Ⅰ 各種演算法的時間復雜度
O(1) < O(logn) < O(n) < O(nlogn) < O(n^2) < O(n^3) < O(2^n) < O(n!) < O(n^n)
一般時間復雜度到了2 n(指數階)及更大的時間復雜度,這樣的演算法我們基本上不會用了,太不實用了.比如遞歸實現的漢諾塔問題演算法就是O(2 n).
平方階(n^2)的演算法是勉強能用,而nlogn及更小的時間復雜度演算法那就是非常高效的演算法了啊.
空間復雜度
冒泡排序,簡單選擇排序,堆排序,直接插入排序,希爾排序的空間復雜度為O(1),因為需要一個臨時變數來交換元素位置,(另外遍歷序列時自然少不了用一個變數來做索引)
快速排序空間復雜度為logn(因為遞歸調用了) ,歸並排序空間復雜是O(n),需要一個大小為n的臨時數組.
基數排序的空間復雜是O(n),桶排序的空間復雜度不確定
原文: https://blog.csdn.net/weiwenhp/article/details/8622728
Ⅱ 演算法的時間復雜度定義
一、概念
時間復雜度是總運算次數表達式中受n的變化影響最大的那一項(不含系數)
比如:一般總運算次數表達式類似於這樣:
a*2^n+b*n^3+c*n^2+d*n*lg(n)+e*n+f
a ! =0時,時間復雜度就是O(2^n);
a=0,b<>0 =>O(n^3);
a,b=0,c<>0 =>O(n^2)依此類推
eg:
(1) for(i=1;i<=n;i++) //循環了n*n次,當然是O(n^2)
for(j=1;j<=n;j++)
s++;
(2) for(i=1;i<=n;i++)//循環了(n+n-1+n-2+...+1)≈(n^2)/2,因為時間復雜度是不考慮系數的,所以也是O(n^2)
for(j=i;j<=n;j++)
s++;
(3) for(i=1;i<=n;i++)//循環了(1+2+3+...+n)≈(n^2)/2,當然也是O(n^2)
for(j=1;j<=i;j++)
s++;
(4) i=1;k=0;
while(i<=n-1){
k+=10*i; i++; }//循環了n-1≈n次,所以是O(n)(5) for(i=1;i<=n;i++)
for(j=1;j<=i;j++)
for(k=1;k<=j;k++)
x=x+1;
//循環了(1^2+2^2+3^2+...+n^2)=n(n+1)(2n+1)/6(這個公式要記住哦)≈(n^3)/3,不考慮系數,自然是O(n^3)
另外,在時間復雜度中,log(2,n)(以2為底)與lg(n)(以10為底)是等價的,因為對數換底公式:
log(a,b)=log(c,b)/log(c,a)
所以,log(2,n)=log(2,10)*lg(n),忽略掉系數,二者當然是等價的
二、計算方法1.一個演算法執行所耗費的時間,從理論上是不能算出來的,必須上機運行測試才能知道。但我們不可能也沒有必要對每個演算法都上機測試,只需知道哪個演算法花費的時間多,哪個演算法花費的時間少就可以了。並且一個演算法花費的時間與演算法中語句的執行次數成正比例,哪個演算法中語句執行次數多,它花費時間就多。
一個演算法中的語句執行次數稱為語句頻度或時間頻度。記為T(n)。
2.一般情況下,演算法的基本操作重復執行的次數是模塊n的某一個函數f(n),因此,演算法的時間復雜度記做:T(n)=O(f(n))。隨著模塊n的增大,演算法執行的時間的增長率和f(n)的增長率成正比,所以f(n)越小,演算法的時間復雜度越低,演算法的效率越高。
在計算時間復雜度的時候,先找出演算法的基本操作,然後根據相應的各語句確定它的執行次數,再找出T(n)的同數量級(它的同數量級有以下:1,Log2n ,n ,nLog2n ,n的平方,n的三次方,2的n次方,n!),找出後,f(n)=該數量級,若T(n)/f(n)求極限可得到一常數c,則時間復雜度T(n)=O(f(n))。
3.常見的時間復雜度
按數量級遞增排列,常見的時間復雜度有:
常數階O(1), 對數階O(log2n), 線性階O(n), 線性對數階O(nlog2n), 平方階O(n^2), 立方階O(n^3),..., k次方階O(n^k), 指數階O(2^n) 。
其中,1.O(n),O(n^2), 立方階O(n^3),..., k次方階O(n^k) 為多項式階時間復雜度,分別稱為一階時間復雜度,二階時間復雜度。。。。2.O(2^n),指數階時間復雜度,該種不實用3.對數階O(log2n), 線性對數階O(nlog2n),除了常數階以外,該種效率最高
例:演算法:
for(i=1;i<=n;++i)
{
for(j=1;j<=n;++j)
{
c[ i ][ j ]=0; //該步驟屬於基本操作 執行次數:n^2
for(k=1;k<=n;++k)
c[ i ][ j ]+=a[ i ][ k ]*b[ k ][ j ]; //該步驟屬於基本操作 執行次數:n^3
}
}
則有 T(n)= n^2+n^3,根據上面括弧里的同數量級,我們可以確定 n^3為T(n)的同數量級
則有f(n)= n^3,然後根據T(n)/f(n)求極限可得到常數c
則該演算法的 時間復雜度:T(n)=O(n^3)
四、
定義:如果一個問題的規模是n,解這一問題的某一演算法所需要的時間為T(n),它是n的某一函數
T(n)稱為這一演算法的「時間復雜性」。
當輸入量n逐漸加大時,時間復雜性的極限情形稱為演算法的「漸近時間復雜性」。
我們常用大O表示法表示時間復雜性,注意它是某一個演算法的時間復雜性。大O表示只是說有上界,由定義如果f(n)=O(n),那顯然成立f(n)=O(n^2),它給你一個上界,但並不是上確界,但人們在表示的時候一般都習慣表示前者。
此外,一個問題本身也有它的復雜性,如果某個演算法的復雜性到達了這個問題復雜性的下界,那就稱這樣的演算法是最佳演算法。
「大O記法」:在這種描述中使用的基本參數是
n,即問題實例的規模,把復雜性或運行時間表達為n的函數。這里的「O」表示量級 (order),比如說「二分檢索是 O(logn)的」,也就是說它需要「通過logn量級的步驟去檢索一個規模為n的數組」記法 O ( f(n) )表示當 n增大時,運行時間至多將以正比於 f(n)的速度增長。
這種漸進估計對演算法的理論分析和大致比較是非常有價值的,但在實踐中細節也可能造成差異。例如,一個低附加代價的O(n2)演算法在n較小的情況下可能比一個高附加代價的 O(nlogn)演算法運行得更快。當然,隨著n足夠大以後,具有較慢上升函數的演算法必然工作得更快。
O(1)
Temp=i;i=j;j=temp;
以上三條單個語句的頻度均為1,該程序段的執行時間是一個與問題規模n無關的常數。演算法的時間復雜度為常數階,記作T(n)=O(1)。如果演算法的執行時間不隨著問題規模n的增加而增長,即使演算法中有上千條語句,其執行時間也不過是一個較大的常數。此類演算法的時間復雜度是O(1)。
O(n^2)
2.1.
交換i和j的內容
sum=0;(一次)
for(i=1;i<=n;i++)(n次 )
for(j=1;j<=n;j++)
(n^2次 )
sum++;(n^2次 )
解:T(n)=2n^2+n+1 =O(n^2)
2.2.
for (i=1;i<n;i++)
{
y=y+1;①
for
(j=0;j<=(2*n);j++)
x++;②
}
解:
語句1的頻度是n-1
語句2的頻度是(n-1)*(2n+1)=2n^2-n-1
f(n)=2n^2-n-1+(n-1)=2n^2-2
該程序的時間復雜度T(n)=O(n^2).
O(n)
2.3.
a=0;
b=1;①
for
(i=1;i<=n;i++) ②
{
s=a+b;③
b=a;④
a=s;⑤
}
解:語句1的頻度:2,
語句2的頻度:
n,
語句3的頻度: n-1,
語句4的頻度:n-1,
語句5的頻度:n-1,
T(n)=2+n+3(n-1)=4n-1=O(n).
O(log2n
)
2.4.
i=1;①
while (i<=n)
i=i*2; ②
解: 語句1的頻度是1,
設語句2的頻度是f(n),則:2^f(n)<=n;f(n)<=log2n
取最大值f(n)=
log2n,
T(n)=O(log2n )
O(n^3)
2.5.
for(i=0;i<n;i++)
{
for(j=0;j<i;j++)
{
for(k=0;k<j;k++)
x=x+2;
}
}
解:當i=m,
j=k的時候,內層循環的次數為k當i=m時, j 可以取 0,1,...,m-1 , 所以這里最內循環共進行了0+1+...+m-1=(m-1)m/2次所以,i從0取到n, 則循環共進行了: 0+(1-1)*1/2+...+(n-1)n/2=n(n+1)(n-1)/6所以時間復雜度為O(n^3).
我們還應該區分演算法的最壞情況的行為和期望行為。如快速排序的最
壞情況運行時間是 O(n^2),但期望時間是 O(nlogn)。通過每次都仔細 地選擇基準值,我們有可能把平方情況 (即O(n^2)情況)的概率減小到幾乎等於 0。在實際中,精心實現的快速排序一般都能以 (O(nlogn)時間運行。
下面是一些常用的記法:
訪問數組中的元素是常數時間操作,或說O(1)操作。一個演算法如 果能在每個步驟去掉一半數據元素,如二分檢索,通常它就取 O(logn)時間。用strcmp比較兩個具有n個字元的串需要O(n)時間。常規的矩陣乘演算法是O(n^3),因為算出每個元素都需要將n對
元素相乘並加到一起,所有元素的個數是n^2。
指數時間演算法通常來源於需要求出所有可能結果。例如,n個元 素的集合共有2n個子集,所以要求出所有子集的演算法將是O(2n)的。指數演算法一般說來是太復雜了,除非n的值非常小,因為,在 這個問題中增加一個元素就導致運行時間加倍。不幸的是,確實有許多問題 (如著名的「巡迴售貨員問題」 ),到目前為止找到的演算法都是指數的。如果我們真的遇到這種情況,通常應該用尋找近似最佳結果的演算法替代之。
Ⅲ 演算法的時間復雜度和空間復雜度的關系
演算法的時間復雜度和空間復雜度是描述演算法性能的兩個重要指標。它們之間沒有直接的數學關系,而是相互獨立的。
時間復雜度(TimeComplexity)是衡量演算法執行時間隨輸入規模增長而變化的度量。它通常用大O符號表示,比如O(n)、O(nlogn)等。時間復雜度描述的是演算法所需執行的基本操作數目,即演算法的運行時間與問題規模之間的關系。以下是常見的時間復雜度:
4、線性對數空間復雜度O(nlogn):演算法所需的額外存儲空間介於線性空間復雜度和平方空間復雜度之間。
生活當中的空間復雜度應用
1、存儲空間管理:在計算機、智能手機和其電子設備中,需要合理管理存儲空間。選擇適當的文件壓縮演算法或刪除不再需要的文件,以最大程度地減少所需的存儲空間。
2、數據備份:對於重要的數據和文件,通常會進行備份以防止丟失。備份涉及到存儲額外的副本或增量備份,因此需要考慮備份過程所需的存儲空間。
3、圖像和視頻處理:當處理大量圖像或視頻時,需要考慮存儲原始數據以及處理過程中產生的中間結果所需的存儲空間。例如,在圖像編輯軟體中,可能需要使用額外內存來存儲圖層和編輯歷史記錄。
Ⅳ 時間復雜度及其計算
演算法是指解題方案的准確而完整的描述,是一系列解決問題的清晰指令,演算法代表著 用系統的方法描述解決問題的策略機制 。對於同一個問題的解決,可能會存在著不同的演算法,為了衡量一個演算法的優劣,提出了<u>空間復雜度與時間復雜度</u>這兩個概念。
一個演算法是由 控制結構(順序、分支和循環3種) 和 原操作(指固有數據類型的操作) 構成的,則演算法時間取決於<u>兩者的綜合效果</u>。為了便於比較同一個問題的不同演算法,通常的做法是:
<p>從演算法中選取一種對於所研究的問題(或演算法類型)來說是基本操作的原操作,以該基本操作的重復執行的次數作為演算法的時間量度。</p>
參考文章: 演算法的時間復雜度和空間復雜度-總結
時間復雜度,又稱時間頻度,即 一個演算法執行所耗費的時間 。
<u>一個演算法花費的時間與演算法中語句的執行次數成正比例,哪個演算法中語句執行次數多,它花費時間就多。</u>一個演算法中的語句執行次數稱為語句頻度或時間頻度。記為T(n)
n稱為 問題的規模 ,當n不斷變化時,時間頻度T(n)也會不斷變化。一般情況下,演算法中基本操作重復執行的次數是問題規模n的某個函數,用T(n)表示,<i> 若有某個輔助函數f(n),使得當n趨近於無窮大時,*T(n)/f(n)的極限值為不等於零的常數,則稱f(n)是T(n)的同數量級函數。記作T(n)=O(f(n)),稱O(f(n)) 為演算法的漸進時間復雜度,簡稱時間復雜度。簡單來說,就是T(n)在n趨於正無窮時最大也就跟f(n)差不多大。</i>
演算法中語句執行次數為一個常數,則時間復雜度為O(1)。常見的時間復雜度有:<p><b>常數階O(1),對數階O(log2n),線性階O(n), 線性對數階O(n log2n),平方階O(n2),立方階O(n3),...。</b></p>
<i><b>Log</b><u>2</u><b>8</b>:2為底N的對數,即2的幾次方等於8,值為3</i>
常見的演算法時間復雜度由小到大依次為:Ο(1)<Ο(log2n)<Ο(n)<Ο(n log2n)<Ο(n2)<Ο(n3)<…<Ο(2n)<Ο(n!)
即:常數階 < 對數階 < 線性階 < 線性對數階 < 平方階 < 立方階 < … < 指數階 < 階乘
如:
第一個for循環的時間復雜度為Ο(n),第二個for循環的時間復雜度為Ο(n2),則整個演算法的時間復雜度為Ο(n1+n2+n3)=Ο(n3)。
Ο(1)表示基本語句的執行次數是一個常數,一般來說,只要演算法中不存在循環語句,其時間復雜度就是Ο(1)。其中Ο(log2n)、Ο(n)、 Ο(nlog2n)、Ο(n2)和Ο(n3)稱為多項式時間,而Ο(2n)和Ο(n!)稱為指數時間。計算機科學家普遍認為前者(即多項式時間復雜度的演算法)是有效演算法。
<i>指數函數:y=ax,對數函數:y=logax,冪函數:y=xa
x為變數,a為常量</i>