Ⅰ RSA演算法中的數學公式看不懂。想麻煩您 d=e^-1 三 1019(mod 3220) 這個e逆是怎麼求的呢煩勞您幫我看看。
e的逆可以按照輾轉相除法,或者歐幾里德定理計算啊.
3220=79*40+60
79=60*1+19
60=19*3+3
19=3*6+1
1=19*19-60*6=(79-60)*19-60*6=79*19-60*19-60*6=79*19-60*25=79*19-(3220-79*40)*25=79*19-3220+79*40*25=1019*79-3220
所以79 mod 3220 的逆就是1019
Ⅱ RSA加密演算法的內容是怎樣的
1) 確定密鑰的寬度。
2) 隨機選擇兩個不同的素數p處q,它們的寬度是密鑰寬度的二分之一。
3) 計算出p和q的乘積n 。
4) 在2和Φ(n)之間隨機選擇一個數e , e 必須和Φ(n)互素,整數e用做加密密鑰(其中Φ(n)=(p-1)*(q-1))。
5) 從公式ed ≡ 1 mod Φ(n)中求出解密密鑰d 。
6) 得公鑰(e ,n ), 私鑰 (d , n) 。
7) 公開公鑰,但不公開私鑰。
8) 將明文P (假設P是一個小於n的整數)加密為密文C,計算方法為:
C = P^e mod n
9) 將密文C解密為明文P,計算方法為:
P = C^d mod n
然而只根據n和e(不是p和q)要計算出d是不可能的。因此,任何人都可對明文進行加密,但只有授權用戶(知道d)才可對密文解密
Ⅲ 已知RSA演算法中兩個素數P=5,Q=11及公鑰e=3 ,求私鑰d= 如果明文M=3 ,則密文C=(寫出公式及過程)
你好,具體流程如下:
5.1 求N
p = 5
q = 11
N = p * q =55
5.2 求L
L = lcm(p-1, q-1)= lcm(4,10) = 20
20為4和10對最小公倍數
5.4 求D
求D也必須滿足2個條件:1 < D < L,E*D mod L = 1
即1 < D < 20,3* D mod 20= 1
顯然當D= 7時滿足上述兩個條件
1 < 7< 20
3*7mod 20= 21mod 20= 1
此時私鑰=(D,N)=(7,55)
5.5 加密
准備的明文必須時小於N的數,因為加密或者解密都要mod N其結果必須小於N
M = 3
則 密文=明文EmodN=3^3mod55=27
解密為 = 密文D modN = 27^7 mod55 =3
Ⅳ RSA演算法計算
你所說的:
n=20
d=7 公鑰
e=3 私鑰
對M=3 進行加密
M'=M^d%n (M的d次方,然後除以n取余數)
M'=3^7%20=2187%20=7 加密後等於7
對M'=7進行解密
M=M'^e%n=7^3%20=343%20=3 解密後又變成3了
我空間裡面里的一篇文章寫的非常清楚,還有例子,想了解清楚點可以再去看看
http://hi..com/lsgo/blog/item/5fd0da24d495666834a80fb8.html
你取的兩個素數太小了,所以n太小根本起不了作用。至少要取1024位的數字。
Ⅳ RSA加密演算法問題求解!!
首先說一下求d的答案,ed=1mod(p-1)(q-1)=1mod60即7d=1mod60的意思是e與d的乘積對(p-1)(q-1)取余結果是1,題目給出e=7,(p-1)(q-1)可以求得是60,即(7d)%60=1【%是取余符號】,可以得出43*7=301=5*60+1
題目已給出M=17,秘文C=M^e mod n即M的e次方對n取余,代入數值為17^5%143=10
希望對你有幫助
Ⅵ RSA密碼演算法
題目很簡單,出現這種問題證明你要好好看下數論了。特別是歐拉定理。根據數論,若x與y互為素數,則x^-1 mod y存在唯一整數解。由此,告訴你一種簡潔的求d的方法,該法是根據模的逆運算的原始定義求解,即:ed=k(p-1)(q-1)+1 式中d和k都是整數。因為e與(p-1)(q-1)互為素數,所以存在唯一整數解。這樣可以通過搜索法找到d。
由上題:e=5, (p-1)(q-1)=96
帶入公式試值得:5d=96*k+1 k=4,d=77 (k與d同時為整數)
c的求法:
由15^5mod119=(((15^2mod119)^2mod119)*15)mod119=36
以上全是手算,當然還可以用計算器,有mod功能的,太簡單了。
希望我的回答對你有幫助。
別這么說,什麼菜不菜的,大家一起討論。
mod就是求余,比如:7mod2=1,就是7/2餘1
公式:余數=|被除數-商*除數|
Ⅶ 什麼是RSA非對稱加密
非對稱密鑰——RSA演算法
RSA演算法是最流行的公鑰密碼演算法,使用長度可以變化的密鑰。RSA是第一個既能用於數據加密也能用於數字簽名的演算法。
RSA演算法原理如下:
1.隨機選擇兩個大質數p和q,p不等於q,計算N=pq;
2.選擇一個大於1小於N的自然數e,e必須與(p-1)(q-1)互素。
3.用公式計算出d:d×e = 1 (mod (p-1)(q-1)) 。
4.銷毀p和q。
最終得到的N和e就是「公鑰」,d就是「私鑰」,發送方使用N去加密數據,接收方只有使用d才能解開數據內容。
RSA的安全性依賴於大數分解,小於1024位的N已經被證明是不安全的,而且由於RSA演算法進行的都是大數計算,使得RSA最快的情況也比DES慢上倍,這是RSA最大的缺陷,因此通常只能用於加密少量數據或者加密密鑰,但RSA仍然不失為一種高強度的演算法。
Ⅷ 什麼是RSA演算法,有公鑰和私鑰對他的處理過程是這樣的
RSA演算法是一種非對稱密碼演算法,所謂非對稱,就是指該演算法需要一對密鑰,使用其中一個加密,則需要用另一個才能解密。
RSA的演算法涉及三個參數,n、e1、e2。
其中,n是兩個大質數p、q的積,n的二進製表示時所佔用的位數,就是所謂的密鑰長度。
e1和e2是一對相關的值,e1可以任意取,但要求e1與(p-1)*(q-1)互質;再選擇e2,要求(e2*e1)mod((p-1)*(q-1))=1。
(n及e1),(n及e2)就是密鑰對。
RSA加解密的演算法完全相同,設A為明文,B為密文,則:A=B^e1
mod
n;B=A^e2
mod
n;
e1和e2可以互換使用,即:
A=B^e2
mod
n;B=A^e1
mod
n;
補充回答:
對明文進行加密,有兩種情況需要這樣作:
1、您向朋友傳送加密數據,您希望只有您的朋友可以解密,這樣的話,您需要首先獲取您朋友的密鑰對中公開的那一個密鑰,e及n。然後用這個密鑰進行加密,這樣密文只有您的朋友可以解密,因為對應的私鑰只有您朋友擁有。
2、您向朋友傳送一段數據附加您的數字簽名,您需要對您的數據進行MD5之類的運算以取得數據的"指紋",再對"指紋"進行加密,加密將使用您自己的密鑰對中的不公開的私鑰。您的朋友收到數據後,用同樣的運算獲得數據指紋,再用您的公鑰對加密指紋進行解密,比較解密結果與他自己計算出來的指紋是否一致,即可確定數據是否的確是您發送的、以及在傳輸過程中是否被篡改。
密鑰的獲得,通常由某個機構頒發(如CA中心),當然也可以由您自己創建密鑰,但這樣作,您的密鑰並不具有權威性。
計算方面,按公式計算就行了,如果您的加密強度為1024位,則結果會在有效數據前面補0以補齊不足的位數。補入的0並不影響解密運算。
Ⅸ RSA演算法舉例
首先看下rsa演算法:
找兩素數p和q
計算n=p*q和
t=(p-1)*(q-1)
取小於n的一個數e,並且e與t互質,就是最大公約數是1
找一個數d,d滿足(ed-1)
mod
t
=0
公鑰取(n,e),私鑰取(n,d)
現在開始分析,
已知公鑰是(n=35,e=5),那麼
n=p*q,p與q只能是7和5
那麼t就是24
而(ed-1)%t=0
也就是(5d-1)%24=0,那麼可以取d為5
所以私鑰是
(d=5,n=35)
解密公式:m=c^d
mod
n
=10^5
mod
35
=5
所以明文m是5