❶ 楚雄電腦培訓學校告訴你初學編程最常問的幾個問題
隔行如隔山,初學編程往往不知道從何入手,非常迷茫,以下幾個問題是我經常被問到的,總結出來分享給讀者。
1、多久能學會編程?
這是一個沒有答案的問題。每個人投入的時間、學習效率和基礎都不一樣。如果你每天都拿出大把的時間來學習,那麼兩三個月就可以學會web前端,不到半年時間就可以編寫出一些軟體。
但是有一點可以肯定,幾個月從小白成長為大神是絕對不可能的。要想出類拔萃,沒有幾年功夫是不行的。學習編程不是看幾本書就能搞定的,需要你不斷的練習,編寫代碼,積累零散的知識點,代碼量跟你的編程水平直接相關,沒有幾萬行代碼,沒有拿得出手的作品,怎能稱得上「大神」。
每個人程序員都是這樣過來的,開始都是一頭霧水,連輸出九九乘法表都很吃力,只有通過不斷練習才能熟悉,這是一個強化思維方式的過程。
知識點可以在短時間內了解,但是思維方式和編程經驗需要不斷實踐才能強化,這就是為什麼很多初學者已經了解了web前端的基本概念,但是仍然不會編寫代碼的原因。
程序員被戲稱為」碼農「,意思是寫代碼的農民,要想成為一個合格的農民,必須要腳踏實地辛苦耕耘。
也不要壓力太大,一切編程語言都是紙老虎,一層窗戶紙,只要開竅了,就容易了。
2、學編程難嗎?
編程是一門技術,我也不知道它難不難,我只知道,只要你想學,肯定能學會。技術就是一層窗戶紙,是有道理可以遵循的,在我看來,比搞抽象的藝術要容易。
在技術領域,編程的入門門檻很低,互聯網的資料很多,只要你有一台計算機,一根網線,具備初中學歷,就可以學習,投資在5K左右。
不管是技術還是非技術,要想有所造詣,都必須潛心鑽研,沒有幾年功夫不會鶴立雞群。所以請先問問你自己,你想學編程嗎,你喜歡嗎,如果你覺得自己對編程很感興趣,想了解軟體或網站是怎麼做的,那麼就不要再問這個問題了,盡管去學就好了。
3、英語和數學基礎不行,可以學會嗎?初中畢業可以學會嗎?
首先說英語。編程需要你有英語基礎,初中水平完全可以勝任。編程起源於美國,楚雄北大青鳥http://www.kmbdqn.cn/發現代碼中會出現很多單詞,有英語基礎記憶起來會非常容易,如果你不認識也沒關系,我推薦你安裝有道詞典,它的劃詞功能非常棒,選中什麼就及時翻譯什麼,不管是句子還是單詞。這樣,相信你開發出常用的軟體不成問題。
❷ 男女就是窗戶紙是什麼意思
男追女隔重山,女追男隔層紙,就是說雙方只要互相傾訴心聲以後就可以成就好事,其實這句話並沒有什麼卵用,打炮很容易真要長久穩定就很難
❸ 數據結構和演算法有什麼關系數據結構就是演算法嗎
首先你要弄清楚數據結構是什麼?數據結構呢其實就是一種存儲數據之間的邏輯結構:比如我們學過的線性結構:順序表啦,鏈表啦;層次結構:樹啦。合適的數據結構可以帶來更高的運行效率和存儲效率,與相應解決實際問題演算法的適應性也就越高,這也就是為什麼一些演算法指定了數據存儲必須以某種特定的數據結才行。一般都是根據合適的數據結構來設計演算法,而不是根據演算法來設計數據結構。
演算法和數據結構往往是互不分開的。離開了演算法,數據結構就顯得毫無意義,而沒有了數據結構演算法就沒有實現的條件。良好的數據結構思想就是一種高效的演算法,但是數據結構不等於演算法。只有當數據結構用於處理某個特定問題類型的時候,數據結構才會體現為演算法。要想細致的了解,就要多看書,因為這東西畢竟發展了那麼多年,一兩句話是說不清楚的。想知道更多的數據結構與演算法知識嗎?可以去了解一下小碼哥李明傑。
❹ 學編程,什麼叫演算法 為什麼很多人說演算法很難
其實說白了,演算法就是解決某種問題的方式,但也分好的演算法和差的演算法,而學習書本上的知識目的就是為了提升自己的思維方式,借鑒更多好的演算法,因為好的演算法可以提升程序的性能,提高開發效率,就拿最簡單的例子,玩猜數字游戲,1-100裡面隨便選一個數字,然後讓你去猜它是多少,別人會告訴你這個數字大了還是小了,最直接的方式就是從1一直猜到100,但是也有更簡便的方式:就是類似二分法的方式從50開始猜,如果大了就猜1-50中的25,如果小了猜50-100中的75,以此類推,第一種從1-100猜數字是演算法,第二種二分法的方式也是演算法,只是第二種更好.........還有從1加到100,直接方式1+2+3....一個一個的加,另一種方式(1+100)*50,這個就是著名的高斯演算法。
❺ 古代的窗戶就是一層紙,要如何防人偷窺
首先,窗戶不是我們想像中貼在窗戶上拉下來的柔軟的白紙。在古代,用來貼窗戶的紙有一個好名字,叫做「桃花紙」,即用來製作油紙傘的紙,油紙傘是用桐油浸泡後質地厚實、防水防潮的紙。
自從玻璃技術引入中國以來,人們的生活似乎更方便了。窗戶不容易被手指刺破。然而,這並不意味著隱私不會被偷窺。相反,雙筒望遠鏡使用玻璃,透過透明玻璃窗看得越來越遠。
❻ java中遞歸演算法是什麼怎麼算的
一、遞歸演算法基本思路:
Java遞歸演算法是基於Java語言實現的遞歸演算法。遞歸演算法是一種直接或者間接調用自身函數或者方法的演算法。遞歸演算法實質是把問題分解成規模縮小的同類問題的子問題,然後遞歸調用方法表示問題的解。遞歸往往能給我們帶來非常簡潔非常直觀的代碼形式,從而使我們的編碼大大簡化,然而遞歸的思維確實跟我們的常規思維相逆的,通常都是從上而下的思維問題,而遞歸趨勢從下往上的進行思維。
二、遞歸演算法解決問題的特點:
【1】遞歸就是方法里調用自身。
【2】在使用遞歸策略時,必須有一個明確的遞歸結束條件,稱為遞歸出口。
【3】遞歸演算法代碼顯得很簡潔,但遞歸演算法解題的運行效率較低。所以不提倡用遞歸設計程序。
【4】在遞歸調用的過程中系統為每一層的返回點、局部量等開辟了棧來存儲。遞歸次數過多容易造成棧溢出等,所以一般不提倡用遞歸演算法設計程序。
【5】在做遞歸演算法的時候,一定把握出口,也就是做遞歸演算法必須要有一個明確的遞歸結束條件。這一點是非常重要的。其實這個出口就是一個條件,當滿足了這個條件的時候我們就不再遞歸了。
三、代碼示例:
publicclassFactorial{
//thisisarecursivefunction
intfact(intn){
if(n==1)return1;
returnfact(n-1)*n;
}}
publicclassTestFactorial{publicstaticvoidmain(String[]args){
//TODOAuto-generatedmethodstub
Factorialfactorial=newFactorial();
System.out.println("factorial(5)="+factorial.fact(5));
}
}
代碼執行流程圖如下:
此程序中n=5就是程序的出口。
❼ 程序中一定會有演算法么
不一定,演算法和程序還是有區別的,演算法一般是針對某個數學問題。簡單的常見演算法主要有查找、排序。復雜一些的演算法比如有加密、搜索引擎、3D渲染等等。
程序和演算法最顯著的區別是,演算法一定可以在有限的時間內結束,而程序則不必。比如QQ,你只要不關閉它,就可以讓它一直運行下去,這就是程序。而搜索引擎,你點一下搜索,它會很快給出搜索的結果,這就是演算法。
至於Hello World嘛……太簡單了,無所謂演算法……
補充回答:
演算法存在的意義是解決某個特定問題的,否則就沒有意義了。只要你的這種組合符合演算法的定義和特徵的,那麼沒有爭議,就是演算法。Google的搜索引擎演算法不知道有多復雜,據說有上萬個參數,但那也是演算法。
其實樓主大可不必糾結於概念,大師們之所以把「演算法」這個概念抽象出來,是為了更好的解決一些常見的計算問題,當然由此也衍生出了演算法復雜度等一系列概念。只要能夠更好的解決問題,概念是次要的,結果才是主要的。
❽ 數據結構和演算法是一回事么
兩門
數據結構是計算機存儲、組織數據的方式。
演算法是指完成一個任務准確而完整的描述。也就是說給定初始狀態或輸入數據,經過計算機程序的有限次運算,能夠得出所要求或期望的終止狀態或輸出數據。
❾ 計算機演算法指的是什麼
計算機演算法是以一步接一步的方式來詳細描述計算機如何將輸入轉化為所要求的輸出的過程,或者說,演算法是對計算機上執行的計算過程的具體描述。
無論演算法有多麼復雜,都必須在有限步之後結束並終止運行;即演算法的步驟必須是有限的。在任何情況下,演算法都不能陷入無限循環中。演算法必須是由一系列具體步驟組成的,並且每一步都能夠被計算機所理解和執行,而不是抽象和模糊的概念。
演算法首先必須是正確的,即對於任意的一組輸入,包括合理的輸入與不合理的輸入,總能得到預期的輸出。如果一個演算法只是對合理的輸入才能得到預期的輸出,而在異常情況下卻無法預料輸出的結果,那麼它就不是正確的。
(9)為什麼說演算法就是一層窗戶紙擴展閱讀
特點
1、有窮性。一個演算法應包含有限的操作步驟,而不能是無限的。事實上「有窮性」往往指「在合理的范圍之內」。如果讓計算機執行一個歷時1000年才結束的演算法,這雖然是有窮的,但超過了合理的限度,人們不把他視為有效演算法。
2、確定性。演算法中的每一個步驟都應當是確定的,而不應當是含糊的、模稜兩可的。演算法中的每一個步驟應當不致被解釋成不同的含義,而應是十分明確的。也就是說,演算法的含義應當是唯一的,而不應當產生「歧義性」。
3、有零個或多個輸入。所謂輸入是指在執行演算法是需要從外界取得必要的信息。
4、有一個或多個輸出。演算法的目的是為了求解,沒有輸出的演算法是沒有意義的。
5、有效性。 演算法中的每一個 步驟都應當能有效的執行。並得到確定的結果。
❿ C語言中什麼叫演算法,演算法在程序設計中的重要作用
一、什麼是演算法
演算法是一系列解決問題的清晰指令,也就是說,能夠對一定規范的輸入,在有限時間內獲得所要求的輸出。演算法常常含有重復的步驟和一些比較或邏輯判斷。如果一個演算法有缺陷,或不適合於某個問題,執行這個演算法將不會解決這個問題。不同的演算法可能用不同的時間、空間或效率來完成同樣的任務。一個演算法的優劣可以用空間復雜度與時間復雜度來衡量。
演算法的時間復雜度是指演算法需要消耗的時間資源。一般來說,計算機演算法是問題規模n 的函數f(n),演算法執行的時間的增長率與f(n) 的增長率正相關,稱作漸進時間復雜度(Asymptotic Time Complexity)。時間復雜度用「O(數量級)」來表示,稱為「階」。常見的時間復雜度有: O(1)常數階;O(log2n)對數階;O(n)線性階;O(n2)平方階。
演算法的空間復雜度是指演算法需要消耗的空間資源。其計算和表示方法與時間復雜度類似,一般都用復雜度的漸近性來表示。同時間復雜度相比,空間復雜度的分析要簡單得多。
二、演算法設計的方法
1.遞推法
遞推法是利用問題本身所具有的一種遞推關系求問題解的一種方法。設要求問題規模為N的解,當N=1時,解或為已知,或能非常方便地得到解。能採用遞推法構造演算法的問題有重要的遞推性質,即當得到問題規模為i-1的解後,由問題的遞推性質,能從已求得的規模為1,2,…,i-1的一系列解,構造出問題規模為I的解。這樣,程序可從i=0或i=1出發,重復地,由已知至i-1規模的解,通過遞推,獲得規模為i的解,直至得到規模為N的解。
【問題】 階乘計算
問題描述:編寫程序,對給定的n(n≤100),計算並輸出k的階乘k!(k=1,2,…,n)的全部有效數字。
由於要求的整數可能大大超出一般整數的位數,程序用一維數組存儲長整數,存儲長整數數組的每個元素只存儲長整數的一位數字。如有m位成整數N用數組a[ ]存儲:
N=a[m]×10m-1+a[m-1]×10m-2+ … +a[2]×101+a[1]×100
並用a[0]存儲長整數N的位數m,即a[0]=m。按上述約定,數組的每個元素存儲k的階乘k!的一位數字,並從低位到高位依次存於數組的第二個元素、第三個元素……。例如,5!=120,在數組中的存儲形式為:
3 0 2 1 ……
首元素3表示長整數是一個3位數,接著是低位到高位依次是0、2、1,表示成整數120。
計算階乘k!可採用對已求得的階乘(k-1)!連續累加k-1次後求得。例如,已知4!=24,計算5!,可對原來的24累加4次24後得到120。細節見以下程序。
# include <stdio.h>
# include <malloc.h>
......
2.遞歸
遞歸是設計和描述演算法的一種有力的工具,由於它在復雜演算法的描述中被經常採用,為此在進一步介紹其他演算法設計方法之前先討論它。
能採用遞歸描述的演算法通常有這樣的特徵:為求解規模為N的問題,設法將它分解成規模較小的問題,然後從這些小問題的解方便地構造出大問題的解,並且這些規模較小的問題也能採用同樣的分解和綜合方法,分解成規模更小的問題,並從這些更小問題的解構造出規模較大問題的解。特別地,當規模N=1時,能直接得解。
【問題】 編寫計算斐波那契(Fibonacci)數列的第n項函數fib(n)。
斐波那契數列為:0、1、1、2、3、……,即:
fib(0)=0;
fib(1)=1;
fib(n)=fib(n-1)+fib(n-2) (當n>1時)。
寫成遞歸函數有:
int fib(int n)
{ if (n==0) return 0;
if (n==1) return 1;
if (n>1) return fib(n-1)+fib(n-2);
}
遞歸演算法的執行過程分遞推和回歸兩個階段。在遞推階段,把較復雜的問題(規模為n)的求解推到比原問題簡單一些的問題(規模小於n)的求解。例如上例中,求解fib(n),把它推到求解fib(n-1)和fib(n-2)。也就是說,為計算fib(n),必須先計算fib(n-1)和fib(n-2),而計算fib(n-1)和fib(n-2),又必須先計算fib(n-3)和fib(n-4)。依次類推,直至計算fib(1)和fib(0),分別能立即得到結果1和0。在遞推階段,必須要有終止遞歸的情況。例如在函數fib中,當n為1和0的情況。
在回歸階段,當獲得最簡單情況的解後,逐級返回,依次得到稍復雜問題的解,例如得到fib(1)和fib(0)後,返回得到fib(2)的結果,……,在得到了fib(n-1)和fib(n-2)的結果後,返回得到fib(n)的結果。
在編寫遞歸函數時要注意,函數中的局部變數和參數知識局限於當前調用層,當遞推進入「簡單問題」層時,原來層次上的參數和局部變數便被隱蔽起來。在一系列「簡單問題」層,它們各有自己的參數和局部變數。
由於遞歸引起一系列的函數調用,並且可能會有一系列的重復計算,遞歸演算法的執行效率相對較低。當某個遞歸演算法能較方便地轉換成遞推演算法時,通常按遞推演算法編寫程序。例如上例計算斐波那契數列的第n項的函數fib(n)應採用遞推演算法,即從斐波那契數列的前兩項出發,逐次由前兩項計算出下一項,直至計算出要求的第n項。
【問題】 組合問題
問題描述:找出從自然數1、2、……、n中任取r個數的所有組合。例如n=5,r=3的所有組合為: (1)5、4、3 (2)5、4、2 (3)5、4、1
(4)5、3、2 (5)5、3、1 (6)5、2、1
(7)4、3、2 (8)4、3、1 (9)4、2、1
(10)3、2、1
分析所列的10個組合,可以採用這樣的遞歸思想來考慮求組合函數的演算法。設函數為void comb(int m,int k)為找出從自然數1、2、……、m中任取k個數的所有組合。當組合的第一個數字選定時,其後的數字是從餘下的m-1個數中取k-1數的組合。這就將求m個數中取k個數的組合問題轉化成求m-1個數中取k-1個數的組合問題。設函數引入工作數組a[ ]存放求出的組合的數字,約定函數將確定的k個數字組合的第一個數字放在a[k]中,當一個組合求出後,才將a[ ]中的一個組合輸出。第一個數可以是m、m-1、……、k,函數將確定組合的第一個數字放入數組後,有兩種可能的選擇,因還未去頂組合的其餘元素,繼續遞歸去確定;或因已確定了組合的全部元素,輸出這個組合。細節見以下程序中的函數comb。
【程序】
# include <stdio.h>
# define MAXN 100
int a[MAXN];
void comb(int m,int k)
{ int i,j;
for (i=m;i>=k;i--)
{ a[k]=i;
if (k>1)
comb(i-1,k-1);
else
{ for (j=a[0];j>0;j--)
printf(「%4d」,a[j]);
printf(「\n」);
}
}
}
void main()
{ a[0]=3;
comb(5,3);
}
3.回溯法
回溯法也稱為試探法,該方法首先暫時放棄關於問題規模大小的限制,並將問題的候選解按某種順序逐一枚舉和檢驗。當發現當前候選解不可能是解時,就選擇下一個候選解;倘若當前候選解除了還不滿足問題規模要求外,滿足所有其他要求時,繼續擴大當前候選解的規模,並繼續試探。如果當前候選解滿足包括問題規模在內的所有要求時,該候選解就是問題的一個解。在回溯法中,放棄當前候選解,尋找下一個候選解的過程稱為回溯。擴大當前候選解的規模,以繼續試探的過程稱為向前試探。
【問題】 組合問題
問題描述:找出從自然數1,2,…,n中任取r個數的所有組合。
採用回溯法找問題的解,將找到的組合以從小到大順序存於a[0],a[1],…,a[r-1]中,組合的元素滿足以下性質:
(1) a[i+1]>a,後一個數字比前一個大;
(2) a-i<=n-r+1。
按回溯法的思想,找解過程可以敘述如下:
首先放棄組合數個數為r的條件,候選組合從只有一個數字1開始。因該候選解滿足除問題規模之外的全部條件,擴大其規模,並使其滿足上述條件(1),候選組合改為1,2。繼續這一過程,得到候選組合1,2,3。該候選解滿足包括問題規模在內的全部條件,因而是一個解。在該解的基礎上,選下一個候選解,因a[2]上的3調整為4,以及以後調整為5都滿足問題的全部要求,得到解1,2,4和1,2,5。由於對5不能再作調整,就要從a[2]回溯到a[1],這時,a[1]=2,可以調整為3,並向前試探,得到解1,3,4。重復上述向前試探和向後回溯,直至要從a[0]再回溯時,說明已經找完問題的全部解。按上述思想寫成程序如下:
【程序】
# define MAXN 100
int a[MAXN];
void comb(int m,int r)
{ int i,j;
i=0;
a=1;
do {
if (a-i<=m-r+1
{ if (i==r-1)
{ for (j=0;j<r;j++)
printf(「%4d」,a[j]);
printf(「\n」);
}
a++;
continue;
}
else
{ if (i==0)
return;
a[--i]++;
}
} while (1)
}
main()
{ comb(5,3);
}
4.貪婪法
貪婪法是一種不追求最優解,只希望得到較為滿意解的方法。貪婪法一般可以快速得到滿意的解,因為它省去了為找最優解要窮盡所有可能而必須耗費的大量時間。貪婪法常以當前情況為基礎作最優選擇,而不考慮各種可能的整體情況,所以貪婪法不要回溯。
例如平時購物找錢時,為使找回的零錢的硬幣數最少,不考慮找零錢的所有各種發表方案,而是從最大面值的幣種開始,按遞減的順序考慮各幣種,先盡量用大面值的幣種,當不足大面值幣種的金額時才去考慮下一種較小面值的幣種。這就是在使用貪婪法。這種方法在這里總是最優,是因為銀行對其發行的硬幣種類和硬幣面值的巧妙安排。如只有面值分別為1、5和11單位的硬幣,而希望找回總額為15單位的硬幣。按貪婪演算法,應找1個11單位面值的硬幣和4個1單位面值的硬幣,共找回5個硬幣。但最優的解應是3個5單位面值的硬幣。
【問題】 裝箱問題
問題描述:裝箱問題可簡述如下:設有編號為0、1、…、n-1的n種物品,體積分別為v0、v1、…、vn-1。將這n種物品裝到容量都為V的若干箱子里。約定這n種物品的體積均不超過V,即對於0≤i<n,有0<vi≤V。不同的裝箱方案所需要的箱子數目可能不同。裝箱問題要求使裝盡這n種物品的箱子數要少。
若考察將n種物品的集合分劃成n個或小於n個物品的所有子集,最優解就可以找到。但所有可能劃分的總數太大。對適當大的n,找出所有可能的劃分要花費的時間是無法承受的。為此,對裝箱問題採用非常簡單的近似演算法,即貪婪法。該演算法依次將物品放到它第一個能放進去的箱子中,該演算法雖不能保證找到最優解,但還是能找到非常好的解。不失一般性,設n件物品的體積是按從大到小排好序的,即有v0≥v1≥…≥vn-1。如不滿足上述要求,只要先對這n件物品按它們的體積從大到小排序,然後按排序結果對物品重新編號即可。裝箱演算法簡單描述如下:
{ 輸入箱子的容積;
輸入物品種數n;
按體積從大到小順序,輸入各物品的體積;
預置已用箱子鏈為空;
預置已用箱子計數器box_count為0;
for (i=0;i<n;i++)
{ 從已用的第一隻箱子開始順序尋找能放入物品i 的箱子j;
if (已用箱子都不能再放物品i)
{ 另用一個箱子,並將物品i放入該箱子;
box_count++;
}
else
將物品i放入箱子j;
}
}
上述演算法能求出需要的箱子數box_count,並能求出各箱子所裝物品。下面的例子說明該演算法不一定能找到最優解,設有6種物品,它們的體積分別為:60、45、35、20、20和20單位體積,箱子的容積為100個單位體積。按上述演算法計算,需三隻箱子,各箱子所裝物品分別為:第一隻箱子裝物品1、3;第二隻箱子裝物品2、4、5;第三隻箱子裝物品6。而最優解為兩只箱子,分別裝物品1、4、5和2、3、6。
若每隻箱子所裝物品用鏈表來表示,鏈表首結點指針存於一個結構中,結構記錄尚剩餘的空間量和該箱子所裝物品鏈表的首指針。另將全部箱子的信息也構成鏈表。以下是按以上演算法編寫的程序。
}
5.分治法
任何一個可以用計算機求解的問題所需的計算時間都與其規模N有關。問題的規模越小,越容易直接求解,解題所需的計算時間也越少。例如,對於n個元素的排序問題,當n=1時,不需任何計算;n=2時,只要作一次比較即可排好序;n=3時只要作3次比較即可,…。而當n較大時,問題就不那麼容易處理了。要想直接解決一個規模較大的問題,有時是相當困難的。
分治法的設計思想是,將一個難以直接解決的大問題,分割成一些規模較小的相同問題,以便各個擊破,分而治之。
如果原問題可分割成k個子問題(1<k≤n),且這些子問題都可解,並可利用這些子問題的解求出原問題的解,那麼這種分治法就是可行的。由分治法產生的子問題往往是原問題的較小模式,這就為使用遞歸技術提供了方便。在這種情況下,反復應用分治手段,可以使子問題與原問題類型一致而其規模卻不斷縮小,最終使子問題縮小到很容易直接求出其解。這自然導致遞歸過程的產生。分治與遞歸像一對孿生兄弟,經常同時應用在演算法設計之中,並由此產生許多高效演算法。
分治法所能解決的問題一般具有以下幾個特徵:
(1)該問題的規模縮小到一定的程度就可以容易地解決;
(2)該問題可以分解為若干個規模較小的相同問題,即該問題具有最優子結構性質;
(3)利用該問題分解出的子問題的解可以合並為該問題的解;
(4)該問題所分解出的各個子問題是相互獨立的,即子問題之間不包含公共的子子問題。
上述的第一條特徵是絕大多數問題都可以滿足的,因為問題的計算復雜性一般是隨著問題規模的增加而增加;第二條特徵是應用分治法的前提,它也是大多數問題可以滿足的,此特徵反映了遞歸思想的應用;第三條特徵是關鍵,能否利用分治法完全取決於問題是否具有第三條特徵,如果具備了第一條和第二條特徵,而不具備第三條特徵,則可以考慮貪心法或動態規劃法。第四條特徵涉及到分治法的效率,如果各子問題是不獨立的,則分治法要做許多不必要的工作,重復地解公共的子問題,此時雖然可用分治法,但一般用動態規劃法較好。
分治法在每一層遞歸上都有三個步驟:
(1)分解:將原問題分解為若干個規模較小,相互獨立,與原問題形式相同的子問題;
(2)解決:若子問題規模較小而容易被解決則直接解,否則遞歸地解各個子問題;
(3)合並:將各個子問題的解合並為原問題的解。
6.動態規劃法
經常會遇到復雜問題不能簡單地分解成幾個子問題,而會分解出一系列的子問題。簡單地採用把大問題分解成子問題,並綜合子問題的解導出大問題的解的方法,問題求解耗時會按問題規模呈冪級數增加。
為了節約重復求相同子問題的時間,引入一個數組,不管它們是否對最終解有用,把所有子問題的解存於該數組中,這就是動態規劃法所採用的基本方法。以下先用實例說明動態規劃方法的使用。
【問題】 求兩字元序列的最長公共字元子序列
問題描述:字元序列的子序列是指從給定字元序列中隨意地(不一定連續)去掉若干個字元(可能一個也不去掉)後所形成的字元序列。令給定的字元序列X=「x0,x1,…,xm-1」,序列Y=「y0,y1,…,yk-1」是X的子序列,存在X的一個嚴格遞增下標序列<i0,i1,…,ik-1>,使得對所有的j=0,1,…,k-1,有xij=yj。例如,X=「ABCBDAB」,Y=「BCDB」是X的一個子序列。
考慮最長公共子序列問題如何分解成子問題,設A=「a0,a1,…,am-1」,B=「b0,b1,…,bm-1」,並Z=「z0,z1,…,zk-1」為它們的最長公共子序列。不難證明有以下性質:
(1) 如果am-1=bn-1,則zk-1=am-1=bn-1,且「z0,z1,…,zk-2」是「a0,a1,…,am-2」和「b0,b1,…,bn-2」的一個最長公共子序列;
(2) 如果am-1!=bn-1,則若zk-1!=am-1,蘊涵「z0,z1,…,zk-1」是「a0,a1,…,am-2」和「b0,b1,…,bn-1」的一個最長公共子序列;
(3) 如果am-1!=bn-1,則若zk-1!=bn-1,蘊涵「z0,z1,…,zk-1」是「a0,a1,…,am-1」和「b0,b1,…,bn-2」的一個最長公共子序列。
這樣,在找A和B的公共子序列時,如有am-1=bn-1,則進一步解決一個子問題,找「a0,a1,…,am-2」和「b0,b1,…,bm-2」的一個最長公共子序列;如果am-1!=bn-1,則要解決兩個子問題,找出「a0,a1,…,am-2」和「b0,b1,…,bn-1」的一個最長公共子序列和找出「a0,a1,…,am-1」和「b0,b1,…,bn-2」的一個最長公共子序列,再取兩者中較長者作為A和B的最長公共子序列。
代碼如下:
# include <stdio.h>
# include <string.h>
# define N 100
char a[N],b[N],str[N];
int lcs_len(char *a, char *b, int c[ ][ N])
{ int m=strlen(a), n=strlen(b), i,j;
for (i=0;i<=m;i++) c[0]=0;
for (i=0;i<=n;i++) c[0]=0;
for (i=1;i<=m;i++)
for (j=1;j<=m;j++)
if (a[i-1]==b[j-1])
c[j]=c[i-1][j-1]+1;
else if (c[i-1][j]>=c[j-1])
c[j]=c[i-1][j];
else
c[j]=c[j-1];
return c[m][n];
}
char *buile_lcs(char s[ ],char *a, char *b)
{ int k, i=strlen(a), j=strlen(b);
k=lcs_len(a,b,c);
s[k]=』』;
while (k>0)
if (c[j]==c[i-1][j]) i--;
else if (c[j]==c[j-1]) j--;
else { s[--k]=a[i-1];
i--; j--;
}
return s;
}
void main()
{ printf (「Enter two string(<%d)!\n」,N);
scanf(「%s%s」,a,b);
printf(「LCS=%s\n」,build_lcs(str,a,b));
}
7.迭代法
迭代法是用於求方程或方程組近似根的一種常用的演算法設計方法。設方程為f(x)=0,用某種數學方法導出等價的形式x=g(x),然後按以下步驟執行:
(1) 選一個方程的近似根,賦給變數x0;
(2) 將x0的值保存於變數x1,然後計算g(x1),並將結果存於變數x0;
(3) 當x0與x1的差的絕對值還小於指定的精度要求時,重復步驟(2)的計算。
若方程有根,並且用上述方法計算出來的近似根序列收斂,則按上述方法求得的x0就認為是方程的根。上述演算法用C程序的形式表示為:
程序如下:
【演算法】迭代法求方程組的根
{ for (i=0;i<n;i++)
x=初始近似根;
do {
for (i=0;i<n;i++)
y = x;
for (i=0;i<n;i++)
x = gi(X);
for (delta=0.0,i=0;i<n;i++)
if (fabs(y-x)>delta) delta=fabs(y-x); } while (delta>Epsilon);
for (i=0;i<n;i++)
printf(「變數x[%d]的近似根是 %f」,I,x);
printf(「\n」);
} 具體使用迭代法求根時應注意以下兩種可能發生的情況:
(1)如果方程無解,演算法求出的近似根序列就不會收斂,迭代過程會變成死循環,因此在使用迭代演算法前應先考察方程是否有解,並在程序中對迭代的次數給予限制;
(2)方程雖然有解,但迭代公式選擇不當,或迭代的初始近似根選擇不合理,也會導致迭代失敗。
8.窮舉搜索法
窮舉搜索法是對可能是解的眾多候選解按某種順序進行逐一枚舉和檢驗,並從眾找出那些符合要求的候選解作為問題的解。
【問題】 將A、B、C、D、E、F這六個變數排成如圖所示的三角形,這六個變數分別取[1,6]上的整數,且均不相同。求使三角形三條邊上的變數之和相等的全部解。如圖就是一個解。
程序引入變數a、b、c、d、e、f,並讓它們分別順序取1至6的整數,在它們互不相同的條件下,測試由它們排成的如圖所示的三角形三條邊上的變數之和是否相等,如相等即為一種滿足要求的排列,把它們輸出。當這些變數取盡所有的組合後,程序就可得到全部可能的解。程序如下:
按窮舉法編寫的程序通常不能適應變化的情況。如問題改成有9個變數排成三角形,每條邊有4個變數的情況,程序的循環重數就要相應改變。