① A*演算法是怎麼來的,歷史背景是啥,誰提出的A*演算法幫幫忙,謝謝!
1968年,的一篇論文,「P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of minimum cost paths in graphs. IEEE Trans. Syst. Sci. and Cybernetics, SSC-4(2):100-107, 1968」。從此,一種精巧、高效的演算法------A*演算法橫空出世了,並在相關領域得到了廣泛的應用。
② A*演算法是什麼
A*
(A-Star)演算法是一種靜態路網中求解最短路最有效的方法。
公式表示為: f(n)=g(n)+h(n),
其中f(n) 是從初始點經由節點n到目標點的估價函數,
g(n) 是在狀態空間中從初始節點到n節點的實際代價,
h(n)是從n到目標節點最佳路徑的估計代價。
保證找到最短路徑(最優解的)條件,關鍵在於估價函數h(n)的選取:
估價值h(n)<= n到目標節點的距離實際值,這種情況下,搜索的點數多,搜索范圍大,效率低。但能得到最優解。
如果 估價值>實際值, 搜索的點數少,搜索范圍小,效率高,但不能保證得到最優解
③ 什麼是 a演算法a* 演算法有什麼特點
A*演算法:A*(A-Star)演算法是一種靜態路網中求解最短路徑最有效的直接搜索方法。估價值與實際值越接近,估價函數取得就越好
A* (A-Star)演算法是一種靜態路網中求解最短路最有效的直接搜索方法。
注意是最有效的直接搜索演算法。之後涌現了很多預處理演算法(ALT,CH,HL等等),在線查詢效率是A*演算法的數千甚至上萬倍。
公式表示為: f(n)=g(n)+h(n),
其中 f(n) 是從初始點經由節點n到目標點的估價函數,
g(n) 是在狀態空間中從初始節點到n節點的實際代價,
h(n) 是從n到目標節點最佳路徑的估計代價。
保證找到最短路徑(最優解的)條件,關鍵在於估價函數f(n)的選取:
估價值h(n)<= n到目標節點的距離實際值,這種情況下,搜索的點數多,搜索范圍大,效率低。但能得到最優解。並且如果h(n)=d(n),即距離估計h(n)等於最短距離,那麼搜索將嚴格沿著最短路徑進行, 此時的搜索效率是最高的。
如果 估價值>實際值,搜索的點數少,搜索范圍小,效率高,但不能保證得到最優解。
④ A*演算法的好處
其實A*演算法也是一種最好優先的演算法
只不過要加上一些約束條件罷了。由於在一些問題求解時,我們希望能夠求解出狀態空間搜索的最短路徑,也就是用最快的方法求解問題,A*就是干這種事情的!
我們先下個定義,如果一個估價函數可以找出最短的路徑,我們稱之為可採納性。A*演算法是一個可採納的最好優先演算法。A*演算法的估價函數可表示為:
f'(n) = g'(n) + h'(n)
這里,f'(n)是估價函數,g'(n)是起點到節點n的最短路徑值,h'(n)是n到目標的最短路經的啟發值。由於這個f'(n)其實是無法預先知道的,所以我們用前面的估價函數f(n)做近似。g(n)代替g'(n),但 g(n)>=g'(n)才可(大多數情況下都是滿足的,可以不用考慮),h(n)代替h'(n),但h(n)<=h'(n)才可(這一點特別的重要)。可以證明應用這樣的估價函數是可以找到最短路徑的,也就是可採納的。我們說應用這種估價函數的最好優先演算法就是A*演算法。
舉一個例子,其實廣度優先演算法就是A*演算法的特例。其中g(n)是節點所在的層數,h(n)=0,這種h(n)肯定小於h'(n),所以由前述可知廣度優先演算法是一種可採納的。實際也是。當然它是一種最臭的A*演算法。
再說一個問題,就是有關h(n)啟發函數的信息性。h(n)的信息性通俗點說其實就是在估計一個節點的值時的約束條件,如果信息越多或約束條件越多則排除的節點就越多,估價函數越好或說這個演算法越好。這就是為什麼廣度優先演算法的那麼臭的原因了,誰叫它的h(n)=0,一點啟發信息都沒有。但在游戲開發中由於實時性的問題,h(n)的信息越多,它的計算量就越大,耗費的時間就越多。就應該適當的減小h(n)的信息,即減小約束條件。但演算法的准確性就差了,這里就有一個平衡的問題。
⑤ A*演算法現實應用的實際意義
A*演算法在人工智慧中是一種典型的啟發式搜索演算法,為了說清楚A*演算法,我看還是先說說何謂啟發式演算法。
一、何謂啟發式搜索演算法
在說它之前先提提狀態空間搜索。狀態空間搜索,如果按專業點的說法就是將問題求解過程表現為從初始狀態到目標狀態尋找這個路徑的過程。通俗點說,就是在解一個問題時,找到一條解題的過程可以從求解的開始到問題的結果(好象並不通俗哦)。由於求解問題的過程中分枝有很多,主要是求解過程中求解條件的不確定性,不完備性造成的,使得求解的路徑很多這就構成了一個圖,我們說這個圖就是狀態空間。問題的求解實際上就是在這個圖中找到一條路徑可以從開始到結果。這個尋找的過程就是狀態空間搜索。
常用的狀態空間搜索有深度優先和廣度優先。廣度優先是從初始狀態一層一層向下找,直到找到目標為止。深度優先是按照一定的順序前查找完一個分支,再查找另一個分支,以至找到目標為止。這兩種演算法在數據結構書中都有描述,可以參看這些書得到更詳細的解釋。
前面說的廣度和深度優先搜索有一個很大的缺陷就是他們都是在一個給定的狀態空間中窮舉。這在狀態空間不大的情況下是很合適的演算法,可是當狀態空間十分大,且不預測的情況下就不可取了。他的效率實在太低,甚至不可完成。在這里就要用到啟發式搜索了。
啟發式搜索就是在狀態空間中的搜索對每一個搜索的位置進行評估,得到最好的位置,再從這個位置進行搜索直到目標。這樣可以省略大量無畏的搜索路徑,提到了效率。在啟發式搜索中,對位置的估價是十分重要的。採用了不同的估價可以有不同的效果。我們先看看估價是如何表示的。
啟發中的估價是用估價函數表示的,如:
f(n) = g(n) + h(n)
其中f(n)是節點n的估價函數,g(n)實在狀態空間中從初始節點到n節點的實際代價,h(n)是從n到目標節點最佳路徑的估計代價。在這里主要是h(n)體現了搜索的啟發信息,因為g(n)是已知的。如果說詳細點,g(n)代表了搜索的廣度的優先趨勢。但是當h(n)>>g(n)時,可以省略g(n),而提高效率。這些就深了,不懂也不影響啦!我們繼續看看何謂A*演算法。
二、初識A*演算法
啟發式搜索其實有很多的演算法,比如:局部擇優搜索法、最好優先搜索法等等。當然A*也是。這些演算法都使用了啟發函數,但在具體的選取最佳搜索節點時的策略不同。象局部擇優搜索法,就是在搜索的過程中選取「最佳節點」後舍棄其他的兄弟節點,父親節點,而一直得搜索下去。這種搜索的結果很明顯,由於舍棄了其他的節點,可能也把最好的節點都舍棄了,因為求解的最佳節點只是在該階段的最佳並不一定是全局的最佳。最好優先就聰明多了,他在搜索時,便沒有舍棄節點(除非該節點是死節點),在每一步的估價中都把當前的節點和以前的節點的估價值比較得到一個「最佳的節點」。這樣可以有效的防止「最佳節點」的丟失。那麼A*演算法又是一種什麼樣的演算法呢?其實A*演算法也是一種最好優先的演算法。只不過要加上一些約束條件罷了。由於在一些問題求解時,我們希望能夠求解出狀態空間搜索的最短路徑,也就是用最快的方法求解問題,A*就是干這種事情的!我們先下個定義,如果一個估價函數可以找出最短的路徑,我們稱之為可採納性。A*演算法是一個可採納的最好優先演算法。A*演算法的估價函數可表示為:
f'(n) = g'(n) + h'(n)
這里,f'(n)是估價函數,g'(n)是起點到終點的最短路徑值,h'(n)是n到目標的最斷路經的啟發值。由於這個f'(n)其實是無法預先知道的,所以我們用前面的估價函數f(n)做近似。g(n)代替g'(n),但g(n)>=g'(n)才可(大多數情況下都是滿足的,可以不用考慮),h(n)代替h'(n),但h(n)<=h'(n)才可(這一點特別的重要)。可以證明應用這樣的估價函數是可以找到最短路徑的,也就是可採納的。我們說應用這種估價函數的最好優先演算法就是A*演算法。哈!你懂了嗎?肯定沒懂!接著看!
舉一個例子,其實廣度優先演算法就是A*演算法的特例。其中g(n)是節點所在的層數,h(n)=0,這種h(n)肯定小於h'(n),所以由前述可知廣度優先演算法是一種可採納的。實際也是。當然它是一種最臭的A*演算法。
再說一個問題,就是有關h(n)啟發函數的信息性。h(n)的信息性通俗點說其實就是在估計一個節點的值時的約束條件,如果信息越多或約束條件越多則排除的節點就越多,估價函數越好或說這個演算法越好。這就是為什麼廣度優先演算法的那麼臭的原因了,誰叫它的h(n)=0,一點啟發信息都沒有。但在游戲開發中由於實時性的問題,h(n)的信息越多,它的計算量就越大,耗費的時間就越多。就應該適當的減小h(n)的信息,即減小約束條件。但演算法的准確性就差了,這里就有一個平衡的問題。
⑥ A*演算法的原理
A* (A-Star)演算法是一種靜態路網中求解最短路最有效的直接搜索方法。
注意是最有效的直接搜索演算法。之後涌現了很多預處理演算法(ALT,CH,HL等等),在線查詢效率是A*演算法的數千甚至上萬倍。
公式表示為: f(n)=g(n)+h(n),
其中 f(n) 是從初始點經由節點n到目標點的估價函數,
g(n) 是在狀態空間中從初始節點到n節點的實際代價,
h(n) 是從n到目標節點最佳路徑的估計代價。
保證找到最短路徑(最優解的)條件,關鍵在於估價函數f(n)的選取:
估價值h(n)<= n到目標節點的距離實際值,這種情況下,搜索的點數多,搜索范圍大,效率低。但能得到最優解。並且如果h(n)=d(n),即距離估計h(n)等於最短距離,那麼搜索將嚴格沿著最短路徑進行, 此時的搜索效率是最高的。
如果 估價值>實際值,搜索的點數少,搜索范圍小,效率高,但不能保證得到最優解。
⑦ A*演算法的演算法分類
該演算法在最短路徑搜索演算法中分類為
直接搜索演算法:直接在實際地圖上進行搜索,不經過任何預處理
啟發式演算法:通過啟發函數引導演算法的搜索方向
靜態圖搜索演算法:被搜索的圖的權值不隨時間變化(後被證明同樣可以適用於動態圖的搜索 )
⑧ A*演算法的介紹
A*演算法;A*(A-Star)演算法是一種靜態路網中求解最短路徑最有效的直接搜索方法。估價值與實際值越接近,估價函數取得就越好。
⑨ A*演算法怎麼驗算
驗算步驟如下:
a初值為12時,a+=a-=a*=a結果為0
步驟:
這個表達式的運算是從右向左的:
1.
a*=a:a=a*a=12*12=144
2.
a-=144:
a=a-144=144-144=0
3.
a+=0:
a=a+0=0+0=0。演算法(Algorithm)是指解題方案的准確而完整的描述,是一系列解決問題的清晰指令,演算法代表著用系統的方法描述解決問題的策略機制。也就是說,能夠對一定規范的輸入,在有限時間內獲得所要求的輸出。如果一個演算法有缺陷,或不適合於某個問題,執行這個演算法將不會解決這個問題。不同的演算法可能用不同的時間、空間或效率來完成同樣的任務。一個演算法的優劣可以用空間復雜度與時間復雜度來衡量。
演算法中的指令描述的是一個計算,當其運行時能從一個初始狀態和(可能為空的)初始輸入開始,經過一系列有限而清晰定義的狀態,最終產生輸出並停止於一個終態。一個狀態到另一個狀態的轉移不一定是確定的。隨機化演算法在內的一些演算法,包含了一些隨機輸入。
形式化演算法的概念部分源自嘗試解決希爾伯特提出的判定問題,並在其後嘗試定義有效計算性或者有效方法中成形。這些嘗試包括庫爾特·哥德爾、JacquesHerbrand和斯蒂芬·科爾·克萊尼分別於1930年、1934年和1935年提出的遞歸函數,阿隆佐·邱奇於1936年提出的λ演算,1936年EmilLeonPost的Formulation1和艾倫·圖靈1937年提出的圖靈機。即使在當前,依然常有直覺想法難以定義為形式化演算法的情況。
⑩ A*演算法的證明
能證明出鬼了!A*是省略演算法,要給搜索樹剪枝的,有幾率得不到最佳解的。深度優先,廣度優先,回溯發等不剪枝的演算法才一定能找到最優解。如果你的最短路徑指搜索樹的深度,拿當然要用廣度優先了!