㈠ java怎麼讓數組的數字從大到小排序
將數字從大到小排序的方法:
例如簡一點的冒泡排序,將第一個數字和後面的數字逐個比較大小,如果小於,則互換位置,大於則不動。此時,第一個數為數組中的最大數。然後再將第二個數與後面的數逐個比較,以次類推。
示例代碼如下:
publicclassTest{
publicstaticvoidmain(String[]args){
int[]array={12,3,1254,235,435,236,25,34,23};
inttemp;
for(inti=0;i<array.length;i++){
for(intj=i+1;j<array.length;j++){
if(array[i]<array[j]){
temp=array[i];
array[i]=array[j];
array[j]=temp; //兩個數交換位置
}
}
}
for(inti=0;i<array.length;i++){
System.out.print(array[i]+"");
}
}
}
數組對於每一門編程語言來說都是重要的數據結構之一,當然不同語言對數組的實現及處理也不盡相同。
Java 語言中提供的數組是用來存儲固定大小的同類型元素。
你可以聲明一個數組變數,如 numbers[100] 來代替直接聲明 100 個獨立變數 number0,number1,....,number99
(1)程序員如何寫排序擴展閱讀
Java中利用數組進行數字排序一般有4種方法:
1、選擇排序是先將數組中的第一個數作為最大或最小數,然後通過循環比較交換最大數或最小數與一輪比較中第一個數位置進行排序。
2、冒泡排序也是先將數組中的第一個數作為最大或最小數,循環比較相鄰兩個數的大小,滿足條件就互換位置,將最大數或最小數沉底。
3、快速排序法主要是運用Arrays類中的Arrays.sort方法()實現。
4、插入排序是選擇一個數組中的數據,通過不斷的插入比較最後進行排序。
㈡ C#中,某一多屬性類的排序該如何實現不用LinQ。
按順序寫下來就行了
㈢ C語言中有哪些經典的排序方法
有選擇排序法和冒泡排序法兩種,都是非常經典的排序方法,都是作為一個程序員必須掌握的排序方法。
這兩種的區別在比較的邏輯不相同,因此if中的判斷條件與for循環中的代碼也是不相同的,要根據實際情況選擇不同的排序方法。
㈣ c語言數據結構(雙向鏈表排序)
#include<stdio.h>
#include<malloc.h>
#define ElemType int
int count=0;
typedef struct DulNode
{
ElemType data;
DulNode *prior;
DulNode *next;
}DulNode,*DulLinkList;
//初始化鏈表,結束後產生一個頭結點指針
void InitDLList(DulLinkList *L)
{
(*L)=(DulLinkList)malloc(sizeof(DulNode));
(*L)->next=*L;
(*L)->prior=(*L)->next;
}
//對鏈表進行插入操作
void ListInsert(DulLinkList *L)
{
int i=0,n;
ElemType temp;
DulNode *s,*p;
p=(*L)->next;
printf("請輸入插入元素數量:\n");
scanf("%d",&n);
count=n;
printf("請輸入%d個自然數\n",n);
while(i<n)
{
scanf("%d",&temp);
s=(DulNode*)malloc(sizeof(DulNode));
s->data=temp;
while((p!=(*L))&&(p->data<temp))//查找所要插入的位置
{
p=p->next;
}
s->prior=p->prior;//新節點的插入
s->next=p;
p->prior->next=s;
p->prior=s;
p=(*L)->next;//將指針回指到鏈表第一個非空節點,主要是為了下次查找插入位置
i++;
}
}
void Display(DulLinkList L)
{
DulNode *p;
p=L->next;
printf("雙向鏈表中的數據為:\n");
while(p!=L)
{
printf("%d ",p->data);
p=p->next;
}
printf("\n");
}
void Sort(DulLinkList *L)
{
ElemType temp;
DulNode *p,*q;
p=(*L)->next;
q=(*L)->prior;
if(count%2!=0)
q=q->prior;
p=p->next;
while(p!=q)
{
temp=p->data;
p->data=q->data;
q->data=temp;
p=p->next;
if(p!=q) //第二題只需交換節點數據
q=q->prior;//這幾個if else語句需要仔細
else
break;
if(p!=q)
p=p->next;
else
break;
if(p!=q)
q=q->prior;
else
break;
}
}
void main()
{
DulLinkList L;
InitDLList(&L);//初始化鏈表
ListInsert(&L);//順序插入數據
Display(L);//顯示結果
Sort(&L);//第二題操作
Display(L);//第二題輸出結果
}
㈤ 用C語言編寫一個快速排序演算法 輸入10個數
代碼如下:
#include <stdio.h>
#define N 10
void quickSort(int *arr,int l,int r)
{//此處編寫代碼實現快速排序
int i,j,x,temp;
if(l<r)
{
i=l;
j=r;
x=arr[(l+r)/2]; //以中間元素為軸
while(1)
{
while(i<=r&&arr[i]<x)i++;
while(j>=0&&arr[j]>x)j--;
if(i>=j) //相遇則跳出
break;
else
{
temp=arr[i];arr[i]=arr[j];arr[j]=temp; //交換
}
}
qsort(arr,l,i-1); //對左半部分進行快排
qsort(arr,j+1,r); //對右半部分進行快排
}
}
void printArray(int *a)
{//此處編寫代碼列印數組
int i=0;
for(;i<N;i++)
printf("%d\t",a[i]);
printf("\n");
}
int main()
{
int a[N];
int i;
for(i=0;i<N;i++)
scanf("%d",a+i);
printf("排序前的數據為:\n");
printArray(a);
//調用快速排序函數,對數組中從0到N的元素進行快速排序
quickSort(a,0,N-1);
printf("從小到大排序後的序列為:\n");
printArray(a);
return 0;
}
㈥ 作為程序員提高編程能力的幾個基礎演算法
一:快速排序演算法
快速排序是由東尼·霍爾所發展的一種排序演算法。在平均狀況下,排序n個項目要Ο(nlogn)次比較。在最壞狀況下則需要Ο(n2)次比較,但這種狀況並不常見。事實上,快速排序通常明顯比其他Ο(nlogn)演算法更快,因為它的內部循環(innerloop)可以在大部分的架構上很有效率地被實現出來。
快速排序使用分治法(Divideandconquer)策略來把一個串列(list)分為兩個子串列(sub-lists)。
演算法步驟:
1從數列中挑出一個元素,稱為「基準」(pivot),
2重新排序數列,所有元素比基準值小的擺放在基準前面,所有元素比基準值大的擺在基準的後面(相同的數可以到任一邊)。在這個分區退出之後,該基準就處於數列的中間位置。這個稱為分區(partition)操作。
3遞歸地(recursive)把小於基準值元素的子數列和大於基準值元素的子數列排序。
遞歸的最底部情形,是數列的大小是零或一,也就是永遠都已經被排序好了。雖然一直遞歸下去,但是這個演算法總會退出,因為在每次的迭代(iteration)中,它至少會把一個元素擺到它最後的位置去。
二:堆排序演算法
堆排序(Heapsort)是指利用堆這種數據結構所設計的一種排序演算法。堆積是一個近似完全二叉樹的結構,並同時滿足堆積的性質:即子結點的鍵值或索引總是小於(或者大於)它的父節點。
堆排序的平均時間復雜度為Ο(nlogn) 。
創建一個堆H[0..n-1]
把堆首(最大值)和堆尾互換
3.把堆的尺寸縮小1,並調用shift_down(0),目的是把新的數組頂端數據調整到相應位置
4.重復步驟2,直到堆的尺寸為1
三:歸並排序
歸並排序(Mergesort,台灣譯作:合並排序)是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法(DivideandConquer)的一個非常典型的應用。
1.申請空間,使其大小為兩個已經排序序列之和,該空間用來存放合並後的序列
2.設定兩個指針,最初位置分別為兩個已經排序序列的起始位置
3.比較兩個指針所指向的元素,選擇相對小的元素放入到合並空間,並移動指針到下一位置
4.重復步驟3直到某一指針達到序列尾
5.將另一序列剩下的所有元素直接復制到合並序列尾
四:二分查找演算法
二分查找演算法是一種在有序數組中查找某一特定元素的搜索演算法。搜素過程從數組的中間元素開始,如果中間元素正好是要查找的元素,則搜素過程結束;如果某一特定元素大於或者小於中間元素,則在數組大於或小於中間元素的那一半中查找,而且跟開始一樣從中間元素開始比較。如果在某一步驟數組為空,則代表找不到。這種搜索演算法每一次比較都使搜索范圍縮小一半。折半搜索每次把搜索區域減少一半,時間復雜度為Ο(logn) 。
五:BFPRT(線性查找演算法)
BFPRT演算法解決的問題十分經典,即從某n個元素的序列中選出第k大(第k小)的元素,通過巧妙的分析,BFPRT可以保證在最壞情況下仍為線性時間復雜度。該演算法的思想與快速排序思想相似,當然,為使得演算法在最壞情況下,依然能達到o(n)的時間復雜度,五位演算法作者做了精妙的處理。
1.將n個元素每5個一組,分成n/5(上界)組。
2.取出每一組的中位數,任意排序方法,比如插入排序。
3.遞歸的調用selection演算法查找上一步中所有中位數的中位數,設為x,偶數個中位數的情況下設定為選取中間小的一個。
4.用x來分割數組,設小於等於x的個數為k,大於x的個數即為n-k。
5.若i==k,返回x;若i<k,在小於x的元素中遞歸查找第i小的元素;若i>k,在大於x的元素中遞歸查找第i-k小的元素。
終止條件:n=1時,返回的即是i小元素。
六:DFS(深度優先搜索)
深度優先搜索演算法(Depth-First-Search),是搜索演算法的一種。它沿著樹的深度遍歷樹的節點,盡可能深的搜索樹的分支。當節點v的所有邊都己被探尋過,搜索將回溯到發現節點v的那條邊的起始節點。這一過程一直進行到已發現從源節點可達的所有節點為止。如果還存在未被發現的節點,則選擇其中一個作為源節點並重復以上過程,整個進程反復進行直到所有節點都被訪問為止。DFS屬於盲目搜索。
深度優先搜索是圖論中的經典演算法,利用深度優先搜索演算法可以產生目標圖的相應拓撲排序表,利用拓撲排序表可以方便的解決很多相關的圖論問題,如最大路徑問題等等。一般用堆數據結構來輔助實現DFS演算法。
深度優先遍歷圖演算法步驟:
1.訪問頂點v;
2.依次從v的未被訪問的鄰接點出發,對圖進行深度優先遍歷;直至圖中和v有路徑相通的頂點都被訪問;
3.若此時圖中尚有頂點未被訪問,則從一個未被訪問的頂點出發,重新進行深度優先遍歷,直到圖中所有頂點均被訪問過為止。
上述描述可能比較抽象,舉個實例:
DFS在訪問圖中某一起始頂點v後,由v出發,訪問它的任一鄰接頂點w1;再從w1出發,訪問與w1鄰接但還沒有訪問過的頂點w2;然後再從w2出發,進行類似的訪問,…如此進行下去,直至到達所有的鄰接頂點都被訪問過的頂點u為止。
接著,退回一步,退到前一次剛訪問過的頂點,看是否還有其它沒有被訪問的鄰接頂點。如果有,則訪問此頂點,之後再從此頂點出發,進行與前述類似的訪問;如果沒有,就再退回一步進行搜索。重復上述過程,直到連通圖中所有頂點都被訪問過為止。
七:BFS(廣度優先搜索)
廣度優先搜索演算法(Breadth-First-Search),是一種圖形搜索演算法。簡單的說,BFS是從根節點開始,沿著樹(圖)的寬度遍歷樹(圖)的節點。如果所有節點均被訪問,則演算法中止。
BFS同樣屬於盲目搜索。一般用隊列數據結構來輔助實現BFS演算法。
1.首先將根節點放入隊列中。
2.從隊列中取出第一個節點,並檢驗它是否為目標。
如果找到目標,則結束搜尋並回傳結果。
否則將它所有尚未檢驗過的直接子節點加入隊列中。
3.若隊列為空,表示整張圖都檢查過了——亦即圖中沒有欲搜尋的目標。結束搜尋並回傳「找不到目標」。
4.重復步驟2。
八:Dijkstra演算法
戴克斯特拉演算法(Dijkstra』salgorithm)是由荷蘭計算機科學家艾茲赫爾·戴克斯特拉提出。迪科斯徹演算法使用了廣度優先搜索解決非負權有向圖的單源最短路徑問題,演算法最終得到一個最短路徑樹。該演算法常用於路由演算法或者作為其他圖演算法的一個子模塊。
該演算法的輸入包含了一個有權重的有向圖G,以及G中的一個來源頂點S。我們以V表示G中所有頂點的集合。每一個圖中的邊,都是兩個頂點所形成的有序元素對。(u,v)表示從頂點u到v有路徑相連。我們以E表示G中所有邊的集合,而邊的權重則由權重函數w:E→[0,∞]定義。因此,w(u,v)就是從頂點u到頂點v的非負權重(weight)。邊的權重可以想像成兩個頂點之間的距離。任兩點間路徑的權重,就是該路徑上所有邊的權重總和。已知有V中有頂點s及t,Dijkstra演算法可以找到s到t的最低權重路徑(例如,最短路徑)。這個演算法也可以在一個圖中,找到從一個頂點s到任何其他頂點的最短路徑。對於不含負權的有向圖,Dijkstra演算法是目前已知的最快的單源最短路徑演算法。
1.初始時令S=,T=,T中頂點對應的距離值
若存在<V0,Vi>,d(V0,Vi)為<V0,Vi>弧上的權值
若不存在<V0,Vi>,d(V0,Vi)為∞
2.從T中選取一個其距離值為最小的頂點W且不在S中,加入S
3.對其餘T中頂點的距離值進行修改:若加進W作中間頂點,從V0到Vi的距離值縮短,則修改此距離值
重復上述步驟2、3,直到S中包含所有頂點,即W=Vi為止
九:動態規劃演算法
動態規劃(Dynamicprogramming)是一種在數學、計算機科學和經濟學中使用的,通過把原問題分解為相對簡單的子問題的方式求解復雜問題的方法。動態規劃常常適用於有重疊子問題和最優子結構性質的問題,動態規劃方法所耗時間往往遠少於樸素解法。
動態規劃背後的基本思想非常簡單。大致上,若要解一個給定問題,我們需要解其不同部分(即子問題),再合並子問題的解以得出原問題的解。通常許多子問題非常相似,為此動態規劃法試圖僅僅解決每個子問題一次,從而減少計算量:一旦某個給定子問題的解已經算出,則將其記憶化存儲,以便下次需要同一個子問題解之時直接查表。這種做法在重復子問題的數目關於輸入的規模呈指數增長時特別有用。
關於動態規劃最經典的問題當屬背包問題。
1.最優子結構性質。如果問題的最優解所包含的子問題的解也是最優的,我們就稱該問題具有最優子結構性質(即滿足最優化原理)。最優子結構性質為動態規劃演算法解決問題提供了重要線索。
2.子問題重疊性質。子問題重疊性質是指在用遞歸演算法自頂向下對問題進行求解時,每次產生的子問題並不總是新問題,有些子問題會被重復計算多次。動態規劃演算法正是利用了這種子問題的重疊性質,對每一個子問題只計算一次,然後將其計算結果保存在一個表格中,當再次需要計算已經計算過的子問題時,只是在表格中簡單地查看一下結果,從而獲得較高的效率。
十:樸素貝葉斯分類演算法
樸素貝葉斯分類演算法是一種基於貝葉斯定理的簡單概率分類演算法。貝葉斯分類的基礎是概率推理,就是在各種條件的存在不確定,僅知其出現概率的情況下,如何完成推理和決策任務。概率推理是與確定性推理相對應的。而樸素貝葉斯分類器是基於獨立假設的,即假設樣本每個特徵與其他特徵都不相關。
樸素貝葉斯分類器依靠精確的自然概率模型,在有監督學習的樣本集中能獲取得非常好的分類效果。在許多實際應用中,樸素貝葉斯模型參數估計使用最大似然估計方法,換言樸素貝葉斯模型能工作並沒有用到貝葉斯概率或者任何貝葉斯模型。
盡管是帶著這些樸素思想和過於簡單化的假設,但樸素貝葉斯分類器在很多復雜的現實情形中仍能夠取得相當好的效果。
通過掌握以上演算法,能夠幫你迅速提高編程能力,成為一名優秀的程序員。
㈦ C語言 排序 函數
你的n為局部變數 不能控制全局input裡面的n不是 傳的nvoid intput(int n,int data[100])把定義 參數的寫到主函數里void mian(){int data[100],n;printf("請輸入參數的個數:");scanf("%d",n);intput(n,data);sort(n,data); } 對於這些錯誤你可以 查下值 就知道自己錯在什麼地方,要學會跟蹤。