序怎么改一下可以运行的更快呢
您好,茫茫人海之中,能为君排忧解难实属朕的荣幸,在下拙见,若有错误,还望见谅!。展开全部
yxhtest7772017-07-18
关注
分享
697 2
python运行速度慢怎么办?6个Python性能优化技巧
Python是一门非常酷的语言,因为很少的Python代码可以在短时间内做很多事情,并且,Python很容易就能支持多任务和多重处理。
Python的批评者声称Python性能低效、执行缓慢,但实际上并非如此:尝试以下6个小技巧,可以加快Python应用程序。
关键代码可以依赖于扩展包
Python使许多编程任务变得简单,但是对于很关键的任务并不总是提供最好的性能。使用C、C++或者机器语言扩展包来执行关键任务能极大改善性能。这些包是依赖于平台的,也就是说,你必须使用特定的、与你使用的平台相关的包。简而言之,该解决方案提供了一些应用程序的可移植性,以换取性能,您可以获得只有通过直接向底层主机编程。
下面这些扩展包你可以考虑添加到你的个人扩展库中:
Cython
PyInlne
PyPy
Pyrex
这些包有不同的作用和执行方式。例如,Pyrex 让Python处理一些内存任务变得简单高效;PyInline可以直接让你在Python应用程序中使用C代码,虽然内联代码被单独编译,但是如果你能高效的利用C代码,它可以在同一个地方处理每一件事情。
使用关键字排序
有很多古老的Python代码在执行时将花费额外的时间去创建一个自定义的排序函数。最好的排序方式是使用关键字和默认的sort()方法。
优化循环
每一种编程语言都强调循环语句的优化,Python也是一样的。尽管你可以依赖于丰富的技术让循环运行的更快,然而,开发者经常忽略的一个方法是避免在循环内部使用点拼接字符串。
使用新版本
任何一个在线上搜索Python资料的人都会发现无数关于Python版本迁移的信息。通常,Python每一个版本都针对之前的一个版本做了优化和改进,以让Python运行的更快。限制因素是你喜欢的函数库是否也针对Python的新版本做了改进。
当你使用了新的函数库,获得了Python的新版本,你需要保证代码依然能够运行,检查应用,修正差异。然后,如果你仅仅是非常感谢您的耐心观看,如有帮助请采纳,祝生活愉快!谢谢!
⑻ 想知道电脑硬件随机内存对python运算速度的影响
玩这些,建议台式。特别你放固定地方,台式笔电差不多。推荐amd,有优势。
关于内存,内存大小没影响,主要是一条还是两条。双通道,理论上有影响。会好一些。但实际只是聊胜于无。主要还要靠cpu。
不懂继续问,满意请采纳
⑼ 很多python包里的 "win-amd64" 是 什么意思
因为python有很多native的包,就是不是纯python代码,用了诸如c/c++的代码,然后编译成库给py文件调用的,这样在安装的时候就要区分包的平台:库在windows上多是dll,在linux等是so,在macos是dylib。win-amd64就是CPU是AMD64兼容的架构并在windows上运行,win是windows,还可以有其他比如darwin是macos,linux是linux;amd64是CPU平台,还可能有arm,x86,x86_64等的。
⑽ 程序员开发用amd cpu可以吗
不建议使用AMD的CPU!
先说说AMD和INTEL的差别吧:
在浮点运算能力来看,INTEL的处理器一般只有两个浮点执行单元,而AMD的处理器一般设计了三个并行的浮点执行单元,所以在同档次的处理器当中,AMD处理器的浮点运算能力比INTEL的处理器的要好一些。浮点运算能力强,对于游戏应用、三维处理应用方面比较有优势。另外,多媒体指令方面,INTEL开发了SSE指令集,到现在已经发展到SSE3了,而AMD也开发了相应的,跟SSE兼容的增强3DNOW!指令集。相比之下,INTEL的处理器比AMD的在多媒体指令方面稍胜一筹,而且有不少软件都针对SSE进行了优化,因此在多媒体软件及平面处理软件中,相比同档次AMD处理器,INTEL的CPU显得更有优势。
由上面可以了解到,AMD的CPU在三维制作、游戏应用、视频处理等方面相比同档次的INTEL的处理器有优势,而INTEL的CPU则在商业应用、多媒体应用、平面设计方面有优势。除了用途方面,更要综合考虑到性价比这个问题。这样大家根据实际用途、资金预算可以按需选择到最合适自己的CPU。
所以,建议选用INTEL的CPU。