導航:首頁 > 源碼編譯 > java五大常用演算法

java五大常用演算法

發布時間:2023-05-28 15:14:49

java數字圖像處理常用演算法


前些時候做畢業設計 用java做的數字圖像處理方面的東西 這方面的資料ms比較少 發點東西上來大家共享一下 主要就是些演算法 有自己寫的 有人家的 還有改人家的 有的演算法寫的不好 大家不要見笑

一 讀取bmp圖片數據

// 獲取待檢測圖像 數據保存在數組 nData[] nB[] nG[] nR[]中

public void getBMPImage(String source) throws Exception { clearNData(); //清除數據保存區 FileInputStream fs = null; try { fs = new FileInputStream(source); int bfLen = ; byte bf[] = new byte[bfLen]; fs read(bf bfLen); // 讀取 位元組BMP文件頭 int biLen = ; byte bi[] = new byte[biLen]; fs read(bi biLen); // 讀取 位元組BMP信息頭

// 源圖寬度 nWidth = (((int) bi[ ] & xff) << ) | (((int) bi[ ] & xff) << ) | (((int) bi[ ] & xff) << ) | (int) bi[ ] & xff;

// 源圖高度 nHeight = (((int) bi[ ] & xff) << ) | (((int) bi[ ] & xff) << ) | (((int) bi[ ] & xff) << ) | (int) bi[ ] & xff;

// 位數 nBitCount = (((int) bi[ ] & xff) << ) | (int) bi[ ] & xff;

// 源圖大小 int nSizeImage = (((int) bi[ ] & xff) << ) | (((int) bi[ ] & xff) << ) | (((int) bi[ ] & xff) << ) | (int) bi[ ] & xff;

// 對 位BMP進行解析 if (nBitCount == ){ int nPad = (nSizeImage / nHeight) nWidth * ; nData = new int[nHeight * nWidth]; nB=new int[nHeight * nWidth]; nR=new int[nHeight * nWidth]; nG=new int[nHeight * nWidth];鍵帶 byte bRGB[] = new byte[(nWidth + nPad) * * nHeight]; fs read(bRGB (nWidth + nPad) * * nHeight); int nIndex = ; for (int j = ; j < nHeight; j++){ for (int i = ; i < nWidth; i++) { nData[nWidth * (nHeight j ) + i] = ( & xff) << | (((int) bRGB[nIndex + ] & xff) << ) | (((int) bRGB[nIndex + ] & xff) << ) | (int) bRGB[nIndex] & xff; nB[nWidth * (nHeight j ) + i]=(int) bRGB[nIndex]& xff; nG[nWidth * (nHeight j ) + i]=(int) bRGB[nIndex+ ]& xff; nR[nWidth * (nHeight j ) + i]=(int) bRGB[nIndex+ ]& xff;稿物蘆 nIndex += ; } nIndex += nPad; }// Toolkit kit = Toolkit getDefaultToolkit();// image = kit createImage(new MemoryImageSource(nWidth nHeight // nData nWidth));

/*螞冊 //調試數據的讀取

FileWriter fw = new FileWriter( C:\Documents and Settings\Administrator\My Documents\nDataRaw txt );//創建新文件 PrintWriter out = new PrintWriter(fw); for(int j= ;j<nHeight;j++){ for(int i= ;i<nWidth;i++){ out print(( * +nData[nWidth * (nHeight j ) + i])+ _ +nR[nWidth * (nHeight j ) + i]+ _ +nG[nWidth * (nHeight j ) + i]+ _ +nB[nWidth * (nHeight j ) + i]+ ); } out println( ); } out close();*/ } } catch (Exception e) { e printStackTrace(); throw new Exception(e); } finally { if (fs != null) { fs close(); } } // return image; }

二由r g b 獲取灰度數組

public int[] getBrightnessData(int rData[] int gData[] int bData[]){ int brightnessData[]=new int[rData length]; if(rData length!=gData length || rData length!=bData length || bData length!=gData length){ return brightnessData; } else { for(int i= ;i<bData length;i++){ double temp= *rData[i]+ *gData[i]+ *bData[i]; brightnessData[i]=(int)(temp)+((temp (int)(temp))> ? : ); } return brightnessData; } }

三 直方圖均衡化

public int [] equilibrateGray(int[] PixelsGray int width int height) { int gray; int length=PixelsGray length; int FrequenceGray[]=new int[length]; int SumGray[]=new int[ ]; int ImageDestination[]=new int[length]; for(int i = ; i <length ;i++) { gray=PixelsGray[i]; FrequenceGray[gray]++; } // 灰度均衡化 SumGray[ ]=FrequenceGray[ ]; for(int i= ;i< ;i++){ SumGray[i]=SumGray[i ]+FrequenceGray[i]; } for(int i= ;i< ;i++) { SumGray[i]=(int)(SumGray[i]* /length); } for(int i= ;i<height;i++) { for(int j= ;j<width;j++) { int k=i*width+j; ImageDestination[k]= xFF | ((SumGray[PixelsGray[k]]<< ) | (SumGray[PixelsGray[k]]<< ) | SumGray[PixelsGray[k]]); } } return ImageDestination; }

四 laplace 階濾波 增強邊緣 圖像銳化

public int[] laplace DFileter(int []data int width int height){ int filterData[]=new int[data length]; int min= ; int max= ; for(int i= ;i<height;i++){ for(int j= ;j<width;j++){ if(i== || i==height || j== || j==width ) filterData[i*width+j]=data[i*width+j]; else filterData[i*width+j]= *data[i*width+j] data[i*width+j ] data[i*width+j+ ] data[(i )*width+j] data[(i )*width+j ] data[(i )*width+j+ ] data[(i+ )*width+j] data[(i+ )*width+j ] data[(i+ )*width+j+ ]; if(filterData[i*width+j]<min) min=filterData[i*width+j]; if(filterData[i*width+j]>max) max=filterData[i*width+j]; } }// System out println( max: +max);// System out println( min: +min); for(int i= ;i<width*height;i++){ filterData[i]=(filterData[i] min)* /(max min); } return filterData; }

五 laplace 階增強濾波 增強邊緣 增強系數delt

public int[] laplaceHigh DFileter(int []data int width int height double delt){ int filterData[]=new int[data length]; int min= ; int max= ; for(int i= ;i<height;i++){ for(int j= ;j<width;j++){ if(i== || i==height || j== || j==width ) filterData[i*width+j]=(int)(( +delt)*data[i*width+j]); else filterData[i*width+j]=(int)(( +delt)*data[i*width+j] data[i*width+j ]) data[i*width+j+ ] data[(i )*width+j] data[(i )*width+j ] data[(i )*width+j+ ] data[(i+ )*width+j] data[(i+ )*width+j ] data[(i+ )*width+j+ ]; if(filterData[i*width+j]<min) min=filterData[i*width+j]; if(filterData[i*width+j]>max) max=filterData[i*width+j]; } } for(int i= ;i<width*height;i++){ filterData[i]=(filterData[i] min)* /(max min); } return filterData; } 六 局部閾值處理 值化

// 局部閾值處理 值化 niblack s method /*原理 T(x y)=m(x y) + k*s(x y) 取一個寬度為w的矩形框 (x y)為這個框的中心 統計框內數據 T(x y)為閾值 m(x y)為均值 s(x y)為均方差 k為參數(推薦 )計算出t再對(x y)進行切割 / 這個演算法的優點是 速度快 效果好 缺點是 niblack s method會產生一定的雜訊 */ public int[] localThresholdProcess(int []data int width int height int w int h double coefficients double gate){ int[] processData=new int[data length]; for(int i= ;i<data length;i++){ processData[i]= ; } if(data length!=width*height) return processData; int wNum=width/w; int hNum=height/h; int delt[]=new int[w*h]; //System out println( w; +w+ h: +h+ wNum: +wNum+ hNum: +hNum); for(int j= ;j<hNum;j++){ for(int i= ;i<wNum;i++){ //for(int j= ;j< ;j++){ //for(int i= ;i< ;i++){ for(int n= ;n<h;n++) for(int k= ;k<w;k++){ delt[n*w+k]=data[(j*h+n)*width+i*w+k]; //System out print( delt[ +(n*w+k)+ ]: +delt[n*w+k]+ ); } //System out println(); /* for(int n= ;n<h;n++) for(int k= ;k<w;k++){ System out print( data[ +((j*h+n)*width+i*w+k)+ ]: +data[(j*h+n)*width+i*w+k]+ ); } System out println(); */ delt=thresholdProcess(delt w h coefficients gate); for(int n= ;n<h;n++) for(int k= ;k<w;k++){ processData[(j*h+n)*width+i*w+k]=delt[n*w+k]; // System out print( delt[ +(n*w+k)+ ]: +delt[n*w+k]+ ); } //System out println(); /* for(int n= ;n<h;n++) for(int k= ;k<w;k++){ System out print( processData[ +((j*h+n)*width+i*w+k)+ ]: +processData[(j*h+n)*width+i*w+k]+ ); } System out println(); */ } } return processData; }

七 全局閾值處理 值化

public int[] thresholdProcess(int []data int width int height double coefficients double gate){ int [] processData=new int[data length]; if(data length!=width*height) return processData; else{ double sum= ; double average= ; double variance= ; double threshold; if( gate!= ){ threshold=gate; } else{ for(int i= ;i<width*height;i++){ sum+=data[i]; } average=sum/(width*height); for(int i= ;i<width*height;i++){ variance+=(data[i] average)*(data[i] average); } variance=Math sqrt(variance); threshold=average coefficients*variance; } for(int i= ;i<width*height;i++){ if(data[i]>threshold) processData[i]= ; else processData[i]= ; } return processData; } }

八 垂直邊緣檢測 sobel運算元

public int[] verticleEdgeCheck(int []data int width int height int sobelCoefficients) throws Exception{ int filterData[]=new int[data length]; int min= ; int max= ; if(data length!=width*height) return filterData; try{ for(int i= ;i<height;i++){ for(int j= ;j<width;j++){ if(i== || i== || i==height || i==height ||j== || j== || j==width || j==width ){ filterData[i*width+j]=data[i*width+j]; } else{ double average; //中心的九個像素點 //average=data[i*width+j] Math sqrt( )*data[i*width+j ]+Math sqrt( )*data[i*width+j+ ] average=data[i*width+j] sobelCoefficients*data[i*width+j ]+sobelCoefficients*data[i*width+j+ ] data[(i )*width+j ]+data[(i )*width+j+ ] data[(i+ )*width+j ]+data[(i+ )*width+j+ ]; filterData[i*width+j]=(int)(average); } if(filterData[i*width+j]<min) min=filterData[i*width+j]; if(filterData[i*width+j]>max) max=filterData[i*width+j]; } } for(int i= ;i<width*height;i++){ filterData[i]=(filterData[i] min)* /(max min); } } catch (Exception e) { e printStackTrace(); throw new Exception(e); } return filterData; }

九 圖像平滑 * 掩模處理(平均處理) 降低雜訊

lishixin/Article/program/Java/hx/201311/26286

⑵ 常用的演算法在java里邊怎麼做,例

(一) 問題描述
給定由n個整數(可能為負整數)組成的序列a1,a2,a3,···,an,求該序列的子段和的最大值。當所有整數均為負整數是定義其最大子段和為0,一次定義,所求的最優質值為:max{0、max子段和}。

(二) 演算法描述
動態規劃法的基本思想:
動態規劃演算法通常用於求解具有某種最優性質的問題。在這類問題中,可能會有許多可行解。每一個解都對應於一個值,我們希望找到具有最優值的解。
演算法設計:
#include "stdafx.h"
int MaxSum(int a[],int n,int &Start,int&End){
intsum=0;
int*b,t;
b=newint[n+1];
b[0]=0;
for(inti=1;i<=n;i++){
if(b[i-1]>0){
b[i]=b[i-1]+a[i];
}
else {
b[i]=a[i];t=i;
}
if(b[i]>sum){
sum=b[i];
Start=t;
End=i;
}
}
delete[]b;
returnsum;
}

int main(int argc, char* argv[])
{
inta[7]={0,-2,11,-4,13,-5,-2},sum,Start,End,i;
sum=MaxSum(a,6,Start,End);
for(i=Start;i<=End;i++){
printf("%d ",a[i]);
}
printf("\n%d\n",sum);
getchar();
getchar();
return0;

⑶ java最常用的幾種加密演算法

簡單的Java加密演算法有:
第一種. BASE
Base是網路上最常見的用於傳輸Bit位元組代碼的編碼方式之一,大家可以查看RFC~RFC,上面有MIME的詳細規范。Base編碼可用於在HTTP環境下傳遞較長的標識信息。例如,在Java Persistence系統Hibernate中,就採用了Base來將一個較長的唯一標識符(一般為-bit的UUID)編碼為一個字元串,用作HTTP表單和HTTP GET URL中的參數。在其他應用程序中,也常常需要把二進制數據編碼為適合放在URL(包括隱藏表單域)中的形式。此時,採用Base編碼具有不可讀性,即所編碼的數據不會被人用肉眼所直接看到。
第二種. MD
MD即Message-Digest Algorithm (信息-摘要演算法),用於確保信息傳輸完整一致。是計算機廣泛使用的雜湊演算法之一(又譯摘要演算法、哈希演算法),主流編程語言普遍已有MD實現。將數據(如漢字)運算為另一固定長度值,是雜湊演算法的基礎原理,MD的前身有MD、MD和MD。
MD演算法具有以下特點:
壓縮性:任意長度的數據,算出的MD值長度都是固定的。
容易計算:從原數據計算出MD值很容易。
抗修改性:對原數據進行任何改動,哪怕只修改個位元組,所得到的MD值都有很大區別。
弱抗碰撞:已知原數據和其MD值,想找到一個具有相同MD值的數據(即偽造數據)是非常困難的。
強抗碰撞:想找到兩個不同的數據,使它們具有相同的MD值,是非常困難的。
MD的作用是讓大容量信息在用數字簽名軟體簽署私人密鑰前被」壓縮」成一種保密的格式(就是把一個任意長度的位元組串變換成一定長的十六進制數字串)。除了MD以外,其中比較有名的還有sha-、RIPEMD以及Haval等。
第三種.SHA
安全哈希演算法(Secure Hash Algorithm)主要適用於數字簽名標准(Digital Signature Standard DSS)裡面定義的數字簽名演算法(Digital Signature Algorithm DSA)。對於長度小於^位的消息,SHA會產生一個位的消息摘要。該演算法經過加密專家多年來的發展和改進已日益完善,並被廣泛使用。該演算法的思想是接收一段明文,然後以一種不可逆的方式將它轉換成一段(通常更小)密文,也可以簡單的理解為取一串輸入碼(稱為預映射或信息),並把它們轉化為長度較短、位數固定的輸出序列即散列值(也稱為信息摘要或信息認證代碼)的過程。散列函數值可以說是對明文的一種「指紋」或是「摘要」所以對散列值的數字簽名就可以視為對此明文的數字簽名。
SHA-與MD的比較
因為二者均由MD導出,SHA-和MD彼此很相似。相應的,他們的強度和其他特性也是相似,但還有以下幾點不同:
對強行攻擊的安全性:最顯著和最重要的區別是SHA-摘要比MD摘要長 位。使用強行技術,產生任何一個報文使其摘要等於給定報摘要的難度對MD是^數量級的操作,而對SHA-則是^數量級的操作。這樣,SHA-對強行攻擊有更大的強度。
對密碼分析的安全性:由於MD的設計,易受密碼分析的攻擊,SHA-顯得不易受這樣的攻擊。
速度:在相同的硬體上,SHA-的運行速度比MD慢。
第四種.HMAC
HMAC(Hash Message Authentication Code,散列消息鑒別碼,基於密鑰的Hash演算法的認證協議。消息鑒別碼實現鑒別的原理是,用公開函數和密鑰產生一個固定長度的值作為認證標識,用這個標識鑒別消息的完整性。使用一個密鑰生成一個固定大小的小數據塊,即MAC,並將其加入到消息中,然後傳輸。接收方利用與發送方共享的密鑰進行鑒別認證等。

⑷ 求Java常用演算法和經典演算法

java.util.Arrays中包含了很多演算法你可以看一看,jdk安裝的時候就有提供源代碼的。

⑸ 《Java常用演算法手冊第三版》pdf下載在線閱讀全文,求百度網盤雲資源

《Java常用演算法手冊第三版》網路網盤pdf最新全集下載:
鏈接: https://pan..com/s/1PJdaTXXYyhN23tyJjMbIWw

?pwd=mbgq 提取碼: mbgq
簡介:Java常用演算法手冊第三版分別介紹了演算法基礎、演算法應用和演算法面試題。首先介紹了演算法概述,然後重點分析了數據結構和基本演算法思想;接著詳細講解了演算法在排序、查找、數學計算、數論、歷史趣題、游戲等領域中的應用。

⑹ java常見gc演算法有哪些

1:標記—清除
Mark-Sweep
過程:標記可回收對象,進行清除
缺點:標記和清除效率低,清除後會產生內存碎片
2:復制演算法
過程:將內存劃分為相等的兩塊,將存活的對象復制到另一塊內存,把已經使用的內存清理掉
缺點:使用的內存變為了原來的一半
進化:將一塊內存按8:1的比例分為一塊Eden區(80%)和兩塊Survivor區(10%)
每次使用Eden和一塊Survivor,回收時,將存活的對象一次性復制到另一塊Survivor上,如果另一塊Survivor空間不足,則使用分配擔保機制存入老年代
3:標記—整理
Mark—Compact
過程:所有存活的對象向一端移動,然後清除掉邊界以外的內存
4:分代收集演算法
過程:將堆分為新生代和老年代,根據區域特點選用不同的收集演算法,如果新生代朝生夕死,則採用復制演算法,老年代採用標記清除,或標記整理
面試的話說出來這四種足夠了

⑺ java中的演算法,一共有多少種,哪幾種,怎麼分類。

就好比問,漢語中常用寫作方法有多少種,怎麼分類。

演算法按用途分,體現設計目的、有什麼特點
演算法按實現方式分,有遞歸、迭代、平行、序列、過程、確定、不確定等等
演算法按設計范型分,有分治、動態、貪心、線性、圖論、簡化等等

作為圖靈完備的語言,理論上」Java語言「可以實現所有演算法。
「Java的標准庫'中用了一些常用數據結構和相關演算法.

像apache common這樣的java庫中又提供了一些通用的演算法

⑻ 學習Java具體都要學什麼內容

學習java是個不錯的選擇,java在it行業需求的人才每年占上百萬個,並且平均每個月薪資也是在1.8W左右。

如果想達到工作標准可以參考下面的內容:

1.Java SE部分 初級語法,面向對象,異常,IO流,多線程,Java Swing,JDBC,泛型,註解,反射等。

2.資料庫部分,基礎的sql語句,sql語句調優,索引,資料庫引擎,存儲過程,觸發器,事務等。

3. 前端部分, HTML5 CSS3 JS, HTML DOM Jquery BootStrap等。

4. Java EE部分,Tomcat和Nginx伺服器搭建,配置文件,Servlet,JSP,Filter,Listener,http協議,MVC等。

5. 框架部分,每個框架都可以分開學,在去學如何使用SSM 或者SSH框架,如何搭建,如何整合。開發中為什麼會用框架,Rest是啥?Spring為啥經久不衰,底層如何實現等。

6.23種設計模式,掌握常用的,比如單例模式的多種實現,責任鏈模式,工廠模式,裝飾器模式等,了解常用場景。

7. 基礎演算法和數據結構,八大排序演算法,查找演算法。

8. 熟練使用maven等構建工具,git等版本控制工具,熟悉常用linux命令,log4j,bug,junit單元測試,日誌列印工具,Redis等NoSql。

互聯網行業目前還是最熱門的行業之一,學習IT技能之後足夠優秀是有機會進入騰訊、阿里、網易等互聯網大廠高薪就業的,發展前景非常好,普通人也可以學習。

想要系統學習,你可以考察對比一下開設有相關專業的熱門學校,好的學校擁有根據當下企業需求自主研發課程的能力,能夠在校期間取得大專或本科學歷,中博軟體學院、南京課工場、南京北大青鳥等開設相關專業的學校都是不錯的,建議實地考察對比一下。

祝你學有所成,望採納。

閱讀全文

與java五大常用演算法相關的資料

熱點內容
印度搶打火機的電影叫什麼 瀏覽:290
求在線觀看資源2020年 瀏覽:946
聚優電影可以在哪些影院使用 瀏覽:124
阿里雲伺服器怎麼安裝bt面板 瀏覽:630
霍爾瓦特大街小說 瀏覽:857
可以看的網址大全 瀏覽:416
一個名叫尼克和保姆的電影 瀏覽:613
電影里有戒尺的 瀏覽:845
徐英演的哪些大尺度電影 瀏覽:412
鬼片英文版 瀏覽:600
《前度2》完整未刪減 瀏覽:851
大陸類似春的森林電影 瀏覽:526
1受多攻獸世 瀏覽:849
軍嫂肉文 瀏覽:935
javamariadb 瀏覽:876
未刪減的網站在線觀看 瀏覽:899
雞雞加長叫什麼電影 瀏覽:387
愛情電影網址 瀏覽:726
激情戲愛情電影 瀏覽:51
哪裡可以免費在線看輕小說 瀏覽:61