㈠ 常用的python库有哪些
1.Matplotlib
Matplotlib是一个用于创立二维图和图形的底层库。借由它的协助,你可以构建各种不同的图标,从直方图和散点图到费笛卡尔坐标图。matplotlib可以与许多盛行的绘图库结合运用。
2.Seaborn
Seaborn本质上是一个根据matplotlib库的高级API。它包括更适合处理图表的默认设置。此外,还有丰厚的可视化库,包括一些杂乱类型,如时刻序列、联合分布图(jointplots)和小提琴图(violindiagrams)。
3.Plotly
Plotly是一个盛行的库,它可以让你轻松构建杂乱的图形。该软件包适用于交互式Web运用程,可完成轮廓图、三元图和三维图等视觉效果
4.Bokeh
Bokeh库运用JavaScript小部件在浏览器中创立交互式和可缩放的可视化。该库提供了多种图表调集,样式可能性(stylingpossibilities),链接图、增加小部件和界说回调等方式的交互才能,以及许多更有用的特性。
5.Pydot
Pydot是用纯Python编写的Graphviz接口,经常用于生成杂乱的定向图和无向图,可以显现图形的结构,对于构建神经网络和根据决策树的算法时十分有效。
6.pyecharts
是根据网络开源的Echarts而开发的Python可视化东西。
pyecharts功用十分强大,支撑多达400+地图;支撑JupyterNotebook、JupyterLab;可以轻松集成至Flask,Sanic,Django等干流Web结构。
关于常用的python库有哪些,环球青藤小编就和大家分享到这里了,学习是没有尽头的,学习一项技能更是受益终身,因此,只要肯努力学,什么时候开始都不晚。如若你还想继续了解关于python编程的素材及学习方法等内容,可以点击本站其他文章学习。
㈡ python怎样装graphvize需要c++环境吗
安装python3.5,添加python和python/scripts到环境变量(里面包含 pip和easy_install 工具)
命令行输入pip install scrapy 安装scrapy,如果存在哪些模块不存在的,通过pip install进行安装
安装lxml时,出现"Unable to find vcvarsall.bat"错误时,参考http://blog.csdn.net/u012302488/article/details/51178541,在http://www.lfd.uci.e/~gohlke/pythonlibs/#lxml下载lxml对应版本的.whl文件(或者安装VS2008、VS2010)
命令行进入.whl文件目录,pip install xxxxx.whl安装lxml
再次输入pip install scrapy 安装scrapy,现在可以安装成功(如果出现pip需要升级,先按照错误提示升级pip)
命令行进入一个目录输入scrapy startproject tutorial,新建一个scrapy项目
按照Scrapy Tutorial修改代码运行Scrapy项目如果出现“ImportError : cannot import name '_win32stdio'”错误,参考
https://zhuanlan.hu.com/p/21335106
需要下载twisted3.6.0.zip包,将python中xxxxPython35Libsite-packages wisted目录中的文件清空,将twisted3.6.0.zip压缩后的文件复制到里面
再安装pywin32(如果通过pip安装找不到合适的版本,可以到sourcefrog下载与操作系统和python版本对应的pywin32)
再次运行scrapy项目,最后成功!
㈢ python流程图绘制
自动生成流程图
基于Python和Graphviz开发的,能将源代码转化为流程图的工具:pycallgraph可以帮到你;
跟着参考文章操作,亲测有效;
参考文章:Python流程图— 一键转化代码为流程图
㈣ 如何在python中使用graphviz
应该是你下载的Graphviz版本与protege不对应造成的。 我之前也是这样的问题,我是protege3.4.8的,只有下载了Graphviz2.24才能用。 你在网上多关注下是否有说出你的protege4.2对应的版本没吧
㈤ 请问有谁知道怎么在python下安装graphviz我在安装过程中总是出错。
帮你找到了参考资料。
自己google搜:
pygraphviz
可以找到,两个有效的参考资料:
我的pygraphviz安装之路
Installing PyGraphviz on Windows
=====================
注:下面的,是针对graphviz的:
一句话解释:
下载对应的Windows的安装版本,不需要你编译,双击运行即可。
详细解释:
1.用google搜:
python graphviz
找到第一个就是:
Python-Graphviz | Graphviz - Graph Visualization Software
2.进去,就是主页,可以看到左边有个download,点击进入
3.第一次进入,要点击对应的页面最下面的Agree
4.然后就可以进入下载页面了。
找到对应的:
Stable and development Windows Install packages
点击进入,就可以看到:
graphviz-2.28.0.msi
点击下载。
双击安装,即可。
㈥ Python有程序可以画流程图吗
Graphviz的是AT&T Labs Research开发的图形绘制工具软件。
可以使用python生成它的数据格式,再调用 Graphviz 单元生成图。
pipinstallpygraphviz
#安装后参考相关文档学习
㈦ python数据分析需要哪些库
1. NumPy
一般我们会将科学领域的库作为清单打头,NumPy是该领域的主要软件库之一。它旨在处理大型的多维数组和矩阵,并提供了很多高级的数学函数和方法,因此可以用它来执行各种操作。
2. SciPy
另一个科学计算核心库SciPy,基于NumPy而构建,并扩展了NumPy的功能。SciPy的主要数据结构是多维数组,使用Numpy实现。该库提供了一些用于解决线性代数、概率论、积分计算等任务的工具。
3.Pandas
Pandas是一个Python库,提供了高级的数据结构和各种分析工具。该库的一大特色是能够将相当复杂的数据操作转换为一两个命令。Pandas提供了很多内置的方法,用于分组、过滤和组合数据,还提供了时间序列功能。所有这些方法的执行速度都很快。
4. StatsModels
Statsmodels是一个Python模块,为统计数据分析提供了很多可能性,例如统计模型估计、运行统计测试等。你可以借助它来实现很多机器学习方法,并探索不同的绘图可能性。
5. Matplotlib
Matplotlib是一个用于创建二维图表和图形的低级库。你可以用它来构建各种图表,从直方图和散点图到非笛卡尔坐标图。此外,很多流行的绘图库都为Matplotlib预留了位置,可与Matplotlib结合在一起使用。
6. Seaborn
Seaborn实际上是基于matplotlib库构建的高级API。它为处理图表提供了更恰当的默认选项。此外,它还提供了一组丰富的可视化图库,包括时间序列、联合图和小提琴图等复杂的类型。
7. Plotly
Plotly是一个可以帮助你轻松构建复杂图形的流行库。该库适用于交互式Web应用程序,它提供了很多很棒的可视化效果,包括轮廓图形、三元图和3D图表。
8. Bokeh
Bokeh库使用JavaScript小部件在浏览器中创建交互式和可伸缩的可视化图形。该库提供了多种图形、样式、链接图形式的交互能力、添加小部件、定义回调以及更多有用的功能。
9. Pydot
Pydot是一个用于生成面向复杂图形和非面向复杂图形的库。它作为面向Graphviz的一个接口,使用Python编写。我们可以借助它来显示图形的结构,这在构建神经网络和基于决策树的算法时经常会用到。
㈧ Python语言下的机器学习库
Python语言下的机器学习库
Python是最好的编程语言之一,在科学计算中用途广泛:计算机视觉、人工智能、数学、天文等。它同样适用于机器学习也是意料之中的事。当然,它也有些缺点;其中一个是工具和库过于分散。如果你是拥有unix思维(unix-minded)的人,你会觉得每个工具只做一件事并且把它做好是非常方便的。但是你也需要知道不同库和工具的优缺点,这样在构建系统时才能做出合理的决策。工具本身不能改善系统或产品,但是使用正确的工具,我们可以工作得更高效,生产率更高。因此了解正确的工具,对你的工作领域是非常重要的。
这篇文章的目的就是列举并描述Python可用的最有用的机器学习工具和库。这个列表中,我们不要求这些库是用Python写的,只要有Python接口就够了。我们在最后也有一小节关于深度学习(Deep Learning)的内容,因为它最近也吸引了相当多的关注。
我们的目的不是列出Python中所有机器学习库(搜索“机器学习”时Python包索引(PyPI)返回了139个结果),而是列出我们所知的有用并且维护良好的那些。另外,尽管有些模块可以用于多种机器学习任务,我们只列出主要焦点在机器学习的库。比如,虽然Scipy包含一些聚类算法,但是它的主焦点不是机器学习而是全面的科学计算工具集。因此我们排除了Scipy(尽管我们也使用它!)。
另一个需要提到的是,我们同样会根据与其他科学计算库的集成效果来评估这些库,因为机器学习(有监督的或者无监督的)也是数据处理系统的一部分。如果你使用的库与数据处理系统其他的库不相配,你就要花大量时间创建不同库之间的中间层。在工具集中有个很棒的库很重要,但这个库能与其他库良好集成也同样重要。
如果你擅长其他语言,但也想使用Python包,我们也简单地描述如何与Python进行集成来使用这篇文章列出的库。
Scikit-LearnScikit Learn是我们在CB Insights选用的机器学习工具。我们用它进行分类、特征选择、特征提取和聚集。我们最爱的一点是它拥有易用的一致性API,并提供了很多开箱可用的求值、诊断和交叉验证方法(是不是听起来很熟悉?Python也提供了“电池已备(译注:指开箱可用)”的方法)。锦上添花的是它底层使用Scipy数据结构,与Python中其余使用Scipy、Numpy、Pandas和Matplotlib进行科学计算的部分适应地很好。因此,如果你想可视化分类器的性能(比如,使用精确率与反馈率(precision-recall)图表,或者接收者操作特征(Receiver Operating Characteristics,ROC)曲线),Matplotlib可以帮助进行快速可视化。考虑到花在清理和构造数据的时间,使用这个库会非常方便,因为它可以紧密集成到其他科学计算包上。
另外,它还包含有限的自然语言处理特征提取能力,以及词袋(bag of words)、tfidf(Term Frequency Inverse Document Frequency算法)、预处理(停用词/stop-words,自定义预处理,分析器)。此外,如果你想快速对小数据集(toy dataset)进行不同基准测试的话,它自带的数据集模块提供了常见和有用的数据集。你还可以根据这些数据集创建自己的小数据集,这样在将模型应用到真实世界中之前,你可以按照自己的目的来检验模型是否符合期望。对参数最优化和参数调整,它也提供了网格搜索和随机搜索。如果没有强大的社区支持,或者维护得不好,这些特性都不可能实现。我们期盼它的第一个稳定发布版。
StatsmodelsStatsmodels是另一个聚焦在统计模型上的强大的库,主要用于预测性和探索性分析。如果你想拟合线性模型、进行统计分析,或者预测性建模,那么Statsmodels非常适合。它提供的统计测试相当全面,覆盖了大部分情况的验证任务。如果你是R或者S的用户,它也提供了某些统计模型的R语法。它的模型同时也接受Numpy数组和Pandas数据帧,让中间数据结构成为过去!
PyMCPyMC是做贝叶斯曲线的工具。它包含贝叶斯模型、统计分布和模型收敛的诊断工具,也包含一些层次模型。如果想进行贝叶斯分析,你应该看看。
ShogunShogun是个聚焦在支持向量机(Support Vector Machines, SVM)上的机器学习工具箱,用C++编写。它正处于积极开发和维护中,提供了Python接口,也是文档化最好的接口。但是,相对于Scikit-learn,我们发现它的API比较难用。而且,也没提供很多开箱可用的诊断和求值算法。但是,速度是个很大的优势。
GensimGensim被定义为“人们的主题建模工具(topic modeling for humans)”。它的主页上描述,其焦点是狄利克雷划分(Latent Dirichlet Allocation, LDA)及变体。不同于其他包,它支持自然语言处理,能将NLP和其他机器学习算法更容易组合在一起。如果你的领域在NLP,并想进行聚集和基本的分类,你可以看看。目前,它们引入了Google的基于递归神经网络(Recurrent Neural Network)的文本表示法word2vec。这个库只使用Python编写。
OrangeOrange是这篇文章列举的所有库中唯一带有图形用户界面(Graphical User Interface,GUI)的。对分类、聚集和特征选择方法而言,它是相当全面的,还有些交叉验证的方法。在某些方面比Scikit-learn还要好(分类方法、一些预处理能力),但与其他科学计算系统(Numpy, Scipy, Matplotlib, Pandas)的适配上比不上Scikit-learn。但是,包含GUI是个很重要的优势。你可以可视化交叉验证的结果、模型和特征选择方法(某些功能需要安装Graphviz)。对大多数算法,Orange都有自己的数据结构,所以你需要将数据包装成Orange兼容的数据结构,这使得其学习曲线更陡。
PyMVPAPyMVPA是另一个统计学习库,API上与Scikit-learn很像。包含交叉验证和诊断工具,但是没有Scikit-learn全面。
深度学习尽管深度学习是机器学习的一个子节,我们在这里创建单独一节的原因是,它最新吸引了Google和Facebook人才招聘部门的很多注意。
TheanoTheano是最成熟的深度学习库。它提供了不错的数据结构(张量,tensor)来表示神经网络的层,对线性代数来说很高效,与Numpy的数组类似。需要注意的是,它的API可能不是很直观,用户的学习曲线会很高。有很多基于Theano的库都在利用其数据结构。它同时支持开箱可用的GPU编程。
PyLearn2还有另外一个基于Theano的库,PyLearn2,它给Theano引入了模块化和可配置性,你可以通过不同的配置文件来创建神经网络,这样尝试不同的参数会更容易。可以说,如果分离神经网络的参数和属性到配置文件,它的模块化能力更强大。
DecafDecaf是最近由UC Berkeley发布的深度学习库,在Imagenet分类挑战中测试发现,其神经网络实现是很先进的(state of art)。
Nolearn如果你想在深度学习中也能使用优秀的Scikit-learn库API,封装了Decaf的Nolearn会让你能够更轻松地使用它。它是对Decaf的包装,与Scikit-learn兼容(大部分),使得Decaf更不可思议。
OverFeatOverFeat是最近猫vs.狗(kaggle挑战)的胜利者,它使用C++编写,也包含一个Python包装器(还有Matlab和Lua)。通过Torch库使用GPU,所以速度很快。也赢得了ImageNet分类的检测和本地化挑战。如果你的领域是计算机视觉,你可能需要看看。
HebelHebel是另一个带有GPU支持的神经网络库,开箱可用。你可以通过YAML文件(与Pylearn2类似)决定神经网络的属性,提供了将神级网络和代码友好分离的方式,可以快速地运行模型。由于开发不久,就深度和广度上说,文档很匮乏。就神经网络模型来说,也是有局限的,因为只支持一种神经网络模型(正向反馈,feed-forward)。但是,它是用纯Python编写,将会是很友好的库,因为包含很多实用函数,比如调度器和监视器,其他库中我们并没有发现这些功能。
NeurolabNeuroLab是另一个API友好(与Matlabapi类似)的神经网络库。与其他库不同,它包含递归神经网络(Recurrent Neural Network,RNN)实现的不同变体。如果你想使用RNN,这个库是同类API中最好的选择之一。
与其他语言集成你不了解Python但是很擅长其他语言?不要绝望!Python(还有其他)的一个强项就是它是一个完美的胶水语言,你可以使用自己常用的编程语言,通过Python来访问这些库。以下适合各种编程语言的包可以用于将其他语言与Python组合到一起:R -> RPythonMatlab -> matpythonJava -> JythonLua -> Lunatic PythonJulia -> PyCall.jl
不活跃的库这些库超过一年没有发布任何更新,我们列出是因为你有可能会有用,但是这些库不太可能会进行BUG修复,特别是未来进行增强。MDPMlPyFFnetPyBrain如果我们遗漏了你最爱的Python机器学习包,通过评论让我们知道。我们很乐意将其添加到文章中。
㈨ python的pygraphviz在windows下具体怎么安装
我来回答吧,windows 下安装pygraphviz:
1.首先安装graphviz, http://www.graphviz.org/pub/graphviz/stable/windows/graphviz-2.28.0.msi
2.下载pygraphviz源码包,http://pypi.python.org/packages/source/p/pygraphviz/pygraphviz-1.1.zip#md5=
3. 解压后修改setup.py,三个地方要改
library_path=r'D:\develop\Graphviz 2.28\bin' #按你的graphviz路径修改
include_path=r'D:\develop\Graphviz 2.28\include\graphviz' #按你的graphviz路径修改
runtime_library_dirs=None
4. python setup.py build -c mingw32 要先确定已安装mingw32
python setup.py install
按上述方法就可以安装成功。
㈩ 如何将python生成的决策树利用graphviz画出来
#这里有一个示例,你可以看一下。
#http://scikit-learn.org/stable/moles/tree.html
>>>fromIPython.displayimportImage
>>>dot_data=tree.export_graphviz(clf,out_file=None,
feature_names=iris.feature_names,
class_names=iris.target_names,
filled=True,rounded=True,
special_characters=True)
>>>graph=pydotplus.graph_from_dot_data(dot_data)
>>>Image(graph.create_png())