Ⅰ 貪心演算法的介紹
貪心演算法(又稱貪婪演算法)是指,在對問題求解時,總是做出在當前看來是最好的選擇。也就是說,不從整體最優上加以考慮,他所做出的是在某種意義上的局部最優解。貪心演算法不是對所有問題都能得到整體最優解,關鍵是貪心策略的選擇,選擇的貪心策略必須具備無後效性,即某個狀態以前的過程不會影響以後的狀態,只與當前狀態有關。
Ⅱ 貪心演算法的例題分析
例題1、
[0-1背包問題]有一個背包,背包容量是M=150。有7個物品,物品不可以分割成任意大小。
要求盡可能讓裝入背包中的物品總價值最大,但不能超過總容量。
物品 A B C D E F G
重量 35kg 30kg 6kg 50kg 40kg 10kg 25kg
價值 10$ 40$ 30$ 50$ 35$ 40$ 30$
分析:
目標函數:∑pi最大
約束條件是裝入的物品總重量不超過背包容量:∑wi<=M(M=150)
⑴根據貪心的策略,每次挑選價值最大的物品裝入背包,得到的結果是否最優?
⑵每次挑選所佔重量最小的物品裝入是否能得到最優解?
⑶每次選取單位重量價值最大的物品,成為解本題的策略。
值得注意的是,貪心演算法並不是完全不可以使用,貪心策略一旦經過證明成立後,它就是一種高效的演算法。
貪心演算法還是很常見的演算法之一,這是由於它簡單易行,構造貪心策略不是很困難。
可惜的是,它需要證明後才能真正運用到題目的演算法中。
一般來說,貪心演算法的證明圍繞著:整個問題的最優解一定由在貪心策略中存在的子問題的最優解得來的。
對於例題中的3種貪心策略,都是無法成立(無法被證明)的,解釋如下:
⑴貪心策略:選取價值最大者。
反例:
W=30
物品:A B C
重量:28 12 12
價值:30 20 20
根據策略,首先選取物品A,接下來就無法再選取了,可是,選取B、C則更好。
⑵貪心策略:選取重量最小。它的反例與第一種策略的反例差不多。
⑶貪心策略:選取單位重量價值最大的物品。
反例:
W=30
物品:A B C
重量:28 20 10
價值:28 20 10
根據策略,三種物品單位重量價值一樣,程序無法依據現有策略作出判斷,如果選擇A,則答案錯誤。
【注意:如果物品可以分割為任意大小,那麼策略3可得最優解】
對於選取單位重量價值最大的物品這個策略,可以再加一條優化的規則:對於單位重量價值一樣的,則優先選擇重量小的!這樣,上面的反例就解決了。
但是,如果題目是如下所示,這個策略就也不行了。
W=40
物品:A B C
重量:25 20 15
價值:25 20 15
附:本題是個DP問題,用貪心法並不一定可以求得最優解,以後了解了動態規劃演算法後本題就有了新的解法。
例題2、
馬踏棋盤的貪心演算法
123041-23 XX
【問題描述】
馬的遍歷問題。在8×8方格的棋盤上,從任意指定方格出發,為馬尋找一條走遍棋盤每一格並且只經過一次的一條路徑。
【初步設計】
首先這是一個搜索問題,運用深度優先搜索進行求解。演算法如下:
⒈ 輸入初始位置坐標x,y;
⒉ 步驟 c:
如果c> 64輸出一個解,返回上一步驟c--
(x,y) ← c
計算(x,y)的八個方位的子結點,選出那些可行的子結點
循環遍歷所有可行子結點,步驟c++重復2
顯然⑵是一個遞歸調用的過程,大致如下:
C++程序: #defineN8voiddfs(intx,inty,intcount){inti,tx,ty;if(count>N*N){output_solution();//輸出一個解return;}for(i=0;i<8;i++){tx=hn[i].x;//hn[]保存八個方位子結點ty=hn[i].y;s[tx][ty]=count;dfs(tx,ty,count+1);//遞歸調用s[tx][ty]=0;}}Pascal程序: ProgramYS;ConstFXx:array[1..8]of-2..2=(1,2,2,1,-1,-2,-2,-1);FXy:array[1..8]of-2..2=(2,1,-1,-2,-2,-1,1,2);VarRoad:array[1..10,1..10]ofinteger;x,y,x1,y1,total:integer;ProcereFind(x,y:integer);varNx,Ny,i:integer;BeginFori:=1to8dobegin{8個方向}If(x+FXx[i]in[1..8])and(y+FXy[i]in[1..8])Then{確定新坐標是否越界}IfRoad[x+Fxx[i],y+Fxy[i]]=0Thenbegin{判斷是否走過}Nx:=x+FXx[i];Ny:=y+FXy[i];Road[Nx,Ny]:=1;{建立新坐標}If(Nx=x1)and(Ny=y1)Theninc(total)elseFind(Nx,Ny);{遞歸}Road[Nx,Ny]:=0{回朔}endendEnd;BEGIN{Main}Total:=0;FillChar(Road,sizeof(road),0);Readln(x,y);{讀入開始坐標}Readln(x1,y1);{讀入結束坐標}If(x>10)or(y>10)or(x1>10)or(y1>10)Thenwriteln('Error'){判斷是否越界}ElseFind(x,y);Writeln('Total:',total){打出總數}END.這樣做是完全可行的,它輸入的是全部解,但是馬遍歷當8×8時解是非常之多的,用天文數字形容也不為過,這樣一來求解的過程就非常慢,並且出一個解也非常慢。
怎麼才能快速地得到部分解呢?
【貪心演算法】
其實馬踏棋盤的問題很早就有人提出,且早在1823年,J.C.Warnsdorff就提出了一個有名的演算法。在每個結點對其子結點進行選取時,優先選擇『出口』最小的進行搜索,『出口』的意思是在這些子結點中它們的可行子結點的個數,也就是『孫子』結點越少的越優先跳,為什麼要這樣選取,這是一種局部調整最優的做法,如果優先選擇出口多的子結點,那出口少的子結點就會越來越多,很可能出現『死』結點(顧名思義就是沒有出口又沒有跳過的結點),這樣對下面的搜索純粹是徒勞,這樣會浪費很多無用的時間,反過來如果每次都優先選擇出口少的結點跳,那出口少的結點就會越來越少,這樣跳成功的機會就更大一些。這種演算法稱為為貪心演算法,也叫貪婪演算法或啟發式演算法,它對整個求解過程的局部做最優調整,它只適用於求較優解或者部分解,而不能求最優解。這樣的調整方法叫貪心策略,至於什麼問題需要什麼樣的貪心策略是不確定的,具體問題具體分析。實驗可以證明馬遍歷問題在運用到了上面的貪心策略之後求解速率有非常明顯的提高,如果只要求出一個解甚至不用回溯就可以完成,因為在這個演算法提出的時候世界上還沒有計算機,這種方法完全可以用手工求出解來,其效率可想而知。
Ⅲ 用貪心演算法求解背包問題的最優解。
你這個是部分背包么?也就是說物品可以隨意分割?
那麼可以先算出單位重量物品的價值,然後只要從高價值到低價值放入就行了,按p[i]/w[i]降序排序,然後一件一件加,加滿為止!
貪心的思路是:加最少的重量得到更大的價值!
算出單位價值為{6,4,3,2,7,5,2}
加的順序即為5,1,6,2,3,4/7
如果重量不超過就全部都加,超過就加滿為止
不懂可問望採納!
推薦看dd_engi的背包九講,神級背包教程!在此膜拜dd_engi神牛~
Ⅳ 計算題【用貪心演算法求解付款問題】
不是
貪心得到的結果是 3元,1元,5角,1角
最優是一張三元,兩張八角。
Ⅳ 大學課程《演算法分析與設計》中動態規劃和貪心演算法的區別和聯系
對於,大學課程《演算法分析與設計》中動態規劃和貪心演算法的區別和聯系這個問題,首先要來聊聊他們的聯系:1、都是一種推導演算法;2、將它們分解為子問題求解,它們都需要有最優子結構。這兩個特徵師門的聯系。
拓展資料:
貪婪演算法是指在解決問題時,它總是在當前做出最佳選擇。也就是說,在不考慮全局優化的情況下,該演算法在某種意義上獲得了局部最優解。貪婪演算法不能得到所有問題的全局最優解。關鍵是貪婪策略的選擇。
動態規劃是運籌學的一個分支,是解決決策過程優化的過程。20世紀50年代初,美國數學家R·貝爾曼等人在研究多階段決策過程的最優化問題時,提出了著名的最優化原理,建立了動態規劃。動態規劃在工程技術、經濟、工業生產、軍事和自動控制等領域有著廣泛的應用,在背包問題、生產經營問題、資金管理問題、資源分配問題、最短路徑問題和復雜系統可靠性問題上都取得了顯著的成果。
Ⅵ 如何用貪心演算法解決磁碟文件最優存儲問題
dp??
方程為
a(fi,fj)=min{(a(fi,fk)+a(fk,fj)),a(fi,fj)}(k=i+1,i+2...j-1);
Ⅶ 採用貪心演算法進行安排。對演算法的時間和空間復雜度進行分析
時間主要是 排序用時了,快速排序 一般是 o(n*logn)
空間 復雜度基本上是 0(1)
Ⅷ 什麼是貪心演算法,用實例分析貪心演算法是如何解決實際問題
比如: int a=3,b=4,c; c=a+++b; 將被解釋為 c=(a++)+b; 而不會被解釋為 c=a+(++b); 貪心演算法的主要意義是從左至右依次解釋最多的符號!
Ⅸ 能用貪心演算法求解的問題應該具備哪些條件
貪心演算法是種策略,思想。。。它並沒有固定的模式比如最簡單的背包問題用貪心的思想去做,就可能有很多種方法性價比最高的、價值最高的、重量最輕的而你沒辦法確保你所選擇的貪心策略對所有的情況都是絕對最優的動態規劃的思想是分治+解決沉余把一個復雜的問題分解成一塊一塊的小問題每一個小問題中得到最優解再從這些最優解中獲取更優的答案典型的例子數塔問題畫個圖就能看出來