導航:首頁 > 源碼編譯 > 螞蟻演算法遺傳計算公式

螞蟻演算法遺傳計算公式

發布時間:2022-08-09 11:43:13

❶ 遺傳演算法,蟻群演算法和粒子群演算法都是什麼演算法

遺傳演算法(Genetic Algorithm)是模擬達爾文生物進化論的自然選擇和遺傳學機理的生物進化過程的計算模型,是一種通過模擬自然進化過程搜索最優解的方法。
蟻群演算法(ant colony optimization, ACO),又稱螞蟻演算法,是一種用來在圖中尋找優化路徑的機率型演算法。
粒子群演算法,也稱粒子群優化演算法(Particle Swarm Optimization),縮寫為 PSO, 是近年來由J. Kennedy和R. C. Eberhart等[1] 開發的一種新的進化演算法(Evolutionary Algorithm - EA)。PSO 演算法屬於進化演算法的一種,和模擬退火演算法相似,它也是從隨機解出發,通過迭代尋找最優解,它也是通過適應度來評價解的品質,但它比遺傳演算法規則更為簡單,它沒有遺傳演算法的「交叉」(Crossover) 和「變異」(Mutation) 操作,它通過追隨當前搜索到的最優值來尋找全局最優。

❷ 螞蟻基因的遺傳方式

高中生物伴性遺傳知識點總結:伴性遺傳的最大特點就是性狀與性別的關聯,這部分常考題目主要有伴性遺傳的判斷和相關計算。判斷是伴性遺傳還是常染色體遺傳,常用同型的隱形個體與異型的顯性個體雜交,根據後代的表現型進行判斷。以XY型性別決定的生物為例,如果為伴X隱性遺傳,雌性隱性個體與雄性顯性個體雜交,如果後代雄性個體中出現了顯性性狀,即為常染色體遺傳,否則即為伴X遺傳。3.常見遺傳病的遺傳方式:(1)單基因遺傳:常染色體顯性遺傳:並指、多指;常染色體隱性遺傳:白化病、失天性聾啞X連鎖隱性遺傳:血友病、紅綠色盲;X連鎖顯性遺傳:抗維生素D佝僂病;Y連鎖遺傳:外耳道多毛症;(2)多基因遺傳:唇裂、先天性幽門狹窄、先天性畸形足、脊柱裂、無腦兒;(3)染色體病:染色體數目異常:先天性愚型病;染色體結構畸變:貓叫綜合症。單基因遺傳病單基因遺傳病是指受一對等位基因控制的遺傳病,較常見的有紅綠色盲、血友病、白化病等。根據致病基因所在染色體的種類,通常又可分四類:一、常染色體顯性遺傳病致病基因為顯性並且位於常染色體上,等位基因之一突變,雜合狀態下即可發病。致病基因可以是生殖細胞發生突變而新產生,也可以是由雙親任何一方遺傳而來的。此種患者的子女發病的概率相同,均為1/2。此種患者的異常性狀表達程度可不盡相同。在某些情況下,顯性基因性狀表達極其輕微,甚至臨床不能查出,種情況稱為失顯。由於外顯不完全,在家系分析時可見到中間一代人未患病的隔代遺傳系譜,這種現象又稱不規則外顯。還有一些常染色體顯性遺傳病,在病情表現上可有明顯的輕重差異,純合子患者病情嚴重,雜合子患者病情輕,這種情況稱不完全外顯。常見常染色體顯性遺傳病的病因和臨床表現1、多指(趾)、並指(趾)。臨床表現:5指(趾)之外多生1~2指(趾),有的僅為一團軟組織,無關節及韌帶,也有的有骨組織。2、珠蛋白生成障礙性貧血。病因:珠蛋白肽鏈合成不足或缺失。臨床表現:貧血。3、多發性家族性結腸息肉。病因:息肉大小不等,可有蒂,也可以是廣底的,分布在下段結腸或全部結腸。臨床表現:便血,常有腹痛、腹瀉。4、多囊腎。病因:腎實質形成大小不等的囊泡,多為雙側。臨床表現:腹痛,血尿,腹部有腫塊,高血壓和腎功能衰竭。5、先天性軟骨發育不全。病因:長骨幹骺端軟骨細胞形成障礙,軟骨內成骨變粗,影響骨的長度,但骨膜下成骨不受影響。臨床表現:四肢粗短,軀干相對長,垂手不過髖關節,手指短粗,各指平齊,頭圍較大,前額前突出,馬鞍型鼻樑,下頦前突,腰椎明顯前突,臀部後凸。6、先天性成骨發育不全。臨床表現:以骨骼易折、鞏膜藍色、耳聾為主要特點。7、視網膜母細胞瘤。臨床表現:視力消失,瞳孔呈黃白色,發展可引起青光眼,眼球突出。二、常染色體隱性遺傳病致病基因為隱性並且位於常染色體上,基因性狀是隱性的,即只有純合子時才顯示病狀。此種遺傳病父母雙方均為致病基因攜帶者,故多見於近親婚配者的子女。子代有1/4的概率患病,子女患病概率均等。許多遺傳代謝異常的疾病,屬常染色體隱性遺傳病。按照「一基因、一個酶」或「一個順反子、一個多肽」(one的概念,這些遺傳代謝病的酶或蛋白分子的異常,來自各自編碼基因的異常。常見常染色體隱性遺傳病的病因和臨床表現1、白化病。病因:黑色素細胞缺乏酪氨酸酶,不能使酪氨酸變成黑色素。臨床表現:毛發銀白色或淡黃色,虹膜或脈絡膜不含色素,因而虹膜和瞳孔呈藍或淺紅色,且畏光,部分有曲光不正、斜視及眼球震顫,少數患者智力低下。2、苯丙酮尿症。肝臟中缺乏苯丙氨酸羥化酶,使苯丙氨酸不能氧化成酪氨酸,只能變成苯丙酮酸,大量苯丙氨酸及苯丙酮酸累積在血和腦積液中,並隨尿排出,對嬰兒神經系統造成不同程度的傷害,並抑制產生黑色素的酪氨酸酶,致使患兒皮膚毛發色素淺。臨床表現:不同程度的智力低下,皮膚毛發色淺,尿有發霉臭味,發育遲緩。3、半乳糖血症。病因:由於α1-磷酸半乳糖尿苷轉移酶缺乏,使半乳糖代謝被阻斷,而積聚在血、尿、組織內,對細胞有損害,主要侵害肝、腎、腦及晶狀體。臨床表現:嬰兒出生數周後出現體重不增、嘔吐、腹瀉、腹水等症狀,可出現低血糖性驚厥、白內障、智力低下等。4、粘多糖病。病因:粘多糖類代謝的先天性障礙,各種組織細胞內積存大量的粘多糖,形成大泡。臨床表現:出生時正常,6個月到2歲時開始發育遲緩,可有智力及語言落後,表情呆板,皮膚略厚,似粘液水腫,可有骨關節多處畸形。5、先天性腎上腺皮質增生症。病因:腎上腺皮質合成過程中的各種酶缺乏。臨床表現:女性患者男性化,嚴重者可呈兩性畸形;男性患者外生殖器畸形,假性性早熟,可合並高血壓、低血鉀等症狀。三、X連鎖顯性遺傳病X連鎖顯性遺傳一些性狀或遺傳病的基因位於X染色體上,其性質是顯性的,這種遺傳方式稱為X連鎖顯性遺傳(X-linkeddominantinheritance),這種疾病稱為X連鎖顯性遺傳病。目前所知X連鎖顯性遺傳病不足20種。由於致病基因是顯性的,並位於X染色體上,因此,不論男性(XAY)和女性(XAXa)只要有一個這種致病基因XA就會發病。與常染色體顯性遺傳不同之處是,女性患者既可將致病基因傳給生子,又可以傳給女兒,且機會均等;而男性患者只能將致病基因傳給女兒,不傳給兒子。由此可見,女性患者多於男性,大約為男性的1倍。另外,從臨床上看,女性患者大多數是雜合子,病情一般較男性輕,而男患者病情較重。抗維生素D佝僂病(vitaminDresistantrickets,VDRR)可以作為X連鎖顯性遺傳病的實例。VDRR是一種以低磷酸血症導致骨發育障礙為特徵的遺傳性骨病。患者主要是腎遠曲小管對磷的轉運機制有某種障礙,困而尿排磷酸鹽增多,血磷酸鹽降低而影響骨質鈣化。患者身體矮小,有時伴有佝僂病等各種表現。患者用常規劑量的維生素D治療不能奏效,故有抗維生素D佝僂病之稱。從臨床觀察,女性患者的病情較男性患者輕,多數只有低血磷,佝僂症狀不太明顯,表現為不完全顯性,這可能是女性患者多為雜合子,其中正常X染色體的基因還發揮一定的作用。男性患者(XHY)與正常女性(XhXh)結婚,所生子女中,兒子全部正常,女兒全部發病;女性患者(XHXh)與正常男性(XhX)結婚,子女中正常與患者各佔1/2.X連鎖顯性遺傳病病種較少,有抗維生素D性佝僂病等。這類病女性發病率高,這是由於女性有兩條X染色體,獲得這一顯性致病基因的概率高之故,但病情較男性輕。男性患者病情重,他的全部女兒都將患病。常見X伴性顯性遺傳病的病因和臨床表現1、抗維生素D佝僂病。病因:甲狀腺功能不足,影響體內磷、血鈣的代謝過程,致使血磷降低,且維生素D治療效果不好。臨床表現為:身材矮小,可伴佝僂病和骨質疏鬆症的各種表現。2、家族性遺傳性腎炎。病因:腎小管發育異常,集合管比常人分支少,呈囊狀,遠曲小管薄,但近曲小管變化輕。臨床表現為:慢性進行性腎炎,反復發作性血尿,1/3~1/2患者伴神經性耳聾。四、X連鎖隱性遺傳病致病基因在X染色體上,性狀是隱性的,女性只是攜帶者,這類女性攜帶者與正常男性婚配,子代中的男性有1/2是概率患病,女性不發病,但有1/2的概率是攜帶者。男性患者與正常女性婚配,子代中男性正常,女性都是攜帶者。因此X連鎖隱性遺傳在患病系中常表現為女性攜帶,男性患病。男性的致病基因只能隨著X染色體傳給女兒,不能傳給兒子,稱為交叉遺傳。常見X伴性隱性遺傳病的病因和臨床表現1、血友病A。病因:血漿中抗血友病球蛋白減少,AHG即第Ⅷ因子凝血時間延長。臨床表現:輕微創傷即出血不止,不出血時與常人無異。2、血友病B。病因:血漿中缺乏凝血酶成份PTC,即第Ⅸ因子。臨床表現同血友病A。3、色盲。臨床表現:全色盲對所有顏色看成無色,紅綠色盲為不能區別紅色和綠色。4、進行性肌營養不良。病因:為原發性橫紋肌變性並進行性發展。臨床表現:初為行走笨拙,易跌到,登梯及起立時有困難,從仰卧到起立必須先俯卧,雙手撐地,再用兩手扶小腿、大腿才能站起。進行性肌肉萎縮,但一般不累及面部及手部肌肉。隔代遺傳隔代遺傳從遺傳學的角度看,致病基因的傳遞是代代相傳的,一個個體一旦沒有從親代繼承到某個特定的致病基因,那麼,其後代一般也不必擔憂此種致病基因所帶來的遺傳病。伴性遺傳病患兒絕大多數為男性,追蹤其家族發病的情況時可以發現,患者的母親是正常健康人,但其外祖父卻是本病患者。從中可以總結出兩個特點:①伴性遺傳病是從外祖父傳給外孫,跳過母親這一代,有明顯的隔代遺傳現象;為什麼這種伴性遺傳病都是隔代遺傳的呢?是因為這種病是隱性遺傳病,並且都是通過女性傳遞的。女性雖不發病卻是伴性遺傳病致病基因的攜帶者,並將這種病傳遞給其子代中的男性。比如甲型血友病,它的發病基因是位於X染色體上的第八凝血因子突變所致,是一種典型的隱性遺傳病,其發病者均為男性。由於父親遺傳給兒子的性染色體只是Y,傳給女兒的則是唯一的一個帶致病基因的X染色體,所以患血友病的男人,他的兒子完全正常,女兒雖然表型正常,但全部為致病基因攜帶者,她們結婚所生男孩約有一半將患有外公所患的遺傳病。由此可見,伴性隱性遺傳病雖有隔代現象,但致病基因都是通過患者女兒傳遞下去的

❸ 哪本python書立有蟻群演算法

簡介

蟻群演算法(ant colony optimization, ACO),又稱螞蟻演算法,是一種用來在圖中尋找優化路徑的機率型演算法。它由Marco Dorigo於1992年在他的博士論文中提出,其靈感來源於螞蟻在尋找食物過程中發現路徑的行為。蟻群演算法是一種模擬進化演算法,初步的研究表明該演算法具有許多優良的性質。針對PID控制器參數優化設計問題,將蟻群演算法設計的結果與遺傳演算法設計的結果進行了比較,數值模擬結果表明,蟻群演算法具有一種新的模擬進化優化方法的有效性和應用價值。
定義

各個螞蟻在沒有事先告訴他們食物在什麼地方的前提下開始尋找食物。當一隻找到食物以後,它會向環境釋放一種揮發性分泌物pheromone (稱為信息素,該物質隨著時間的推移會逐漸揮發消失,信息素濃度的大小表徵路徑的遠近)來實現的,吸引其他的螞蟻過來,這樣越來越多的螞蟻會找到食物。有些螞蟻並沒有像其它螞蟻一樣總重復同樣的路,他們會另闢蹊徑,如果另開辟的道路比原來的其他道路更短,那麼,漸漸地,更多的螞蟻被吸引到這條較短的路上來。最後,經過一段時間運行,可能會出現一條最短的路徑被大多數螞蟻重復著。

解決的問題

三維地形中,給出起點和重點,找到其最優路徑。

程序代碼:

numpy as npimport matplotlib.pyplot as plt%pylabcoordinates = np.array([[565.0,575.0],[25.0,185.0],[345.0,750.0],[945.0,685.0],[845.0,655.0],[880.0,660.0],[25.0,230.0],[525.0,1000.0],[580.0,1175.0],[650.0,1130.0],[1605.0,620.0],[1220.0,580.0],[1465.0,200.0],[1530.0, 5.0],[845.0,680.0],[725.0,370.0],[145.0,665.0],[415.0,635.0],[510.0,875.0],[560.0,365.0],[300.0,465.0],[520.0,585.0],[480.0,415.0],[835.0,625.0],[975.0,580.0],[1215.0,245.0],[1320.0,315.0],[1250.0,400.0],[660.0,180.0],[410.0,250.0],[420.0,555.0],[575.0,665.0],[1150.0,1160.0],[700.0,580.0],[685.0,595.0],[685.0,610.0],[770.0,610.0],[795.0,645.0],[720.0,635.0],[760.0,650.0],[475.0,960.0],[95.0,260.0],[875.0,920.0],[700.0,500.0],[555.0,815.0],[830.0,485.0],[1170.0, 65.0],[830.0,610.0],[605.0,625.0],[595.0,360.0],[1340.0,725.0],[1740.0,245.0]])def getdistmat(coordinates):num = coordinates.shape[0]distmat = np.zeros((52,52))for i in range(num):for j in range(i,num):distmat[i][j] = distmat[j][i]=np.linalg.norm(coordinates[i]-coordinates[j])return distmatdistmat = getdistmat(coordinates)numant = 40 #螞蟻個數numcity = coordinates.shape[0] #城市個數alpha = 1 #信息素重要程度因子beta = 5 #啟發函數重要程度因子rho = 0.1 #信息素的揮發速度Q = 1iter = 0itermax = 250etatable = 1.0/(distmat+np.diag([1e10]*numcity)) #啟發函數矩陣,表示螞蟻從城市i轉移到矩陣j的期望程度pheromonetable = np.ones((numcity,numcity)) # 信息素矩陣pathtable = np.zeros((numant,numcity)).astype(int) #路徑記錄表distmat = getdistmat(coordinates) #城市的距離矩陣lengthaver = np.zeros(itermax) #各代路徑的平均長度lengthbest = np.zeros(itermax) #各代及其之前遇到的最佳路徑長度pathbest = np.zeros((itermax,numcity)) # 各代及其之前遇到的最佳路徑長度while iter < itermax:# 隨機產生各個螞蟻的起點城市if numant <= numcity:#城市數比螞蟻數多pathtable[:,0] = np.random.permutation(range(0,numcity))[:numant]else: #螞蟻數比城市數多,需要補足pathtable[:numcity,0] = np.random.permutation(range(0,numcity))[:]pathtable[numcity:,0] = np.random.permutation(range(0,numcity))[:numant-numcity]length = np.zeros(numant) #計算各個螞蟻的路徑距離for i in range(numant):visiting = pathtable[i,0] # 當前所在的城市#visited = set() #已訪問過的城市,防止重復#visited.add(visiting) #增加元素unvisited = set(range(numcity))#未訪問的城市unvisited.remove(visiting) #刪除元素for j in range(1,numcity):#循環numcity-1次,訪問剩餘的numcity-1個城市#每次用輪盤法選擇下一個要訪問的城市listunvisited = list(unvisited)probtrans = np.zeros(len(listunvisited))for k in range(len(listunvisited)):probtrans[k] = np.power(pheromonetable[visiting][listunvisited[k]],alpha)*np.power(etatable[visiting][listunvisited[k]],alpha)cumsumprobtrans = (probtrans/sum(probtrans)).cumsum()cumsumprobtrans -= np.random.rand()k = listunvisited[find(cumsumprobtrans>0)[0]] #下一個要訪問的城市pathtable[i,j] = kunvisited.remove(k)#visited.add(k)length[i] += distmat[visiting][k]visiting = klength[i] += distmat[visiting][pathtable[i,0]] #螞蟻的路徑距離包括最後一個城市和第一個城市的距離#print length# 包含所有螞蟻的一個迭代結束後,統計本次迭代的若干統計參數lengthaver[iter] = length.mean()if iter == 0:lengthbest[iter] = length.min()pathbest[iter] = pathtable[length.argmin()].()else:if length.min() > lengthbest[iter-1]:lengthbest[iter] = lengthbest[iter-1]pathbest[iter] = pathbest[iter-1].()else:lengthbest[iter] = length.min()pathbest[iter] = pathtable[length.argmin()].()# 更新信息素changepheromonetable = np.zeros((numcity,numcity))for i in range(numant):for j in range(numcity-1):changepheromonetable[pathtable[i,j]][pathtable[i,j+1]] += Q/distmat[pathtable[i,j]][pathtable[i,j+1]]changepheromonetable[pathtable[i,j+1]][pathtable[i,0]] += Q/distmat[pathtable[i,j+1]][pathtable[i,0]]pheromonetable = (1-rho)*pheromonetable + changepheromonetableiter += 1 #迭代次數指示器+1#觀察程序執行進度,該功能是非必須的if (iter-1)%20==0:print iter-1# 做出平均路徑長度和最優路徑長度fig,axes = plt.subplots(nrows=2,ncols=1,figsize=(12,10))axes[0].plot(lengthaver,'k',marker = u'')axes[0].set_title('Average Length')axes[0].set_xlabel(u'iteration')axes[1].plot(lengthbest,'k',marker = u'')axes[1].set_title('Best Length')axes[1].set_xlabel(u'iteration')fig.savefig('Average_Best.png',dpi=500,bbox_inches='tight')plt.close()#作出找到的最優路徑圖bestpath = pathbest[-1]plt.plot(coordinates[:,0],coordinates[:,1],'r.',marker=u'$cdot$')plt.xlim([-100,2000])plt.ylim([-100,1500])for i in range(numcity-1):#m,n = bestpath[i],bestpath[i+1]print m,nplt.plot([coordinates[m][0],coordinates[n][0]],[coordinates[m][1],coordinates[n][1]],'k')plt.plot([coordinates[bestpath[0]][0],coordinates[n][0]],[coordinates[bestpath[0]][1],coordinates[n][1]],'b')ax=plt.gca()ax.set_title("Best Path")ax.set_xlabel('X axis')ax.set_ylabel('Y_axis')plt.savefig('Best Path.png',dpi=500,bbox_inches='tight')plt.close()

❹ 求生物學 蟻群演算法

蟻群演算法(ant colony optimization, ACO),又稱螞蟻演算法,是一種用來在圖中尋找優化路徑的機率型演算法。它由Marco Dorigo於1992年在他的博士論文中提出,其靈感來源於螞蟻在尋找食物過程中發現路徑的行為。蟻群演算法是一種模擬進化演算法,初步的研究表明該演算法具有許多優良的性質.針對PID控制器參數優化設計問題,將蟻群演算法設計的結果與遺傳演算法設計的結果進行了比較,數值模擬結果表明,蟻群演算法具有一種新的模擬進化優化方法的有效性和應用價值。

下面詳細說明:
1、范圍:
螞蟻觀察到的范圍是一個方格世界,螞蟻有一個參數為速度半徑(一般是3),那麼它能觀察到的范圍就是3*3個方格世界,並且能移動的距離也在這個范圍之內。
2、環境:
螞蟻所在的環境是一個虛擬的世界,其中有障礙物,有別的螞蟻,還有信息素,信息素有兩種,一種是找到食物的螞蟻灑下的食物信息素,一種是找到窩的螞蟻灑下的窩的信息素。每個螞蟻都僅僅能感知它范圍內的環境信息。環境以一定的速率讓信息素消失。
3、覓食規則:
在每隻螞蟻能感知的范圍內尋找是否有食物,如果有就直接過去。否則看是否有信息素,並且比較在能感知的范圍內哪一點的信息素最多,這樣,它就朝信息素多的地方走,並且每隻螞蟻都會以小概率犯錯誤,從而並不是往信息素最多的點移動。螞蟻找窩的規則和上面一樣,只不過它對窩的信息素做出反應,而對食物信息素沒反應。
4、移動規則:
每隻螞蟻都朝向信息素最多的方向移,並且,當周圍沒有信息素指引的時候,螞蟻會按照自己原來運動的方向慣性的運動下去,並且,在運動的方向有一個隨機的小的擾動。為了防止螞蟻原地轉圈,它會記住最近剛走過了哪些點,如果發現要走的下一點已經在最近走過了,它就會盡量避開。
5、避障規則:
如果螞蟻要移動的方向有障礙物擋住,它會隨機的選擇另一個方向,並且有信息素指引的話,它會按照覓食的規則行為。
6、播撒信息素規則:
每隻螞蟻在剛找到食物或者窩的時候撒發的信息素最多,並隨著它走遠的距離,播撒的信息素越來越少。
根據這幾條規則,螞蟻之間並沒有直接的關系,但是每隻螞蟻都和環境發生交互,而通過信息素這個紐帶,實際上把各個螞蟻之間關聯起來了。比如,當一隻螞蟻找到了食物,它並沒有直接告訴其它螞蟻這兒有食物,而是向環境播撒信息素,當其它的螞蟻經過它附近的時候,就會感覺到信息素的存在,進而根據信息素的指引找到了食物。

❺ 螞蟻演算法的思想進化公式及遺傳演算法的演算法流程圖

遺傳演算法(Genetic Algorithm)是模擬達爾文生物進化論的自然選擇和遺傳學機理的生物進化過程的計算模型,是一種通過模擬自然進化過程搜索最優解的方法,它最初由美國Michigan大學J.Holland教授於1975年首先提出來的,並出版了頗有影響的專著《Adaptation in Natural and Artificial Systems》,GA這個名稱才逐漸為人所知,J.Holland教授所提出的GA通常為簡單遺傳演算法(SGA)。

❻ 如何用蟻群演算法來計算固定時間內走更多的城市且路程最短

概念:蟻群演算法(ant colony optimization,ACO),又稱螞蟻演算法,是一種用來在圖中尋找優化路徑的機率型演算法.它由Marco Dorigo於1992年在他的博士論文中提出,其靈感來源於螞蟻在尋找食物過程中發現路徑的行為.蟻群演算法是一種模擬進化演算法,初步的研究表明該演算法具有許多優良的性質.針對PID控制器參數優化設計問題,將蟻群演算法設計的結果與遺傳演算法設計的結果進行了比較,數值模擬結果表明,蟻群演算法具有一種新的模擬進化優化方法的有效性和應用價值
其原理:為什麼小小的螞蟻能夠找到食物?他們具有智能么?設想,如果我們要為螞蟻設計一個人工智慧的程序,那麼這個程序要多麼復雜呢?首先,你要讓螞蟻能夠避開障礙物,就必須根據適當的地形給它編進指令讓他們能夠巧妙的避開障礙物,其次,要讓螞蟻找到食物,就需要讓他們遍歷空間上的所有點;再次,如果要讓螞蟻找到最短的路徑,那麼需要計算所有可能的路徑並且比較它們的大小,而且更重要的是,你要小心翼翼的編程,因為程序的錯誤也許會讓你前功盡棄.這是多麼不可思議的程序!太復雜了,恐怕沒人能夠完成這樣繁瑣冗餘的程序
應用范圍:螞蟻觀察到的范圍是一個方格世界,螞蟻有一個參數為速度半徑(一般是3),那麼它能觀察到的范圍就是3*3個方格世界,並且能移動的距離也在這個范圍之內
引申:跟著螞蟻的蹤跡,你找到了什麼?通過上面的原理敘述和實際操作,我們不難發現螞蟻之所以具有智能行為,完全歸功於它的簡單行為規則,而這些規則綜合起來具有下面兩個方面的特點:1、多樣性 2、正反饋 多樣性保證了螞蟻在覓食的時候不置走進死胡同而無限循環,正反饋機制則保證了相對優良的信息能夠被保存下來.我們可以把多樣性看成是一種創造能力,而正反饋是一種學習強化能力.正反饋的力量也可以比喻成權威的意見,而多樣性是打破權威體現的創造性,正是這兩點小心翼翼的巧妙結合才使得智能行為涌現出來了.引申來講,大自然的進化,社會的進步、人類的創新實際上都離不開這兩樣東西,多樣性保證了系統的創新能力,正反饋保證了優良特性能夠得到強化,兩者要恰到好處的結合.如果多樣性過剩,也就是系統過於活躍,這相當於螞蟻會過多的隨機運動,它就會陷入混沌狀態;而相反,多樣性不夠,正反饋機制過強,那麼系統就好比一潭死水.這在蟻群中來講就表現為,螞蟻的行為過於僵硬,當環境變化了,螞蟻群仍然不能適當的調整.既然復雜性、智能行為是根據底層規則涌現的,既然底層規則具有多樣性和正反饋特點,那麼也許你會問這些規則是哪裡來的?多樣性和正反饋又是哪裡來的?我本人的意見:規則來源於大自然的進化.而大自然的進化根據剛才講的也體現為多樣性和正反饋的巧妙結合.而這樣的巧妙結合又是為什麼呢?為什麼在你眼前呈現的世界是如此栩栩如生呢?答案在於環境造就了這一切,之所以你看到栩栩如生的世界,是因為那些不能夠適應環境的多樣性與正反饋的結合都已經死掉了,被環境淘汰了!蟻群演算法的實現 下面的程序開始運行之後,螞蟻們開始從窩里出動了,尋找食物;他們會順著屏幕爬滿整個畫面,直到找到食物再返回窩.其中,『F』點表示食物,『H』表示窩,白色塊表示障礙物,『+』就是螞蟻了.

❼ 蟻群演算法是什麼

蟻群演算法,又稱螞蟻演算法,是一種用來在圖中尋找優化路徑的機率型演算法。 它由Marco Dorigo於1992年在他的博士論文中提出,其靈感來源於螞蟻在尋找食物過程中發現路徑的行為。蟻群演算法是一種模擬進化演算法,初步的研究表明該演算法具有許多優良的性質。針對PID控制器參數優化設計問題,將蟻群演算法設計的結果與遺傳演算法設計的結果進行了比較,數值模擬結果表明,蟻群演算法具有一種新的模擬進化優化方法的有效性和應用價值。

原理
設想,如果我們要為螞蟻設計一個人工智慧的程序,那麼這個程序要多麼復雜呢?首先,你要讓螞蟻能夠避開障礙物,就必須根據適當的地形給它編進指令讓他們能夠巧妙的避開障礙物,其次,要讓螞蟻找到食物,就需要讓他們遍歷空間上的所有點;再次,如果要讓螞蟻找到最短的路徑,那麼需要計算所有可能的路徑並且比較它們的大小,而且更重要的是,你要小心翼翼地編程,因為程序的錯誤也許會讓你前功盡棄。這是多麼不可思議的程序!太復雜了,恐怕沒人能夠完成這樣繁瑣冗餘的程序。

然而,事實並沒有你想得那麼復雜,上面這個程序每個螞蟻的核心程序編碼不過100多行!為什麼這么簡單的程序會讓螞蟻干這樣復雜的事情?答案是:簡單規則的涌現。事實上,每隻螞蟻並不是像我們想像的需要知道整個世界的信息,他們其實只關心很小范圍內的眼前信息,而且根據這些局部信息利用幾條簡單的規則進行決策,這樣,在蟻群這個集體里,復雜性的行為就會凸現出來。這就是人工生命、復雜性科學解釋的規律!那麼,這些簡單規則是什麼呢?

❽ 什麼是螞蟻演算法詳解!!

蟻群演算法(ant colony optimization, ACO),又稱螞蟻演算法,是一種用來在圖中尋找優化路徑的機率型技術。它由Marco Dorigo於1992年在他的博士論文中引入,其靈感來源於螞蟻在尋找食物過程中發現路徑的行為。
蟻群演算法是一種模擬進化演算法,初步的研究表明該演算法具有許多優良的性質.針對PID控制器參數優化設計問題,將蟻群演算法設計的結果與遺傳演算法設計的結果進行了比較,數值模擬結果表明,蟻群演算法具有一種新的模擬進化優化方法的有效性和應用價值.
蟻群演算法是一種求解組合最優化問題的新型通用啟發式方法,該方法具有正反饋、分布式計算和富於建設性的貪婪啟發式搜索的特點。通過建立適當的數學模型,基於故障過電流的配電網故障定位變為一種非線性全局尋優問題。由柳洪平創建。
預期的結果:
各個螞蟻在沒有事先告訴他們食物在什麼地方的前提下開始尋找食物。當一隻找到食物以後,它會向環境釋放一種信息素,吸引其他的螞蟻過來,這樣越來越多的螞蟻會找到食物!有些螞蟻並沒有象其它螞蟻一樣總重復同樣的路,他們會另闢蹊徑,如果令開辟的道路比原來的其他道路更短,那麼,漸漸,更多的螞蟻被吸引到這條較短的路上來。最後,經過一段時間運行,可能會出現一條最短的路徑被大多數螞蟻重復著。
原理:
為什麼小小的螞蟻能夠找到食物?他們具有智能么?設想,如果我們要為螞蟻設計一個人工智慧的程序,那麼這個程序要多麼復雜呢?首先,你要讓螞蟻能夠避開障礙物,就必須根據適當的地形給它編進指令讓他們能夠巧妙的避開障礙物,其次,要讓螞蟻找到食物,就需要讓他們遍歷空間上的所有點;再次,如果要讓螞蟻找到最短的路徑,那麼需要計算所有可能的路徑並且比較它們的大小,而且更重要的是,你要小心翼翼的編程,因為程序的錯誤也許會讓你前功盡棄。這是多麼不可思議的程序!太復雜了,恐怕沒人能夠完成這樣繁瑣冗餘的程序。
然而,事實並沒有你想得那麼復雜,上面這個程序每個螞蟻的核心程序編碼不過100多行!為什麼這么簡單的程序會讓螞蟻干這樣復雜的事情?答案是:簡單規則的涌現。事實上,每隻螞蟻並不是像我們想像的需要知道整個世界的信息,他們其實只關心很小范圍內的眼前信息,而且根據這些局部信息利用幾條簡單的規則進行決策,這樣,在蟻群這個集體里,復雜性的行為就會凸現出來。這就是人工生命、復雜性科學解釋的規律!那麼,這些簡單規則是什麼呢?下面詳細說明:
1、范圍:
螞蟻觀察到的范圍是一個方格世界,螞蟻有一個參數為速度半徑(一般是3),那麼它能觀察到的范圍就是3*3個方格世界,並且能移動的距離也在這個范圍之內。
2、環境:
螞蟻所在的環境是一個虛擬的世界,其中有障礙物,有別的螞蟻,還有信息素,信息素有兩種,一種是找到食物的螞蟻灑下的食物信息素,一種是找到窩的螞蟻灑下的窩的信息素。每個螞蟻都僅僅能感知它范圍內的環境信息。環境以一定的速率讓信息素消失。
3、覓食規則:
在每隻螞蟻能感知的范圍內尋找是否有食物,如果有就直接過去。否則看是否有信息素,並且比較在能感知的范圍內哪一點的信息素最多,這樣,它就朝信息素多的地方走,並且每隻螞蟻多會以小概率犯錯誤,從而並不是往信息素最多的點移動。螞蟻找窩的規則和上面一樣,只不過它對窩的信息素做出反應,而對食物信息素沒反應。
4、移動規則:
每隻螞蟻都朝向信息素最多的方向移,並且,當周圍沒有信息素指引的時候,螞蟻會按照自己原來運動的方向慣性的運動下去,並且,在運動的方向有一個隨機的小的擾動。為了防止螞蟻原地轉圈,它會記住最近剛走過了哪些點,如果發現要走的下一點已經在最近走過了,它就會盡量避開。
5、避障規則:
如果螞蟻要移動的方向有障礙物擋住,它會隨機的選擇另一個方向,並且有信息素指引的話,它會按照覓食的規則行為。
7、播撒信息素規則:
每隻螞蟻在剛找到食物或者窩的時候撒發的信息素最多,並隨著它走遠的距離,播撒的信息素越來越少。
根據這幾條規則,螞蟻之間並沒有直接的關系,但是每隻螞蟻都和環境發生交互,而通過信息素這個紐帶,實際上把各個螞蟻之間關聯起來了。比如,當一隻螞蟻找到了食物,它並沒有直接告訴其它螞蟻這兒有食物,而是向環境播撒信息素,當其它的螞蟻經過它附近的時候,就會感覺到信息素的存在,進而根據信息素的指引找到了食物。
問題:
說了這么多,螞蟻究竟是怎麼找到食物的呢?
在沒有螞蟻找到食物的時候,環境沒有有用的信息素,那麼螞蟻為什麼會相對有效的找到食物呢?這要歸功於螞蟻的移動規則,尤其是在沒有信息素時候的移動規則。首先,它要能盡量保持某種慣性,這樣使得螞蟻盡量向前方移動(開始,這個前方是隨機固定的一個方向),而不是原地無謂的打轉或者震動;其次,螞蟻要有一定的隨機性,雖然有了固定的方向,但它也不能像粒子一樣直線運動下去,而是有一個隨機的干擾。這樣就使得螞蟻運動起來具有了一定的目的性,盡量保持原來的方向,但又有新的試探,尤其當碰到障礙物的時候它會立即改變方向,這可以看成一種選擇的過程,也就是環境的障礙物讓螞蟻的某個方向正確,而其他方向則不對。這就解釋了為什麼單個螞蟻在復雜的諸如迷宮的地圖中仍然能找到隱蔽得很好的食物。
當然,在有一隻螞蟻找到了食物的時候,其他螞蟻會沿著信息素很快找到食物的。
螞蟻如何找到最短路徑的?這一是要歸功於信息素,另外要歸功於環境,具體說是計算機時鍾。信息素多的地方顯然經過這里的螞蟻會多,因而會有更多的螞蟻聚集過來。假設有兩條路從窩通向食物,開始的時候,走這兩條路的螞蟻數量同樣多(或者較長的路上螞蟻多,這也無關緊要)。當螞蟻沿著一條路到達終點以後會馬上返回來,這樣,短的路螞蟻來回一次的時間就短,這也意味著重復的頻率就快,因而在單位時間里走過的螞蟻數目就多,灑下的信息素自然也會多,自然會有更多的螞蟻被吸引過來,從而灑下更多的信息素……;而長的路正相反,因此,越來越多地螞蟻聚集到較短的路徑上來,最短的路徑就近似找到了。也許有人會問局部最短路徑和全局最短路的問題,實際上螞蟻逐漸接近全局最短路的,為什麼呢?這源於螞蟻會犯錯誤,也就是它會按照一定的概率不往信息素高的地方走而另闢蹊徑,這可以理解為一種創新,這種創新如果能縮短路途,那麼根據剛才敘述的原理,更多的螞蟻會被吸引過來。
引申
跟著螞蟻的蹤跡,你找到了什麼?通過上面的原理敘述和實際操作,我們不難發現螞蟻之所以具有智能行為,完全歸功於它的簡單行為規則,而這些規則綜合起來具有下面兩個方面的特點:
1、多樣性
2、正反饋
多樣性保證了螞蟻在覓食的時候不置走進死胡同而無限循環,正反饋機制則保證了相對優良的信息能夠被保存下來。我們可以把多樣性看成是一種創造能力,而正反饋是一種學習強化能力。正反饋的力量也可以比喻成權威的意見,而多樣性是打破權威體現的創造性,正是這兩點小心翼翼的巧妙結合才使得智能行為涌現出來了。
引申來講,大自然的進化,社會的進步、人類的創新實際上都離不開這兩樣東西,多樣性保證了系統的創新能力,正反饋保證了優良特性能夠得到強化,兩者要恰到好處的結合。如果多樣性過剩,也就是系統過於活躍,這相當於螞蟻會過多的隨機運動,它就會陷入混沌狀態;而相反,多樣性不夠,正反饋機制過強,那麼系統就好比一潭死水。這在蟻群中來講就表現為,螞蟻的行為過於僵硬,當環境變化了,螞蟻群仍然不能適當的調整。
既然復雜性、智能行為是根據底層規則涌現的,既然底層規則具有多樣性和正反饋特點,那麼也許你會問這些規則是哪裡來的?多樣性和正反饋又是哪裡來的?我本人的意見:規則來源於大自然的進化。而大自然的進化根據剛才講的也體現為多樣性和正反饋的巧妙結合。而這樣的巧妙結合又是為什麼呢?為什麼在你眼前呈現的世界是如此栩栩如生呢?答案在於環境造就了這一切,之所以你看到栩栩如生的世界,是因為那些不能夠適應環境的多樣性與正反饋的結合都已經死掉了,被環境淘汰了!
參數說明:
最大信息素:螞蟻在一開始擁有的信息素總量,越大表示程序在較長一段時間能夠存在信息素。信息素消減的速度:隨著時間的流逝,已經存在於世界上的信息素會消減,這個數值越大,那麼消減的越快。
錯誤概率表示這個螞蟻不往信息素最大的區域走的概率,越大則表示這個螞蟻越有創新性。
速度半徑表示螞蟻一次能走的最大長度,也表示這個螞蟻的感知范圍。
記憶能力表示螞蟻能記住多少個剛剛走過點的坐標,這個值避免了螞蟻在本地打轉,停滯不前。而這個值越大那麼整個系統運行速度就慢,越小則螞蟻越容易原地轉圈。
蟻群演算法的實現
下面的程序開始運行之後,螞蟻們開始從窩里出動了,尋找食物;他們會順著屏幕爬滿整個畫面,直到找到食物再返回窩。
其中,『F』點表示食物,『H』表示窩,白色塊表示障礙物,『+』就是螞蟻了。
參數說明:
最大信息素:螞蟻在一開始擁有的信息素總量,越大表示程序在較長一段時間能夠存在信息素。信息素消減的速度:隨著時間的流逝,已經存在於世界上的信息素會消減,這個數值越大,那麼消減的越快。
錯誤概率表示這個螞蟻不往信息素最大的區域走的概率,越大則表示這個螞蟻越有創新性。
速度半徑表示螞蟻一次能走的最大長度,也表示這個螞蟻的感知范圍。
記憶能力表示螞蟻能記住多少個剛剛走過點的坐標,這個值避免了螞蟻在本地打轉,停滯不前。而這個值越大那麼整個系統運行速度就慢,越小則螞蟻越容易原地轉圈。

❾ 蟻群演算法的內容

蟻群演算法又稱螞蟻演算法,是一種用來在圖中尋找優化路徑的機率型演算法。它由Marco Dorigo於1992年在他的博士論文中提出,其靈感來源於螞蟻在尋找食物過程中發現路徑的行為。蟻群演算法是一種模擬進化演算法,初步的研究表明該演算法具有許多優良的性質.針對PID控制器參數優化設計問題,將蟻群演算法設計的結果與遺傳演算法設計的結果進行了比較,數值模擬結果表明,蟻群演算法具有一種新的模擬進化優化方法的有效性和應用價值。

神經網路
思維學普遍認為,人類大腦的思維分為抽象(邏輯)思維、形象(直觀)思維和靈感(頓悟)思維三種基本方式。
邏輯性的思維是指根據邏輯規則進行推理的過程;它先將信息化成概念,並用符號表示,然後,根據符號運算按串列模式進行邏輯推理;這一過程可以寫成串列的指令,讓計算機執行。然而,直觀性的思維是將分布式存儲的信息綜合起來,結果是忽然間產生想法或解決問題的辦法。這種思維方式的根本之點在於以下兩點:1.信息是通過神經元上的興奮模式分布儲在網路上;2.信息處理是通過神經元之間同時相互作用的動態過程來完成的。
人工神經網路就是模擬人思維的第二種方式。這是一個非線性動力學系統,其特色在於信息的分布式存儲和並行協同處理。雖然單個神經元的結構極其簡單,功能有限,但大量神經元構成的網路系統所能實現的行為卻是極其豐富多彩的。
神經網路的研究內容相當廣泛,反映了多學科交叉技術領域的特點。目前,主要的研究工作集中在以下幾個方面:
(1)生物原型研究。從生理學、心理學、解剖學、腦科學、病理學等生物科學方面研究神經細胞、神經網路、神經系統的生物原型結構及其功能機理。
(2)建立理論模型。根據生物原型的研究,建立神經元、神經網路的理論模型。其中包括概念模型、知識模型、物理化學模型、數學模型等。
(3)網路模型與演算法研究。在理論模型研究的基礎上構作具體的神經網路模型,以實現計算機饃擬或准備製作硬體,包括網路學習演算法的研究。這方面的工作也稱為技術模型研究。
(4)人工神經網路應用系統。在網路模型與演算法研究的基礎上,利用人工神經網路組成實際的應用系統,例如,完成某種信號處理或模式識別的功能、構作專家系統、製成機器人等等。
縱觀當代新興科學技術的發展歷史,人類在征服宇宙空間、基本粒子,生命起源等科學技術領域的進程中歷經了崎嶇不平的道路。我們也會看到,探索人腦功能和神經網路的研究將伴隨著重重困難的克服而日新月異。
遺傳演算法,是模擬達爾文生物進化論的自然選擇和遺傳學機理的生物進化過程的計算模型,是一種通過模擬自然進化過程搜索最優解的方法,它最初由美國Michigan大學J.Holland教授於1975年首先提出來的,並出版了頗有影響的專著《Adaptation in Natural and Artificial Systems》,GA這個名稱才逐漸為人所知,J.Holland教授所提出的GA通常為簡單遺傳演算法(SGA)。

閱讀全文

與螞蟻演算法遺傳計算公式相關的資料

熱點內容
螢石雲伺服器視頻 瀏覽:269
防火牆配置伺服器熱備的虛擬地址 瀏覽:188
linux安裝xdm 瀏覽:736
java計算12 瀏覽:249
大金空調擺動式壓縮機 瀏覽:453
新的雲伺服器如何設置首頁 瀏覽:687
javastring字元位置 瀏覽:196
銀河麒麟字體庫存在哪個文件夾 瀏覽:956
魔獸加丁伺服器的航空叫什麼 瀏覽:152
花冠改裝案例哪個app多 瀏覽:515
成績單app哪個好用 瀏覽:140
北美程序員vs國內程序員 瀏覽:181
php解析xml文檔 瀏覽:121
石墨文檔APP怎麼橫屏 瀏覽:185
牆主鋼筋加密和非加密怎麼看 瀏覽:144
金山區文件夾封套定製 瀏覽:708
soho程序員 瀏覽:672
java位元組截取 瀏覽:526
php提交作業 瀏覽:816
房產還沒解壓可以辦理贈予嗎 瀏覽:224