❶ 機器學習新手必看十大演算法
機器學習新手必看十大演算法
本文介紹了機器學習新手需要了解的 10 大演算法,包括線性回歸、Logistic 回歸、樸素貝葉斯、K 近鄰演算法等。
在機器學習中,有一種叫做「沒有免費的午餐」的定理。簡而言之,它指出沒有任何一種演算法對所有問題都有效,在監督學習(即預測建模)中尤其如此。
例如,你不能說神經網路總是比決策樹好,反之亦然。有很多因素在起作用,例如數據集的大小和結構。
因此,你應該針對具體問題嘗試多種不同演算法,並留出一個數據「測試集」來評估性能、選出優勝者。
當然,你嘗試的演算法必須適合你的問題,也就是選擇正確的機器學習任務。打個比方,如果你需要打掃房子,你可能會用吸塵器、掃帚或拖把,但是你不會拿出鏟子開始挖土。
大原則
不過也有一個普遍原則,即所有監督機器學習演算法預測建模的基礎。
機器學習演算法被描述為學習一個目標函數 f,該函數將輸入變數 X 最好地映射到輸出變數 Y:Y = f(X)
這是一個普遍的學習任務,我們可以根據輸入變數 X 的新樣本對 Y 進行預測。我們不知道函數 f 的樣子或形式。如果我們知道的話,我們將會直接使用它,不需要用機器學習演算法從數據中學習。
最常見的機器學習演算法是學習映射 Y = f(X) 來預測新 X 的 Y。這叫做預測建模或預測分析,我們的目標是盡可能作出最准確的預測。
對於想了解機器學習基礎知識的新手,本文將概述數據科學家使用的 top 10 機器學習演算法。
1. 線性回歸
線性回歸可能是統計學和機器學習中最知名和最易理解的演算法之一。
預測建模主要關注最小化模型誤差或者盡可能作出最准確的預測,以可解釋性為代價。我們將借用、重用包括統計學在內的很多不同領域的演算法,並將其用於這些目的。
線性回歸的表示是一個方程,它通過找到輸入變數的特定權重(稱為系數 B),來描述一條最適合表示輸入變數 x 與輸出變數 y 關系的直線。
線性回歸
例如:y = B0 + B1 * x
我們將根據輸入 x 預測 y,線性回歸學習演算法的目標是找到系數 B0 和 B1 的值。
可以使用不同的技術從數據中學習線性回歸模型,例如用於普通最小二乘法和梯度下降優化的線性代數解。
線性回歸已經存在了 200 多年,並得到了廣泛研究。使用這種技術的一些經驗是盡可能去除非常相似(相關)的變數,並去除噪音。這是一種快速、簡單的技術,可以首先嘗試一下。
2. Logistic 回歸
Logistic 回歸是機器學習從統計學中借鑒的另一種技術。它是解決二分類問題的首選方法。
Logistic 回歸與線性回歸相似,目標都是找到每個輸入變數的權重,即系數值。與線性回歸不同的是,Logistic 回歸對輸出的預測使用被稱為 logistic 函數的非線性函數進行變換。
logistic 函數看起來像一個大的 S,並且可以將任何值轉換到 0 到 1 的區間內。這非常實用,因為我們可以規定 logistic 函數的輸出值是 0 和 1(例如,輸入小於 0.5 則輸出為 1)並預測類別值。
Logistic 回歸
由於模型的學習方式,Logistic 回歸的預測也可以作為給定數據實例(屬於類別 0 或 1)的概率。這對於需要為預測提供更多依據的問題很有用。
像線性回歸一樣,Logistic 回歸在刪除與輸出變數無關的屬性以及非常相似(相關)的屬性時效果更好。它是一個快速的學習模型,並且對於二分類問題非常有效。
3. 線性判別分析(LDA)
Logistic 回歸是一種分類演算法,傳統上,它僅限於只有兩類的分類問題。如果你有兩個以上的類別,那麼線性判別分析是首選的線性分類技術。
LDA 的表示非常簡單直接。它由數據的統計屬性構成,對每個類別進行計算。單個輸入變數的 LDA 包括:
每個類別的平均值;
所有類別的方差。
線性判別分析
進行預測的方法是計算每個類別的判別值並對具備最大值的類別進行預測。該技術假設數據呈高斯分布(鍾形曲線),因此最好預先從數據中刪除異常值。這是處理分類預測建模問題的一種簡單而強大的方法。
4. 分類與回歸樹
決策樹是預測建模機器學習的一種重要演算法。
決策樹模型的表示是一個二叉樹。這是演算法和數據結構中的二叉樹,沒什麼特別的。每個節點代表一個單獨的輸入變數 x 和該變數上的一個分割點(假設變數是數字)。
決策樹
決策樹的葉節點包含一個用於預測的輸出變數 y。通過遍歷該樹的分割點,直到到達一個葉節點並輸出該節點的類別值就可以作出預測。
決策樹學習速度和預測速度都很快。它們還可以解決大量問題,並且不需要對數據做特別准備。
5. 樸素貝葉斯
樸素貝葉斯是一個簡單但是很強大的預測建模演算法。
該模型由兩種概率組成,這兩種概率都可以直接從訓練數據中計算出來:1)每個類別的概率;2)給定每個 x 的值,每個類別的條件概率。一旦計算出來,概率模型可用於使用貝葉斯定理對新數據進行預測。當你的數據是實值時,通常假設一個高斯分布(鍾形曲線),這樣你可以簡單的估計這些概率。
貝葉斯定理
樸素貝葉斯之所以是樸素的,是因為它假設每個輸入變數是獨立的。這是一個強大的假設,真實的數據並非如此,但是,該技術在大量復雜問題上非常有用。
6. K 近鄰演算法
KNN 演算法非常簡單且有效。KNN 的模型表示是整個訓練數據集。是不是很簡單?
KNN 演算法在整個訓練集中搜索 K 個最相似實例(近鄰)並匯總這 K 個實例的輸出變數,以預測新數據點。對於回歸問題,這可能是平均輸出變數,對於分類問題,這可能是眾數(或最常見的)類別值。
訣竅在於如何確定數據實例間的相似性。如果屬性的度量單位相同(例如都是用英寸表示),那麼最簡單的技術是使用歐幾里得距離,你可以根據每個輸入變數之間的差值直接計算出來其數值。
K 近鄰演算法
KNN 需要大量內存或空間來存儲所有數據,但是只有在需要預測時才執行計算(或學習)。你還可以隨時更新和管理訓練實例,以保持預測的准確性。
距離或緊密性的概念可能在非常高的維度(很多輸入變數)中會瓦解,這對演算法在你的問題上的性能產生負面影響。這被稱為維數災難。因此你最好只使用那些與預測輸出變數最相關的輸入變數。
7. 學習向量量化
K 近鄰演算法的一個缺點是你需要遍歷整個訓練數據集。學習向量量化演算法(簡稱 LVQ)是一種人工神經網路演算法,它允許你選擇訓練實例的數量,並精確地學習這些實例應該是什麼樣的。
學習向量量化
LVQ 的表示是碼本向量的集合。這些是在開始時隨機選擇的,並逐漸調整以在學習演算法的多次迭代中最好地總結訓練數據集。在學習之後,碼本向量可用於預測(類似 K 近鄰演算法)。最相似的近鄰(最佳匹配的碼本向量)通過計算每個碼本向量和新數據實例之間的距離找到。然後返回最佳匹配單元的類別值或(回歸中的實際值)作為預測。如果你重新調整數據,使其具有相同的范圍(比如 0 到 1 之間),就可以獲得最佳結果。
如果你發現 KNN 在你的數據集上達到很好的結果,請嘗試用 LVQ 減少存儲整個訓練數據集的內存要求。
8. 支持向量機(SVM)
支持向量機可能是最受歡迎和最廣泛討論的機器學習演算法之一。
超平面是分割輸入變數空間的一條線。在 SVM 中,選擇一條可以最好地根據輸入變數類別(類別 0 或類別 1)對輸入變數空間進行分割的超平面。在二維中,你可以將其視為一條線,我們假設所有的輸入點都可以被這條線完全的分開。SVM 學習演算法找到了可以讓超平面對類別進行最佳分割的系數。
支持向量機
超平面和最近的數據點之間的距離被稱為間隔。分開兩個類別的最好的或最理想的超平面具備最大間隔。只有這些點與定義超平面和構建分類器有關。這些點被稱為支持向量,它們支持或定義了超平面。實際上,優化演算法用於尋找最大化間隔的系數的值。
SVM 可能是最強大的立即可用的分類器之一,值得一試。
9. Bagging 和隨機森林
隨機森林是最流行和最強大的機器學習演算法之一。它是 Bootstrap Aggregation(又稱 bagging)集成機器學習演算法的一種。
bootstrap 是從數據樣本中估算數量的一種強大的統計方法。例如平均數。你從數據中抽取大量樣本,計算平均值,然後平均所有的平均值以便更好的估計真實的平均值。
bagging 使用相同的方法,但是它估計整個統計模型,最常見的是決策樹。在訓練數據中抽取多個樣本,然後對每個數據樣本建模。當你需要對新數據進行預測時,每個模型都進行預測,並將所有的預測值平均以便更好的估計真實的輸出值。
隨機森林
隨機森林是對這種方法的一種調整,在隨機森林的方法中決策樹被創建以便於通過引入隨機性來進行次優分割,而不是選擇最佳分割點。
因此,針對每個數據樣本創建的模型將會與其他方式得到的有所不同,不過雖然方法獨特且不同,它們仍然是准確的。結合它們的預測可以更好的估計真實的輸出值。
如果你用方差較高的演算法(如決策樹)得到了很好的結果,那麼通常可以通過 bagging 該演算法來獲得更好的結果。
10. Boosting 和 AdaBoost
Boosting 是一種集成技術,它試圖集成一些弱分類器來創建一個強分類器。這通過從訓練數據中構建一個模型,然後創建第二個模型來嘗試糾正第一個模型的錯誤來完成。一直添加模型直到能夠完美預測訓練集,或添加的模型數量已經達到最大數量。
AdaBoost 是第一個為二分類開發的真正成功的 boosting 演算法。這是理解 boosting 的最佳起點。現代 boosting 方法建立在 AdaBoost 之上,最顯著的是隨機梯度提升。
AdaBoost
AdaBoost與短決策樹一起使用。在第一個決策樹創建之後,利用每個訓練實例上樹的性能來衡量下一個決策樹應該對每個訓練實例付出多少注意力。難以預測的訓練數據被分配更多權重,而容易預測的數據分配的權重較少。依次創建模型,每個模型在訓練實例上更新權重,影響序列中下一個決策樹的學習。在所有決策樹建立之後,對新數據進行預測,並且通過每個決策樹在訓練數據上的精確度評估其性能。
因為在糾正演算法錯誤上投入了太多注意力,所以具備已刪除異常值的干凈數據非常重要。
總結
初學者在面對各種機器學習演算法時經常問:「我應該用哪個演算法?」這個問題的答案取決於很多因素,包括:(1)數據的大小、質量和特性;(2)可用的計算時間;(3)任務的緊迫性;(4)你想用這些數據做什麼。
即使是經驗豐富的數據科學家在嘗試不同的演算法之前,也無法分辨哪種演算法會表現最好。雖然還有很多其他的機器學習演算法,但本篇文章中討論的是最受歡迎的演算法。如果你是機器學習的新手,這將是一個很好的學習起點。
❷ 機器學習的演算法和普通《演算法導論》里的演算法有什麼本質上的異同
作者:董可人
鏈接:http://www.hu.com/question/24976006/answer/29682806
來源:知乎
著作權歸作者所有。商業轉載請聯系作者獲得授權,非商業轉載請註明出處。
演算法導論里的演算法本質上是對有精確解的問題,如何更有效率地求得這個解。這個效率可以是計算時間更短,也可以是計算過程所需要的空間更少。
一個簡單的例子是,給定一個亂序數組,如何快速的將其按從小到大的順序重新排列,或者找到其中的中位數。這些問題都有確定且唯一的答案,一般都會有一個笨方法(窮舉或遍歷),只要一步一步來就可以解,所謂演算法只是如何精簡步驟,更快更省事地找到這個解。這些演算法處理的數據也都是結構簡潔且干凈的類型,比如數組,二叉樹,圖之類的數據結構。數據規模對於這些演算法而言,影響的是計算所需的時間和空間,不會因為規模改變而影響演算法本身的邏輯以及計算的結果。
機器學習要解決的問題一般沒有精確解,也不能用窮舉或遍歷這種步驟明確的方法找到解,而且需要強調的是「學習」這個屬性,即希望演算法本身能夠根據給定的數據或計算環境的改變而動態的發現新的規律,甚至改變演算法程序的邏輯和行為。
舉例來說,可以是把一千份文檔歸類到不同的幾個類別里。最簡單的可以是給定幾個類別,比如新聞,小說,詩歌等,演算法來根據文章內容自動劃分到對應的類別里。這里可以看出這個問題即使讓人做,也有很多模糊不能確定的地方,比如一篇法制晚報上的犯罪紀實是應該劃到新聞,還是小說呢?或者說一篇長詩比如荷馬史詩是應該歸在小說還是詩歌呢?機器學習演算法想要解決的,就是根據從文章內容里找到的規律,來自動的給出一個劃分。而不同演算法可以給出不同的解,這些解都可以是「正確」的,所以一般還需要人為設計一個評判標准來決定孰優孰劣。
也可以不事先給定類別,而是讓演算法自己去發現文章中的規律,把相似度高的文章劃分到一起。這樣不同的演算法可能給出不同數量的類別劃分,可能是三個,四個,或者五個,也都可以是「正確」的劃分。甚至什麼是「相似度」,不同演算法也可以給出不同解釋,可以是名詞動詞形容詞的詞頻及比例,也可以是句子的語法結構等。
更進一步的,你可能還希望這個演算法能夠用來判斷一份新的文檔的類別。而輸入的新文檔越多,也會進一步擴大初始數據集的規模,規模變大以後,原來數據中不明顯的規律可能就變明顯了。比如說原來一千份文檔中只有一篇議論文,可能大多演算法都無法把它單獨劃出一個類別,但當你持續輸入一百份議論文後,數據中議論文的比例就變成了101/1100,差不多10%,這時候演算法就應該劃分出單獨的議論文類別。在這個意義上,數據本身也對演算法有很大的影響,這也是和演算法導論中的演算法的一個本質區別。
技術上說,演算法導論中的演算法關注點在數據結構和計算復雜度,屬於離散數學的一個分支,不涉及微積分等高等數學概念。機器學習的演算法本身是基於概率,統計和優化(optimization)等理論和技術,從這個角度上說給人感覺更「數學」一點。
在具體的實現細節上,機器學習的演算法會大量應用演算法導論中的技術來改進計算效率。但需要強調這僅僅是對底層實現來說,在演算法本身的邏輯上,二者沒有太多聯系。換句話說,演算法導論中的技術可以幫助你寫出更快的程序來運行機器學習演算法,但是這對機器學習要解決的問題本身是沒有什麼幫助的。熟練使用二叉樹散列表,准確估算一個圖演算法的復雜度,都沒有任何可能幫助你猜到在女朋友過生日時送什麼禮物最好(使用了機器學習演算法的淘寶君卻很可能知道!)。因此不要把它們看成是搭積木拼構件的關系。
最後,如果以上解釋仍然讓你費解,那麼還有一個更通俗的解釋:演算法導論是教你如何數數,而機器學習基本上相當於星座算命。一個很機械,一個靠忽悠,差不多就是這樣吧。
具體分析見鏈接:http://www.hu.com/question/24976006
❸ 機器學習常見演算法分類
機器學習(MachineLearning,ML)是一門多領域交叉學科,涉及概率論、統計學、逼近論、凸分析、演算法復雜度理論等多門學科。專門研究計算機怎樣模擬或實現人類的學習行為,以獲取新的知識或技能,重新組織已有的知識結構使之不斷改善自身的性能。它是人工智慧的核心,是使計算機具有智能的根本途徑,其應用遍及人工智慧的各個領域,它主要使用歸納、綜合而不是演繹。
❹ 想了解機器學習,需要知道哪些基礎演算法

❺ 自主學習演算法和機器學習的區別
自主學習演算法和機器學習的區別?
一、指代不同
1、機器學習演算法:是一門多領域交叉學科,涉及概率論、統計學、逼近論、凸分析、演算法復雜度理論等多門學科。
2、深度學習:是機器學習(ML, Machine Learning)領域中一個新的研究方向,它被引入機器學習使其更接近於最初的目標人工智慧。
二、學習過程不同
1、機器學習演算法:學習系統的基本結構。環境向系統的學習部分提供某些信息,學習部分利用這些信息修改知識庫,以增進系統執行部分完成任務的效能,執行部分根據知識庫完成任務,同時把獲得的信息反饋給學習部分。
2、深度學習:通過設計建立適量的神經元計算節點和多層運算層次結構,選擇合適的輸人層和輸出層,通過網路的學習和調優,建立起從輸入到輸出的函數關系,雖然不能100%找到輸入與輸出的函數關系,但是可以盡可能的逼近現實的關聯關系。三、應用不同
1、機器學習演算法::數據挖掘、計算機視覺、自然語言處理、生物特徵識別、搜索引擎、醫學診斷、DNA序列測序、語音和手寫識別、戰略游戲和機器人運用。
2、深度學習:計算機視覺、語音識別、自然語言處理等其他領域。
❻ 機器學習有哪些演算法
1. 線性回歸
在統計學和機器學習領域,線性回歸可能是最廣為人知也最易理解的演算法之一。
2. Logistic 回歸
Logistic 回歸是機器學習從統計學領域借鑒過來的另一種技術。它是二分類問題的首選方法。
3. 線性判別分析
Logistic 回歸是一種傳統的分類演算法,它的使用場景僅限於二分類問題。如果你有兩個以上的類,那麼線性判別分析演算法(LDA)是首選的線性分類技術。
4.分類和回歸樹
決策樹是一類重要的機器學習預測建模演算法。
5. 樸素貝葉斯
樸素貝葉斯是一種簡單而強大的預測建模演算法。
6. K 最近鄰演算法
K 最近鄰(KNN)演算法是非常簡單而有效的。KNN 的模型表示就是整個訓練數據集。
7. 學習向量量化
KNN 演算法的一個缺點是,你需要處理整個訓練數據集。
8. 支持向量機
支持向量機(SVM)可能是目前最流行、被討論地最多的機器學習演算法之一。
9. 袋裝法和隨機森林
隨機森林是最流行也最強大的機器學習演算法之一,它是一種集成機器學習演算法。
想要學習了解更多機器學習的知識,推薦CDA數據分析師課程。CDA(Certified Data Analyst),即「CDA 數據分析師」,是在數字經濟大背景和人工智慧時代趨勢下,面向全行業的專業權威國際資格認證,旨在提升全民數字技能,助力企業數字化轉型,推動行業數字化發展。點擊預約免費試聽課。
❼ 學會機器學習十大演算法 什麼水平
學習機器學習十大演算法,相當於電腦的中級水平。
演算法(Algorithm)是指解題方案的准確而完整的描述,是一系列解決問題的清晰指令,演算法代表著用系統的方法描述解決問題的策略機制。也就是說,能夠對一定規范的輸入,在有限時間內獲得所要求的輸出。如果一個演算法有缺陷,或不適合於某個問題,執行這個演算法將不會解決這個問題。不同的演算法可能用不同的時間、空間或效率來完成同樣的任務。一個演算法的優劣可以用空間復雜度與時間復雜度來衡量。
演算法中的指令描述的是一個計算,當其運行時能從一個初始狀態和(可能為空的)初始輸入開始,經過一系列有限而清晰定義的狀態,最終產生輸出並停止於一個終態。一個狀態到另一個狀態的轉移不一定是確定的。隨機化演算法在內的一些演算法,包含了一些隨機輸入。
形式化演算法的概念部分源自嘗試解決希爾伯特提出的判定問題,並在其後嘗試定義有效計算性或者有效方法中成形。這些嘗試包括庫爾特·哥德爾、Jacques Herbrand和斯蒂芬·科爾·克萊尼分別於1930年、1934年和1935年提出的遞歸函數,阿隆佐·邱奇於1936年提出的λ演算,1936年Emil Leon Post的Formulation 1和艾倫·圖靈1937年提出的圖靈機。即使在當前,依然常有直覺想法難以定義為形式化演算法的情況。
一,數據對象的運算和操作:計算機可以執行的基本操作是以指令的形式描述的。一個計算機系統能執行的所有指令的集合,成為該計算機系統的指令系統。一個計算機的基本運算和操作有如下四類:[1]
1,算術運算:加減乘除等運算
2,邏輯運算:或、且、非等運算
3,關系運算:大於、小於、等於、不等於等運算
4,數據傳輸:輸入、輸出、賦值等運算[1]
二,演算法的控制結構:一個演算法的功能結構不僅取決於所選用的操作,而且還與各操作之間的執行順序有關。[
❽ 機器學習演算法的定義或者概念是什麼
機器學習跟傳統編程不一樣
機器學習是通過數據來調整模型精度,達到能解決問題的程度
所以核心是用數據來調模型
演算法就是模型的一種說法
❾ 機器學習這些概念有什麼區別
首先關注什麼是機器學習?
機器學習有下面幾種定義:
機器學習是一門人工智慧的科學,該領域的主要研究對象是人工智慧,特別是如何在經驗學習中改善具體演算法的性能。
機器學習是對能通過經驗自動改進的計算機演算法的研究。
機器學習是用數據或以往的經驗,以此優化計算機程序的性能標准。
一種經常引用的英文定義是:
A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.
通俗一點的解釋就是,機器學習演算法可以從過去已知的數據中學習數據隱藏的規律,利用這些學習來的規律,在給定一定輸入的情況下,對未來進行預測。
機器學習的應用領域有哪些?
機器學習已廣泛應用於數據挖掘、計算機視覺、自然語言處理、生物特徵識別、搜索引擎、醫學診斷、檢測信用卡欺詐、證券市場分析、DNA序列測序、語音和手寫識別、戰略游戲和機器人等眾多領域。
機器學習演算法的分類以及這些分類之間的區別是什麼?
廣義來說,有三種機器學習演算法:① 監督式學習,② 非監督式學習,③ 強化學習,以下分別介紹這三種方法的區別。
監督式學習
定義:從給定的訓練數據集中學習出一個函數,當新的數據到來時,可以根據這個函數預測結果。監督學習的訓練集要求是包括輸入和輸出,也可以說是特徵和目標。訓練集中的目標是由人標注的。常見的監督學習演算法包括線性回歸分析和邏輯回歸分析。
監督式學習的例子有:線性回歸、決策樹、隨機森林、K – 近鄰演算法、邏輯回歸等。
非監督式學習
定義:與監督學習相比,訓練集沒有人為標注的結果。常見的無監督學習演算法有聚類。這種分析方式被廣泛地用來細分客戶,根據干預的方式分為不同的用戶組。
非監督式學習的例子有:關聯演算法和 K – 均值演算法。
強化學習
定義:通過觀察來學習做成如何的動作。每個動作都會對環境有所影響,學習對象根據觀察到的周圍環境的反饋來做出判斷。這個演算法訓練機器進行決策。它是這樣工作的:機器被放在一個能讓它通過反復試錯來訓練自己的環境中。機器從過去的經驗中進行學習,並且嘗試利用了解最透徹的知識作出精確的判斷。
強化學習的例子有:馬爾可夫決策過程。
常見的機器學習演算法有哪些?
線性回歸
邏輯回歸
決策樹
SVM
樸素貝葉斯
K最近鄰演算法
K均值演算法
隨機森林演算法
降維演算法
Gradient Boost 和 Adaboost 演算法