1. 聚類演算法的演算法分類
很難對聚類方法提出一個簡潔的分類,因為這些類別可能重疊,從而使得一種方法具有幾類的特徵,盡管如此,對於各種不同的聚類方法提供一個相對有組織的描述依然是有用的,為聚類分析計算方法主要有如下幾種: 劃分法(partitioning methods),給定一個有N個元組或者紀錄的數據集,分裂法將構造K個分組,每一個分組就代表一個聚類,K<N。而且這K個分組滿足下列條件:
(1) 每一個分組至少包含一個數據紀錄;
(2)每一個數據紀錄屬於且僅屬於一個分組(注意:這個要求在某些模糊聚類演算法中可以放寬);
對於給定的K,演算法首先給出一個初始的分組方法,以後通過反復迭代的方法改變分組,使得每一次改進之後的分組方案都較前一次好,而所謂好的標准就是:同一分組中的記錄越近越好,而不同分組中的紀錄越遠越好。
大部分劃分方法是基於距離的。給定要構建的分區數k,劃分方法首先創建一個初始化劃分。然後,它採用一種迭代的重定位技術,通過把對象從一個組移動到另一個組來進行劃分。一個好的劃分的一般准備是:同一個簇中的對象盡可能相互接近或相關,而不同的簇中的對象盡可能遠離或不同。還有許多評判劃分質量的其他准則。傳統的劃分方法可以擴展到子空間聚類,而不是搜索整個數據空間。當存在很多屬性並且數據稀疏時,這是有用的。為了達到全局最優,基於劃分的聚類可能需要窮舉所有可能的劃分,計算量極大。實際上,大多數應用都採用了流行的啟發式方法,如k-均值和k-中心演算法,漸近的提高聚類質量,逼近局部最優解。這些啟發式聚類方法很適合發現中小規模的資料庫中小規模的資料庫中的球狀簇。為了發現具有復雜形狀的簇和對超大型數據集進行聚類,需要進一步擴展基於劃分的方法。
使用這個基本思想的演算法有:K-MEANS演算法、K-MEDOIDS演算法、CLARANS演算法; 層次法(hierarchical methods),這種方法對給定的數據集進行層次似的分解,直到某種條件滿足為止。具體又可分為「自底向上」和「自頂向下」兩種方案。
例如,在「自底向上」方案中,初始時每一個數據紀錄都組成一個單獨的組,在接下來的迭代中,它把那些相互鄰近的組合並成一個組,直到所有的記錄組成一個分組或者某個條件滿足為止。
層次聚類方法可以是基於距離的或基於密度或連通性的。層次聚類方法的一些擴展也考慮了子空間聚類。層次方法的缺陷在於,一旦一個步驟(合並或分裂)完成,它就不能被撤銷。這個嚴格規定是有用的,因為不用擔心不同選擇的組合數目,它將產生較小的計算開銷。然而這種技術不能更正錯誤的決定。已經提出了一些提高層次聚類質量的方法。
代表演算法有:BIRCH演算法、CURE演算法、CHAMELEON演算法等; 基於密度的方法(density-based methods),基於密度的方法與其它方法的一個根本區別是:它不是基於各種各樣的距離的,而是基於密度的。這樣就能克服基於距離的演算法只能發現「類圓形」的聚類的缺點。
這個方法的指導思想就是,只要一個區域中的點的密度大過某個閾值,就把它加到與之相近的聚類中去。
代表演算法有:DBSCAN演算法、OPTICS演算法、DENCLUE演算法等; 基於網格的方法(grid-based methods),這種方法首先將數據空間劃分成為有限個單元(cell)的網格結構,所有的處理都是以單個的單元為對象的。這么處理的一個突出的優點就是處理速度很快,通常這是與目標資料庫中記錄的個數無關的,它只與把數據空間分為多少個單元有關。
代表演算法有:STING演算法、CLIQUE演算法、WAVE-CLUSTER演算法; 基於模型的方法(model-based methods),基於模型的方法給每一個聚類假定一個模型,然後去尋找能夠很好的滿足這個模型的數據集。這樣一個模型可能是數據點在空間中的密度分布函數或者其它。它的一個潛在的假定就是:目標數據集是由一系列的概率分布所決定的。
通常有兩種嘗試方向:統計的方案和神經網路的方案。
2. 人工神經網路分類方法
從20世紀80年代末期,人工神經網路方法開始應用於遙感圖像的自動分類。目前,在遙感圖像的自動分類方面,應用和研究比較多的人工神經網路方法主要有以下幾種:
(1)BP(Back Propagation)神經網路,這是一種應用較廣泛的前饋式網路,屬於有監督分類演算法,它將先驗知識融於網路學習之中,加以最大限度地利用,適應性好,在類別數少的情況下能夠得到相當高的精度,但是其網路的學習主要採用誤差修正演算法,識別對象種類多時,隨著網路規模的擴大,需要的計算過程較長,收斂緩慢而不穩定,且識別精度難以達到要求。
(2)Hopfield神經網路。屬於反饋式網路。主要採用Hebb規則進行學習,一般情況下計算的收斂速度較快。這種網路是美國物理學家J.J.Hopfield於1982年首先提出的,它主要用於模擬生物神經網路的記憶機理。Hopfield神經網路狀態的演變過程是一個非線性動力學系統,可以用一組非線性差分方程來描述。系統的穩定性可用所謂的「能量函數」進行分析,在滿足一定條件下,某種「能量函數」的能量在網路運行過程中不斷地減少,最後趨於穩定的平衡狀態。Hopfield網路的演變過程是一種計算聯想記憶或求解優化問題的過程。
(3)Kohonen網路。這是一種由芬蘭赫爾辛基大學神經網路專家Kohonen(1981)提出的自組織神經網路,其採用了無導師信息的學習演算法,這種學習演算法僅根據輸入數據的屬性而調整權值,進而完成向環境學習、自動分類和聚類等任務。其最大的優點是最終的各個相鄰聚類之間是有相似關系的,即使識別時把樣本映射到了一個錯誤的節點,它也傾向於被識別成同一個因素或者一個相近的因素,這就十分接近人的識別特性。
3. 幾種主要類聚方法的比較和試驗
引言 聚類分析是人類的區分標志之一,從孩提時代開始,一個人就下意識地學會區分動植物,並且不斷改進。這一原理在如今不少領域得到了相應的研究和應用,比如模式識別、數據分析、圖像處理、Web文檔分類等。 將物理或抽象對象的集合分成由類似的對象組成的多個類的過程被稱為聚類。由聚類所生成的簇是一組數據對象的集合,這些對象與同一個簇中的對象彼此相似,與其他簇中的對象相異。「物以類聚,人以群分」,在自然科學和社會科學中,存在著大量的分類問題。 聚類技術正在蓬勃發展,對此有貢獻的研究領域包括數據挖掘、統計學、機器學習、空間資料庫技術、生物學以及市場營銷等。各種聚類方法也被不斷提出和改進,而不同的方法適合於不同類型的數據,因此對各種聚類方法、聚類效果的比較成為值得研究的課題。 1 聚類演算法的分類 現在有很多的聚類演算法,而在實際應用中,正確選擇聚類演算法的則取決於數據的類型、聚類的目的等因素。如果聚類分析被用作描述或探查的工具,可以對同樣的數據嘗試多種演算法,以發現數據可能揭示的結果。 已知的聚類演算法可以大致劃分為以下幾類:劃分方法、層次方法、基於密度的方法、基於網格的方法和基於模型的方法。 每一個類型的演算法都被廣泛地應用著,例如:劃分方法中的k-means聚類演算法、層次方法中的凝聚型層次聚類演算法、基於模型方法中的神經網路聚類演算法等。 聚類問題的研究早已不再局限於上述的硬聚類,即每一個數據只能被歸為一類,模糊聚類也是聚類分析中研究較為廣泛的一個「流派」。模糊聚類通過隸屬函數來確定每個數據隸屬於各個簇的程度,而不是將一個數據對象硬性地歸類到某一簇中。目前已有很多關於模糊聚類的演算法被提出,如FCM演算法。 本文主要分析和比較k-means聚類演算法、凝聚型層次聚類演算法、神經網路聚類演算法之SOM,以及模糊聚類的FCM演算法。通過通用測試數據集進行聚類效果的比較和分析。 2 四種常用聚類演算法研究 2.1 k-means聚類演算法 k-means是劃分方法中較經典的聚類演算法之一。該演算法的效率高,使得在對大規模數據進行聚類時廣泛應用。目前,許多演算法均圍繞著該演算法進行擴展和改進。 k-means演算法以k為參數,把n個對象分成k個簇,使簇內具有較高的相似度,而簇間的相似度較低。k-means演算法的處理過程如下:首先,隨機地選擇k個對象,每個對象初始地代表了一個簇的平均值或中心;對剩餘的每個對象,根據其與各簇中心的距離,將它賦給最近的簇;然後重新計算每個簇的平均值。這個過程不斷重復,直到准則函數收斂。通常,採用平方誤差准則,其定義如下: 這里E是資料庫中所有對象的平方誤差的總和,p是空間中的點,mi是簇Ci的平均值。該目標函數使生成的簇盡可能緊湊獨立,使用的距離度量是歐幾里得距離,當然也可以用其他距離度量。k-means聚類演算法的演算法流程如下: 輸入:包含n個對象的資料庫和簇的數目k; 輸出:k個簇,使平方誤差准則最小。 步驟: (1) 任意選擇k個對象作為初始的簇中心; (2) repeat; (3) 根據簇中對象的平均值,將每個對象(重新)賦予最類似的簇; (4) 更新簇的平均值,即計算每個簇中對象的平均值; (5) until不再發生變化。 2.2 層次聚類演算法 根據層次分解的順序,層次聚類演算法分為凝聚的層次聚類演算法和分裂的層次聚類演算法。 凝聚型層次聚類的策略是先將每個對象作為一個簇,然後合並這些原子簇為越來越大的簇,直到所有對象都在一個簇中,或者某個終結條件被滿足。絕大多數層次聚類屬於凝聚型層次聚類,它們只是在簇間相似度的定義上有所不同。四種廣泛採用的簇間距離度量方法如下: 這里給出採用最小距離的凝聚層次聚類演算法流程: (1) 將每個對象看作一類,計算兩兩之間的最小距離; (2) 將距離最小的兩個類合並成一個新類; (3) 重新計算新類與所有類之間的距離; (4) 重復(2)、(3),直到所有類最後合並成一類。 2.3 SOM聚類演算法 SOM神經網路是由芬蘭神經網路專家Kohonen教授提出的,該演算法假設在輸入對象中存在一些拓撲結構或順序,可以實現從輸入空間(n維)到輸出平面(2維)的降維映射,其映射具有拓撲特徵保持性質,與實際的大腦處理有很強的理論聯系。 SOM網路包含輸入層和輸出層。輸入層對應一個高維的輸入向量,輸出層由一系列組織在2維網格上的有序節點構成,輸入節點與輸出節點通過權重向量連接。學習過程中,找到與之距離最短的輸出層單元,即獲勝單元,對其更新。同時,將鄰近區域的權值更新,使輸出節點保持輸入向量的拓撲特徵。 演算法流程: (1) 網路初始化,對輸出層每個節點權重賦初值; (2) 將輸入樣本中隨機選取輸入向量,找到與輸入向量距離最小的權重向量; (3) 定義獲勝單元,在獲勝單元的鄰近區域調整權重使其向輸入向量靠攏; (4) 提供新樣本、進行訓練; (5) 收縮鄰域半徑、減小學習率、重復,直到小於允許值,輸出聚類結果。 2.4 FCM聚類演算法 1965年美國加州大學柏克萊分校的扎德教授第一次提出了『集合』的概念。經過十多年的發展,模糊集合理論漸漸被應用到各個實際應用方面。為克服非此即彼的分類缺點,出現了以模糊集合論為數學基礎的聚類分析。用模糊數學的方法進行聚類分析,就是模糊聚類分析。 FCM演算法是一種以隸屬度來確定每個數據點屬於某個聚類程度的演算法。該聚類演算法是傳統硬聚類演算法的一種改進。 演算法流程: (1) 標准化數據矩陣; (2) 建立模糊相似矩陣,初始化隸屬矩陣; (3) 演算法開始迭代,直到目標函數收斂到極小值; (4) 根據迭代結果,由最後的隸屬矩陣確定數據所屬的類,顯示最後的聚類結果。 3 試驗 3.1 試驗數據 實驗中,選取專門用於測試分類、聚類演算法的國際通用的UCI資料庫中的IRIS數據集,IRIS數據集包含150個樣本數據,分別取自三種不同的鶯尾屬植物setosa、versicolor和virginica的花朵樣本,每個數據含有4個屬性,即萼片長度、萼片寬度、花瓣長度,單位為cm。在數據集上執行不同的聚類演算法,可以得到不同精度的聚類結果。 3.2 試驗結果說明 文中基於前面所述各演算法原理及演算法流程,用matlab進行編程運算,得到表1所示聚類結果。 如表1所示,對於四種聚類演算法,按三方面進行比較: (1)聚錯樣本數:總的聚錯的樣本數,即各類中聚錯的樣本數的和; (2)運行時間:即聚類整個過程所耗費的時間,單位為s; (3)平均准確度:設原數據集有k個類,用ci表示第i類,ni為ci中樣本的個數,mi為聚類正確的個數,則mi/ni為第i類中的精度,則平均精度為: 3.3 試驗結果分析 四種聚類演算法中,在運行時間及准確度方面綜合考慮,k-means和FCM相對優於其他。但是,各個演算法還是存在固定缺點:k-means聚類演算法的初始點選擇不穩定,是隨機選取的,這就引起聚類結果的不穩定,本實驗中雖是經過多次實驗取的平均值,但是具體初始點的選擇方法還需進一步研究;層次聚類雖然不需要確定分類數,但是一旦一個分裂或者合並被執行,就不能修正,聚類質量受限制;FCM對初始聚類中心敏感,需要人為確定聚類數,容易陷入局部最優解;SOM與實際大腦處理有很強的理論聯系。但是處理時間較長,需要進一步研究使其適應大型資料庫。 4 結語 聚類分析因其在許多領域的成功應用而展現出誘人的應用前景,除經典聚類演算法外,各種新的聚類方法正被不斷被提出。
該文章僅供學習參考使用,版權歸作者所有。
4. 分類和聚類的區別及各自的常見演算法
1、分類和聚類的區別:
Classification (分類),對於一個classifier,通常需要你告訴它「這個東西被分為某某類」這樣一些例子,理想情況下,一個 classifier 會從它得到的訓練集中進行「學習」,從而具備對未知數據進行分類的能力,這種提供訓練數據的過程通常叫做supervised learning (監督學習),
Clustering (聚類),簡單地說就是把相似的東西分到一組,聚類的時候,我們並不關心某一類是什麼,我們需要實現的目標只是把相似的東西聚到一起。因此,一個聚類演算法通常只需要知道如何計算相似度就可以開始工作了,因此 clustering 通常並不需要使用訓練數據進行學習,這在Machine Learning中被稱作unsupervised learning (無監督學習).
2、常見的分類與聚類演算法
所謂分類,簡單來說,就是根據文本的特徵或屬性,劃分到已有的類別中。如在自然語言處理NLP中,我們經常提到的文本分類便就是一個分類問題,一般的模式分類方法都可用於文本分類研究。常用的分類演算法包括:決策樹分類法,樸素貝葉斯分類演算法(native Bayesian classifier)、基於支持向量機(SVM)的分類器,神經網路法,k-最近鄰法(k-nearestneighbor,kNN),模糊分類法等等。
分類作為一種監督學習方法,要求必須事先明確知道各個類別的信息,並且斷言所有待分類項都有一個類別與之對應。但是很多時候上述條件得不到滿足,尤其是在處理海量數據的時候,如果通過預處理使得數據滿足分類演算法的要求,則代價非常大,這時候可以考慮使用聚類演算法。
而K均值(K-mensclustering)聚類則是最典型的聚類演算法(當然,除此之外,還有很多諸如屬於劃分法K中心點(K-MEDOIDS)演算法、CLARANS演算法;屬於層次法的BIRCH演算法、CURE演算法、CHAMELEON演算法等;基於密度的方法:DBSCAN演算法、OPTICS演算法、DENCLUE演算法等;基於網格的方法:STING演算法、CLIQUE演算法、WAVE-CLUSTER演算法;基於模型的方法)。
5. 聚類演算法有哪些分類
聚類演算法的分類有:
1、劃分法
劃分法(partitioning methods),給定一個有N個元組或者紀錄的數據集,分裂法將構造K個分組,每一個分組就代表一個聚類,K小於N。而且這K個分組滿足下列條件:
(1) 每一個分組至少包含一個數據紀錄;
(2)每一個數據紀錄屬於且僅屬於一個分組(注意:這個要求在某些模糊聚類演算法中可以放寬);
2、層次法
層次法(hierarchical methods),這種方法對給定的數據集進行層次似的分解,直到某種條件滿足為止。具體又可分為「自底向上」和「自頂向下」兩種方案。
例如,在「自底向上」方案中,初始時每一個數據紀錄都組成一個單獨的組,在接下來的迭代中,它把那些相互鄰近的組合並成一個組,直到所有的記錄組成一個分組或者某個條件滿足為止。
3、密度演算法
基於密度的方法(density-based methods),基於密度的方法與其它方法的一個根本區別是:它不是基於各種各樣的距離的,而是基於密度的。這樣就能克服基於距離的演算法只能發現「類圓形」的聚類的缺點。
4、圖論聚類法
圖論聚類方法解決的第一步是建立與問題相適應的圖,圖的節點對應於被分析數據的最小單元,圖的邊(或弧)對應於最小處理單元數據之間的相似性度量。因此,每一個最小處理單元數據之間都會有一個度量表達,這就確保了數據的局部特性比較易於處理。圖論聚類法是以樣本數據的局域連接特徵作為聚類的主要信息源,因而其主要優點是易於處理局部數據的特性。
5、網格演算法
基於網格的方法(grid-based methods),這種方法首先將數據空間劃分成為有限個單元(cell)的網格結構,所有的處理都是以單個的單元為對象的。這么處理的一個突出的優點就是處理速度很快,通常這是與目標資料庫中記錄的個數無關的,它只與把數據空間分為多少個單元有關。
代表演算法有:STING演算法、CLIQUE演算法、WAVE-CLUSTER演算法;
6、模型演算法
基於模型的方法(model-based methods),基於模型的方法給每一個聚類假定一個模型,然後去尋找能夠很好的滿足這個模型的數據集。這樣一個模型可能是數據點在空間中的密度分布函數或者其它。它的一個潛在的假定就是:目標數據集是由一系列的概率分布所決定的。
通常有兩種嘗試方向:統計的方案和神經網路的方案。
(5)神經網路聚類演算法擴展閱讀:
聚類演算法的要求:
1、可伸縮性
許多聚類演算法在小於 200 個數據對象的小數據集合上工作得很好;但是,一個大規模資料庫可能包含幾百萬個對象,在這樣的大數據集合樣本上進行聚類可能會導致有偏的結果。
我們需要具有高度可伸縮性的聚類演算法。
2、不同屬性
許多演算法被設計用來聚類數值類型的數據。但是,應用可能要求聚類其他類型的數據,如二元類型(binary),分類/標稱類型(categorical/nominal),序數型(ordinal)數據,或者這些數據類型的混合。
3、任意形狀
許多聚類演算法基於歐幾里得或者曼哈頓距離度量來決定聚類。基於這樣的距離度量的演算法趨向於發現具有相近尺度和密度的球狀簇。但是,一個簇可能是任意形狀的。提出能發現任意形狀簇的演算法是很重要的。
4、領域最小化
許多聚類演算法在聚類分析中要求用戶輸入一定的參數,例如希望產生的簇的數目。聚類結果對於輸入參數十分敏感。參數通常很難確定,特別是對於包含高維對象的數據集來說。這樣不僅加重了用戶的負擔,也使得聚類的質量難以控制。
5、處理「雜訊」
絕大多數現實中的資料庫都包含了孤立點,缺失,或者錯誤的數據。一些聚類演算法對於這樣的數據敏感,可能導致低質量的聚類結果。
6、記錄順序
一些聚類演算法對於輸入數據的順序是敏感的。例如,同一個數據集合,當以不同的順序交給同一個演算法時,可能生成差別很大的聚類結果。開發對數據輸入順序不敏感的演算法具有重要的意義。
6. 數據挖掘中的聚類演算法聚成幾類是人為設定還是自動的用SOM神經網路做聚類是不是就是人為設定好聚幾類
看了之前的回答,都不專業
聚類分析是一種無指導的分析,如果理解聚類的核心含義,你就能明白,聚類的數量是沒有標準的,必須人為設定,但是特殊的聚類方法可以給你一些參考,比如:系統聚類,它可以生成聚類樹,這樣你就能直觀判斷分成幾類合適。再比如:二階聚類,系統模型會自動選擇分成幾類(如果不人為設定)。
聚類是無指導的訓練樣本,分類是有指導的訓練樣本,分類就是通過已知的樣本建立分類規則,來預測新樣本的分類,為什麼是有指導的?因為分類是用樣本的其它屬性來解釋、預測我們感興趣的屬性的模型,這是白話。舉例:我們知道一批用戶的人口統計變數、消費、工資和貸款還款情況,現在我們要用用戶的人口統計變數、消費、工資來對用戶的貸款還款情況進行預測,這就是分類模型,在這里要用到分類決策樹。就是說我們用樣本的其它屬性來對樣本的貸款還款情況建立分類規則,然後對未來的新樣本進行預測,判斷新用戶是否是理想的放貸對象
7. BP人工神經網路方法
(一)方法原理
人工神經網路是由大量的類似人腦神經元的簡單處理單元廣泛地相互連接而成的復雜的網路系統。理論和實踐表明,在信息處理方面,神經網路方法比傳統模式識別方法更具有優勢。人工神經元是神經網路的基本處理單元,其接收的信息為x1,x2,…,xn,而ωij表示第i個神經元到第j個神經元的連接強度或稱權重。神經元的輸入是接收信息X=(x1,x2,…,xn)與權重W={ωij}的點積,將輸入與設定的某一閾值作比較,再經過某種神經元激活函數f的作用,便得到該神經元的輸出Oi。常見的激活函數為Sigmoid型。人工神經元的輸入與輸出的關系為
地球物理勘探概論
式中:xi為第i個輸入元素,即n維輸入矢量X的第i個分量;ωi為第i個輸入與處理單元間的互聯權重;θ為處理單元的內部閾值;y為處理單元的輸出。
常用的人工神經網路是BP網路,它由輸入層、隱含層和輸出層三部分組成。BP演算法是一種有監督的模式識別方法,包括學習和識別兩部分,其中學習過程又可分為正向傳播和反向傳播兩部分。正向傳播開始時,對所有的連接權值置隨機數作為初值,選取模式集的任一模式作為輸入,轉向隱含層處理,並在輸出層得到該模式對應的輸出值。每一層神經元狀態隻影響下一層神經元狀態。此時,輸出值一般與期望值存在較大的誤差,需要通過誤差反向傳遞過程,計算模式的各層神經元權值的變化量
(二)BP神經網路計算步驟
(1)初始化連接權值和閾值為一小的隨機值,即W(0)=任意值,θ(0)=任意值。
(2)輸入一個樣本X。
(3)正向傳播,計算實際輸出,即根據輸入樣本值、互聯權值和閾值,計算樣本的實際輸出。其中輸入層的輸出等於輸入樣本值,隱含層和輸出層的輸入為
地球物理勘探概論
輸出為
地球物理勘探概論
式中:f為閾值邏輯函數,一般取Sigmoid函數,即
地球物理勘探概論
式中:θj表示閾值或偏置;θ0的作用是調節Sigmoid函數的形狀。較小的θ0將使Sigmoid函數逼近於閾值邏輯單元的特徵,較大的θ0將導致Sigmoid函數變平緩,一般取θ0=1。
(4)計算實際輸出與理想輸出的誤差
地球物理勘探概論
式中:tpk為理想輸出;Opk為實際輸出;p為樣本號;k為輸出節點號。
(5)誤差反向傳播,修改權值
地球物理勘探概論
式中:
地球物理勘探概論
地球物理勘探概論
(6)判斷收斂。若誤差小於給定值,則結束,否則轉向步驟(2)。
(三)塔北雅克拉地區BP神經網路預測實例
以塔北雅克拉地區S4井為已知樣本,取氧化還原電位,放射性元素Rn、Th、Tc、U、K和地震反射
S4井位於測區西南部5線25點,是區內唯一已知井。該井在5390.6m的侏羅系地層獲得40.6m厚的油氣層,在5482m深的震旦系地層中獲58m厚的油氣層。取S4井周圍9個點,即4~6線的23~25 點作為已知油氣的訓練樣本;由於區內沒有未見油的鑽井,只好根據地質資料分析,選取14~16線的55~57點作為非油氣的訓練樣本。BP網路學習迭代17174次,總誤差為0.0001,學習效果相當滿意。以學習後的網路進行識別,得出結果如圖6-2-4所示。
圖6-2-4 塔北雅克拉地區BP神經網路聚類結果
(據劉天佑等,1997)
由圖6-2-4可見,由預測值大於0.9可得5個大封閉圈遠景區,其中測區南部①號遠景區對應著已知油井S4井;②、③號油氣遠景區位於地震勘探所查明的托庫1、2號構造,該兩個構造位於沙雅隆起的東段,其西段即為1984年鑽遇高產油氣流的Sch2井,應是含油氣性好的遠景區;④、⑤號遠景區位於大澇壩構造,是yh油田的組成部分。
8. 機器學習演算法中的SVM和聚類演算法
相信大家都知道,機器學習中有很多的演算法,我們在進行機器學習知識學習的時候一定會遇到過很多的演算法,而機器學習中的SVM演算法和聚類演算法都是比較重要的,我們在這篇文章中就重點給大家介紹一下這兩種演算法,希望這篇文章能夠幫助大家理解這兩種演算法。
機器學習演算法——SVM
提道機器學習演算法就不得不說一說SVM,這種演算法就是支持向量機,而支持向量機演算法是誕生於統計學習界,這也是機器學習中的經典演算法,而支持向量機演算法從某種意義上來說是邏輯回歸演算法的強化,這就是通過給予邏輯回歸演算法更嚴格的優化條件,支持向量機演算法可以獲得比邏輯回歸更好的分類界線。不過如果通過跟高斯核的結合,支持向量機可以表達出非常復雜的分類界線,從而達成很好的的分類效果。核事實上就是一種特殊的函數,最典型的特徵就是可以將低維的空間映射到高維的空間。
於是問題來了,如何在二維平面劃分出一個圓形的分類界線?其實我們在二維平面可能會很困難,但是通過核可以將二維空間映射到三維空間,然後使用一個線性平面就可以達成類似效果。也就是說,二維平面劃分出的非線性分類界線可以等價於三維平面的線性分類界線。接著,我們可以通過在三維空間中進行簡單的線性劃分就可以達到在二維平面中的非線性劃分效果。而支持向量機是一種數學成分很濃的機器學習演算法。在演算法的核心步驟中,有一步證明,即將數據從低維映射到高維不會帶來最後計算復雜性的提升。於是,通過支持向量機演算法,既可以維持計算效率,又可以獲得非常好的分類效果。因此支持向量機在90年代後期一直占據著機器學習中最核心的地位,基本取代了神經網路演算法。
機器學習演算法——聚類演算法
說完了SVM,下面我們給大家介紹一下聚類演算法,前面的演算法中的一個顯著特徵就是我的訓練數據中包含了標簽,訓練出的模型可以對其他未知數據預測標簽。在下面的演算法中,訓練數據都是不含標簽的,而演算法的目的則是通過訓練,推測出這些數據的標簽。這類演算法有一個統稱,即無監督演算法。無監督演算法中最典型的代表就是聚類演算法。而聚類演算法中最典型的代表就是K-Means演算法。這一演算法被廣大朋友所應用。
現在,我們可以清楚認識到機器學習是一個綜合性很強的學科。在這篇文章中我們給大家介紹了很多關於機器學習中的支持向量機和聚類演算法的相關知識,通過這些知識我們不難發現機器學習中有很多有用的演算法,熟練掌握這些演算法是我們真正學會機器學習的必經之路。
9. 四種聚類方法之比較
四種聚類方法之比較
介紹了較為常見的k-means、層次聚類、SOM、FCM等四種聚類演算法,闡述了各自的原理和使用步驟,利用國際通用測試數據集IRIS對這些演算法進行了驗證和比較。結果顯示對該測試類型數據,FCM和k-means都具有較高的准確度,層次聚類准確度最差,而SOM則耗時最長。
關鍵詞:聚類演算法;k-means;層次聚類;SOM;FCM
聚類分析是一種重要的人類行為,早在孩提時代,一個人就通過不斷改進下意識中的聚類模式來學會如何區分貓狗、動物植物。目前在許多領域都得到了廣泛的研究和成功的應用,如用於模式識別、數據分析、圖像處理、市場研究、客戶分割、Web文檔分類等[1]。
聚類就是按照某個特定標准(如距離准則)把一個數據集分割成不同的類或簇,使得同一個簇內的數據對象的相似性盡可能大,同時不在同一個簇中的數據對象的差異性也盡可能地大。即聚類後同一類的數據盡可能聚集到一起,不同數據盡量分離。
聚類技術[2]正在蓬勃發展,對此有貢獻的研究領域包括數據挖掘、統計學、機器學習、空間資料庫技術、生物學以及市場營銷等。各種聚類方法也被不斷提出和改進,而不同的方法適合於不同類型的數據,因此對各種聚類方法、聚類效果的比較成為值得研究的課題。
1 聚類演算法的分類
目前,有大量的聚類演算法[3]。而對於具體應用,聚類演算法的選擇取決於數據的類型、聚類的目的。如果聚類分析被用作描述或探查的工具,可以對同樣的數據嘗試多種演算法,以發現數據可能揭示的結果。
主要的聚類演算法可以劃分為如下幾類:劃分方法、層次方法、基於密度的方法、基於網格的方法以及基於模型的方法[4-6]。
每一類中都存在著得到廣泛應用的演算法,例如:劃分方法中的k-means[7]聚類演算法、層次方法中的凝聚型層次聚類演算法[8]、基於模型方法中的神經網路[9]聚類演算法等。
目前,聚類問題的研究不僅僅局限於上述的硬聚類,即每一個數據只能被歸為一類,模糊聚類[10]也是聚類分析中研究較為廣泛的一個分支。模糊聚類通過隸屬函數來確定每個數據隸屬於各個簇的程度,而不是將一個數據對象硬性地歸類到某一簇中。目前已有很多關於模糊聚類的演算法被提出,如著名的FCM演算法等。
本文主要對k-means聚類演算法、凝聚型層次聚類演算法、神經網路聚類演算法之SOM,以及模糊聚類的FCM演算法通過通用測試數據集進行聚類效果的比較和分析。
2 四種常用聚類演算法研究
2.1 k-means聚類演算法
k-means是劃分方法中較經典的聚類演算法之一。由於該演算法的效率高,所以在對大規模數據進行聚類時被廣泛應用。目前,許多演算法均圍繞著該演算法進行擴展和改進。
k-means演算法以k為參數,把n個對象分成k個簇,使簇內具有較高的相似度,而簇間的相似度較低。k-means演算法的處理過程如下:首先,隨機地選擇k個對象,每個對象初始地代表了一個簇的平均值或中心;對剩餘的每個對象,根據其與各簇中心的距離,將它賦給最近的簇;然後重新計算每個簇的平均值。這個過程不斷重復,直到准則函數收斂。通常,採用平方誤差准則,其定義如下:
這里E是資料庫中所有對象的平方誤差的總和,p是空間中的點,mi是簇Ci的平均值[9]。該目標函數使生成的簇盡可能緊湊獨立,使用的距離度量是歐幾里得距離,當然也可以用其他距離度量。k-means聚類演算法的演算法流程如下:
輸入:包含n個對象的資料庫和簇的數目k;
輸出:k個簇,使平方誤差准則最小。
步驟:
(1) 任意選擇k個對象作為初始的簇中心;
(2) repeat;
(3) 根據簇中對象的平均值,將每個對象(重新)賦予最類似的簇;
(4) 更新簇的平均值,即計算每個簇中對象的平均值;
(5) until不再發生變化。
2.2 層次聚類演算法
根據層次分解的順序是自底向上的還是自上向下的,層次聚類演算法分為凝聚的層次聚類演算法和分裂的層次聚類演算法。
凝聚型層次聚類的策略是先將每個對象作為一個簇,然後合並這些原子簇為越來越大的簇,直到所有對象都在一個簇中,或者某個終結條件被滿足。絕大多數層次聚類屬於凝聚型層次聚類,它們只是在簇間相似度的定義上有所不同。四種廣泛採用的簇間距離度量方法如下:
這里給出採用最小距離的凝聚層次聚類演算法流程:
(1) 將每個對象看作一類,計算兩兩之間的最小距離;
(2) 將距離最小的兩個類合並成一個新類;
(3) 重新計算新類與所有類之間的距離;
(4) 重復(2)、(3),直到所有類最後合並成一類。
2.3 SOM聚類演算法
SOM神經網路[11]是由芬蘭神經網路專家Kohonen教授提出的,該演算法假設在輸入對象中存在一些拓撲結構或順序,可以實現從輸入空間(n維)到輸出平面(2維)的降維映射,其映射具有拓撲特徵保持性質,與實際的大腦處理有很強的理論聯系。
SOM網路包含輸入層和輸出層。輸入層對應一個高維的輸入向量,輸出層由一系列組織在2維網格上的有序節點構成,輸入節點與輸出節點通過權重向量連接。學習過程中,找到與之距離最短的輸出層單元,即獲勝單元,對其更新。同時,將鄰近區域的權值更新,使輸出節點保持輸入向量的拓撲特徵。
演算法流程:
(1) 網路初始化,對輸出層每個節點權重賦初值;
(2) 將輸入樣本中隨機選取輸入向量,找到與輸入向量距離最小的權重向量;
(3) 定義獲勝單元,在獲勝單元的鄰近區域調整權重使其向輸入向量靠攏;
(4) 提供新樣本、進行訓練;
(5) 收縮鄰域半徑、減小學習率、重復,直到小於允許值,輸出聚類結果。
2.4 FCM聚類演算法
1965年美國加州大學柏克萊分校的扎德教授第一次提出了『集合』的概念。經過十多年的發展,模糊集合理論漸漸被應用到各個實際應用方面。為克服非此即彼的分類缺點,出現了以模糊集合論為數學基礎的聚類分析。用模糊數學的方法進行聚類分析,就是模糊聚類分析[12]。
FCM演算法是一種以隸屬度來確定每個數據點屬於某個聚類程度的演算法。該聚類演算法是傳統硬聚類演算法的一種改進。
演算法流程:
(1) 標准化數據矩陣;
(2) 建立模糊相似矩陣,初始化隸屬矩陣;
(3) 演算法開始迭代,直到目標函數收斂到極小值;
(4) 根據迭代結果,由最後的隸屬矩陣確定數據所屬的類,顯示最後的聚類結果。
3 四種聚類演算法試驗
3.1 試驗數據
實驗中,選取專門用於測試分類、聚類演算法的國際通用的UCI資料庫中的IRIS[13]數據集,IRIS數據集包含150個樣本數據,分別取自三種不同的鶯尾屬植物setosa、versicolor和virginica的花朵樣本,每個數據含有4個屬性,即萼片長度、萼片寬度、花瓣長度,單位為cm。在數據集上執行不同的聚類演算法,可以得到不同精度的聚類結果。
3.2 試驗結果說明
文中基於前面所述各演算法原理及演算法流程,用matlab進行編程運算,得到表1所示聚類結果。
如表1所示,對於四種聚類演算法,按三方面進行比較:(1)聚錯樣本數:總的聚錯的樣本數,即各類中聚錯的樣本數的和;(2)運行時間:即聚類整個過程所耗費的時間,單位為s;(3)平均准確度:設原數據集有k個類,用ci表示第i類,ni為ci中樣本的個數,mi為聚類正確的個數,則mi/ni為第i類中的精度,則平均精度為:
3.3 試驗結果分析
四種聚類演算法中,在運行時間及准確度方面綜合考慮,k-means和FCM相對優於其他。但是,各個演算法還是存在固定缺點:k-means聚類演算法的初始點選擇不穩定,是隨機選取的,這就引起聚類結果的不穩定,本實驗中雖是經過多次實驗取的平均值,但是具體初始點的選擇方法還需進一步研究;層次聚類雖然不需要確定分類數,但是一旦一個分裂或者合並被執行,就不能修正,聚類質量受限制;FCM對初始聚類中心敏感,需要人為確定聚類數,容易陷入局部最優解;SOM與實際大腦處理有很強的理論聯系。但是處理時間較長,需要進一步研究使其適應大型資料庫。
聚類分析因其在許多領域的成功應用而展現出誘人的應用前景,除經典聚類演算法外,各種新的聚類方法正被不斷被提出。
10. rbf神經網路演算法是什麼
RBF神經網路演算法是由三層結構組成,輸入層至隱層為非線性的空間變換,一般選用徑向基函數的高斯函數進行運算;從隱層至輸出層為線性空間變換,即矩陣與矩陣之間的變換。
RBF神經網路進行數據運算時需要確認聚類中心點的位置及隱層至輸出層的權重。通常,選用K-means聚類演算法或最小正交二乘法對數據大量的進行訓練得出聚類中心矩陣和權重矩陣。
一般情況下,最小正交二乘法聚類中心點的位置是給定的,因此比較適合分布相對規律的數據。而K-means聚類演算法則會自主選取聚類中心,進行無監督分類學習,從而完成空間映射關系。
RBF網路特點
RBF網路能夠逼近任意非線性的函數(因為使用的是一個局部的激活函數。在中心點附近有最大的反應;越接近中心點則反應最大,遠離反應成指數遞減;就相當於每個神經元都對應不同的感知域)。
可以處理系統內難以解析的規律性,具有很好的泛化能力,並且具有較快的學習速度。
有很快的學習收斂速度,已成功應用於非線性函數逼近、時間序列分析、數據分類、模式識別、信息處理、圖像處理、系統建模、控制和故障診斷等。
當網路的一個或多個可調參數(權值或閾值)對任何一個輸出都有影響時,這樣的網路稱為全局逼近網路。由於對於每次輸入,網路上的每一個權值都要調整,從而導致全局逼近網路的學習速度很慢,比如BP網路。