‘壹’ 如何用python编写排列组合
importmath
importrandom
oTemp=[]
oList=[]
i=0
whileTrue:
a=random.randint(1,4)
ifainoTemp:
continue
else:
oTemp.append(a)
i+=1
ifi%4==0:
Num=oTemp[0]*1000+oTemp[1]*100+oTemp[2]*10+oTemp[3]
ifNuminoList:
i=0
oTemp=[]
continue
else:
oList.append(Num)
i=0
oTemp=[]
iflen(oList)==24:
break
forminoList:
forninrange(2,int(math.sqrt(m))+1):
ifm%n==0:
oList.remove(m)
break
printoList
这段代码是用1-4生成4位数,4个位上的数字不相同的素数。可以做下参考
‘贰’ 用python 写 组合数C(m,n)=m!/n!/(m-n)!。试编写阶乘的函数及组合数的函数
import math
m = int(input("请输入第一个数字:"))
n = int(input("请输入第二个数字:"))
if m < 0 or n < 0 or m - n < 0:
print("负数是没有阶乘,请重新输入!")
else:
result = math.factorial(m) / math.factorial(n) / math.factorial(m - n)
print("按照公式C(m, n) = m!/n! /(m - n)!,C({0},{1})的答案为 {2}".format(m, n, result))
‘叁’ 组合数的公式
nPm=n(n-1)(n-2)(n-3).....(n-m+1)
nPn=n!,0!=1
nCm=nPm/mPm=n!/[m!(n-m)!]
nPm=n*(n-1)P(m-1)
nCm=nC(n-m)
(n+1)Cm=nC(m-1)+nCm
nC0+nC1+nC2+.....+nCn=2^n
k*nCk=n*(n-1)C(k-1)
nC0*nCn+nC1*nC(n-1)+...+nCn*nC0
=nC0*nC0+nC1*nC1+.....+nCn*nCn=(2n)Cn
kCk+(k+1)Ck+(k+2)Ck+...+nCk=(n+1)C(k+1)
‘肆’ 组合数的公式是什么
从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号c(n,m) 表示。
‘伍’ 组合数公式
组合数公式:c(n,m)=c(n-1,m-1)+c(n-1,m)。
等式左边表示从n个元素中选取m个元素,而等式右边表示这一个过程的另一种实现方法:任意选择n中的某个备选元素为特殊元素,从n中选m个元素可以由此特殊元素的被包含与否分成两类情况,即m个被选择元素包含了特殊元素和m个被选择元素不包含该特殊元素。
前者相当于从n-1个元素中选出m-1个元素的组合,即c(n-1,m-1);后者相当于从n-1个元素中选出m个元素的组合,即c(n-1,m)。
组合数公式是指从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做n个不同元素中取出m个元素的组合数。用符号c(n,m)表示。
互补性质:即从n个不同元素中取出m个元素的组合数=从n个不同元素中取出 (n-m) 个元素的组合数;这个性质很容易理解,例如C(9,2)=C(9,7),即从9个元素里选择2个元素的方法与从9个元素里选择7个元素的方法是相等的。规定:C(n,0)=1C(n,n)=1C(0,0)=1
‘陆’ Python实现的排列组合计算操作示例
Python实现的排列组合计算操作示例
本文实例讲述了Python实现的排列组合计算操作。分享给大家供大家参考,具体如下:
1. 调用 scipy 计算排列组合的具体数值
>> from scipy.special import comb, perm
>> perm(3, 2)
6.0
>> comb(3, 2)
3.0
2. 调用 itertools 获取排列组合的全部情况数
>> from itertools import combinations, permutations
>> permutations([1, 2, 3], 2)
<itertools.permutations at 0x7febfd880fc0>
# 可迭代对象
>> list(permutations([1, 2, 3], 2))
[(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)]
>> list(combinations([1, 2, 3], 2))
[(1, 2), (1, 3), (2, 3)]
‘柒’ 组合计算公式是什么
组合数的计算公式为:
组合是数学的重要概念之一,它表示从n个不同元素中每次取出m个不同元素,不管其顺序合成一组,称为从n个元素中不重复地选取m个元素的一个组合。所有这样的组合的种数称为组合数。
n元集合A中不重复地抽取m个元素作成的一个组合实质上是A的一个m元子集和。如果给集A编序成为一个序集,那么A中抽取m个元素的一个组合对应于数段到序集A的一个确定的严格保序映射。
学数学的小窍门
1、学数学要善于思考,自己想出来的答案远比别人讲出来的答案印象深刻。
2、课前要做好预习,这样上数学课时才能把不会的知识点更好的消化吸收掉。
3、数学公式一定要记熟,并且还要会推导,能举一反三。
4、学好数学最基础的就是把课本知识点及课后习题都掌握好。
‘捌’ 组合数公式是什么
C-n-m(下标n,上标m)=n!除以[m!乘以(n-m)!]
‘玖’ 怎么样让python计算任意六位数的排列组合
from itertools import proct
for i in proct(range(2),repeat=6):
print i
‘拾’ 组合的计算公式是什么
组合数公式C=C(n,m)=A(n,m)/m。组合数公式是指从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合,从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做n个不同元素中取出m个元素的组合数。用符号c(n,m)表示。
组合公式的推导是由排列公式去掉重复的部分而来的,排列公式是建立一个模型,从n个不相同元素中取出m个排成一列(有序),第一个位置可以有n个选择,第二个位置可以有n-1个选择(已经有1个放在前一个位置),则同理可知第三个位置可以有n-2个选择,以此类推第m个位置可以有n-m+1个选择。
其他排列与组合公式介绍:
从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r),n个元素被分成k类,每类的个数分别是n1,n2,……nk这n个元素的全排列数为n!/(n1!*n2!*……*nk!)。
而k类元素来说,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m),排列(Pnm(n为下标,m为上标))。
Pnm=n×(n-1)……(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n。
组合(Cnm(n为下标,m为上标)),Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m。