導航:首頁 > 編程語言 > python語言邏輯回歸

python語言邏輯回歸

發布時間:2022-04-19 04:44:34

A. python培訓需要學習哪些內容

Python培訓課程大同小異,整理如下:
Python語言基礎:主要學習Python基礎知識,如Python3、數據類型、字元串、函數、類、文件操作等。
Python語言高級:主要學習Python庫、正則表達式、進程線程、爬蟲、遍歷以及MySQL資料庫。
Pythonweb開發:主要學習HTML、CSS、JavaScript、jQuery等前端知識,掌握python三大後端框架(Django、 Flask以及Tornado)。
linux基礎:主要學習Linux相關的各種命令,如文件處理命令、壓縮解壓命令、許可權管理以及Linux Shell開發等。
Linux運維自動化開發:主要學習Python開發Linux運維、Linux運維報警工具開發、Linux運維報警安全審計開發、Linux業務質量報表工具開發、Kali安全檢測工具檢測以及Kali 密碼破解實戰。
Python爬蟲:主要學習python爬蟲技術,掌握多線程爬蟲技術,分布式爬蟲技術。
Python數據分析和大數據:主要學習numpy數據處理、pandas數據分析、matplotlib數據可視化、scipy數據統計分析以及python 金融數據分析;Hadoop HDFS、python Hadoop MapRece、python Spark core、python Spark SQL以及python Spark MLlib。
Python機器學習:主要學習KNN演算法、線性回歸、邏輯斯蒂回歸演算法、決策樹演算法、樸素貝葉斯演算法、支持向量機以及聚類k-means演算法。

B. python做邏輯回歸 怎麼把導入的數據分成x,y

簡介
本例子是通過對一組邏輯回歸映射進行輸出,使得網路的權重和偏置達到最理想狀態,最後再進行預測。其中,使用GD演算法對參數進行更新,損耗函數採取交叉商來表示,一共訓練10000次。
2.python代碼
#!/usr/bin/python

import numpy
import theano
import theano.tensor as T
rng=numpy.random

N=400
feats=784
# D[0]:generate rand numbers of size N,element between (0,1)
# D[1]:generate rand int number of size N,0 or 1
D=(rng.randn(N,feats),rng.randint(size=N,low=0,high=2))
training_steps=10000

# declare symbolic variables
x=T.matrix('x')
y=T.vector('y')
w=theano.shared(rng.randn(feats),name='w') # w is shared for every input
b=theano.shared(0.,name='b') # b is shared too.

print('Initial model:')
print(w.get_value())
print(b.get_value())

# construct theano expressions,symbolic
p_1=1/(1+T.exp(-T.dot(x,w)-b)) # sigmoid function,probability of target being 1
prediction=p_1>0.5
xent=-y*T.log(p_1)-(1-y)*T.log(1-p_1) # cross entropy
cost=xent.mean()+0.01*(w**2).sum() # cost function to update parameters
gw,gb=T.grad(cost,[w,b]) # stochastic gradient descending algorithm

#compile
train=theano.function(inputs=[x,y],outputs=[prediction,xent],updates=((w,w-0.1*gw),(b,b-0.1*gb)))
predict=theano.function(inputs=[x],outputs=prediction)

# train
for i in range(training_steps):
pred,err=train(D[0],D[1])

print('Final model:')
print(w.get_value())
print(b.get_value())
print('target values for D:')
print(D[1])
print('prediction on D:')
print(predict(D[0]))

print('newly generated data for test:')
test_input=rng.randn(30,feats)
print('result:')
print(predict(test_input))

3.程序解讀
如上面所示,首先導入所需的庫,theano是一個用於科學計算的庫。然後這里我們隨機產生一個輸入矩陣,大小為400*784的隨機數,隨機產生一個輸出向量大小為400,輸出向量為二值的。因此,稱為邏輯回歸。
然後初始化權重和偏置,它們均為共享變數(shared),其中權重初始化為較小的數,偏置初始化為0,並且列印它們。
這里我們只構建一層網路結構,使用的激活函數為logistic sigmoid function,對輸入量乘以權重並考慮偏置以後就可以算出輸入的激活值,該值在(0,1)之間,以0.5為界限進行二值化,然後算出交叉商和損耗函數,其中交叉商是代表了我們的激活值與實際理論值的偏離程度。接著我們使用cost分別對w,b進行求解偏導,以上均為符號表達式運算。
接著我們使用theano.function進行編譯優化,提高計算效率。得到train函數和predict函數,分別進行訓練和預測。
接著,我們對數據進行10000次的訓練,每次訓練都會按照GD演算法進行更新參數,最後我們得到了想要的模型,產生一組新的輸入,即可進行預測。

C. 人工智慧專業需要學習什麼知識

1.基礎數學知識:線性代數、概率論、統計學、圖論;
2.基礎計算機知識:操作系統、linux、網路、編譯原理、數據結構、資料庫;
3.編程語言基礎:C/C++、Python、Java;
4.人工智慧基礎知識:ID3、C4.5、邏輯回歸、SVM、分類器、等演算法的特性、性質、和其他演算法對比的區別等內容;
5.工具基礎知識:opencv、matlab、caffe等。
我們知道,目前國家也相繼出台了一些扶持人工智慧發展的政策,人工智慧正處於發展的紅利期,所以越早學習就越有就業優勢。人工智慧火起來就是這一兩年的事兒,因此不管是上市企業,還是一些中小型企業,對於人工智慧人才的需求量都非常大。
人工智慧是計算機科學的一個分支,它企圖了解智能的實質,並生產出一種新的能以人類智能相似的方式做出反應的智能機器,該領域的研究包括機器人、語言識別、圖像識別、自然語言處理和專家系統等。
人工智慧從誕生以來,理論和技術日益成熟,應用領域也不斷擴大,可以設想,未來人工智慧帶來的科技產品,將會是人類智慧的「容器」。目前來看,現在學習人工智慧是一個很好的時機!
學習人工智慧,就來北京尚學堂!

D. python scikit-learn logistic回歸 怎麼返回擬合參數

它與next()配合使用,也是實現上述迭代工具的作用。
在python中,甚至在其它的語言中,迭代這塊的說法比較亂,主要是名詞亂,剛才我們說,那些能夠實現迭代的東西,稱之為迭代工具,就是這些迭代工具,不少程序員都喜歡叫做迭代器。當然,這都是漢語翻譯,英語就是iterator。

E. 怎麼看python中邏輯回歸輸出的解釋

以下為python代碼,由於訓練數據比較少,這邊使用了批處理梯度下降法,沒有使用增量梯度下降法。

##author:lijiayan##data:2016/10/27
##name:logReg.pyfrom numpy import *import matplotlib.pyplot as pltdef loadData(filename):
data = loadtxt(filename)
m,n = data.shape print 'the number of examples:',m print 'the number of features:',n-1 x = data[:,0:n-1]
y = data[:,n-1:n] return x,y#the sigmoid functiondef sigmoid(z): return 1.0 / (1 + exp(-z))#the cost functiondef costfunction(y,h):
y = array(y)
h = array(h)
J = sum(y*log(h))+sum((1-y)*log(1-h)) return J# the batch gradient descent algrithmdef gradescent(x,y):
m,n = shape(x) #m: number of training example; n: number of features x = c_[ones(m),x] #add x0 x = mat(x) # to matrix y = mat(y)
a = 0.0000025 # learning rate maxcycle = 4000 theta = zeros((n+1,1)) #initial theta J = [] for i in range(maxcycle):
h = sigmoid(x*theta)
theta = theta + a * (x.T)*(y-h)
cost = costfunction(y,h)
J.append(cost)

plt.plot(J)
plt.show() return theta,cost#the stochastic gradient descent (m should be large,if you want the result is good)def stocGraddescent(x,y):
m,n = shape(x) #m: number of training example; n: number of features x = c_[ones(m),x] #add x0 x = mat(x) # to matrix y = mat(y)
a = 0.01 # learning rate theta = ones((n+1,1)) #initial theta J = [] for i in range(m):
h = sigmoid(x[i]*theta)
theta = theta + a * x[i].transpose()*(y[i]-h)
cost = costfunction(y,h)
J.append(cost)
plt.plot(J)
plt.show() return theta,cost#plot the decision boundarydef plotbestfit(x,y,theta):
plt.plot(x[:,0:1][where(y==1)],x[:,1:2][where(y==1)],'ro')
plt.plot(x[:,0:1][where(y!=1)],x[:,1:2][where(y!=1)],'bx')
x1= arange(-4,4,0.1)
x2 =(-float(theta[0])-float(theta[1])*x1) /float(theta[2])

plt.plot(x1,x2)
plt.xlabel('x1')
plt.ylabel(('x2'))
plt.show()def classifyVector(inX,theta):
prob = sigmoid((inX*theta).sum(1)) return where(prob >= 0.5, 1, 0)def accuracy(x, y, theta):
m = shape(y)[0]
x = c_[ones(m),x]
y_p = classifyVector(x,theta)
accuracy = sum(y_p==y)/float(m) return accuracy

調用上面代碼:

from logReg import *
x,y = loadData("horseColicTraining.txt")
theta,cost = gradescent(x,y)print 'J:',cost

ac_train = accuracy(x, y, theta)print 'accuracy of the training examples:', ac_train

x_test,y_test = loadData('horseColicTest.txt')
ac_test = accuracy(x_test, y_test, theta)print 'accuracy of the test examples:', ac_test

學習速率=0.0000025,迭代次數=4000時的結果:

似然函數走勢(J = sum(y*log(h))+sum((1-y)*log(1-h))),似然函數是求最大值,一般是要穩定了才算最好。

從上面這個例子,我們可以看到對特徵進行歸一化操作的重要性。

F. 多元邏輯回歸 需要對數據進行處理嗎 python

適合大數據處理。而不是大數據量處理。 如果大數據量處理,需要採用並用結構,比如在hadoop上使用python,或者是自己做的分布式處理框架。

大數據量處理使用python的也多。如果單機單核單硬碟大數據量(比如視頻)處理。顯然只能用c/c++語言了。

大數據與大數據量區別還是挺大的。 大數據意思是大數據的智慧演算法和應用。 大數據量,早在50年前就有大數據量處理了。 中國大約在95年左右,大量引入PC機的大數據量處理。一個模型計算數據量大,而且計算時間通常超過一個星期,有時候要計算半年。

氣象,遙感,地震,模式識別,模擬計算的數據量與計算量都是巨大的。當時遠遠超過互聯網。 後來互聯網發起起來以後數據量才上去。即使如此,數據的復雜度也還是比不上科學研究領域的數據。

G. 您好,請問Python運行二元logistics回歸怎樣設置對照呢

邏輯回歸裡面像男女這種類別類型的特徵,都要轉換成兩個特徵,如果是男,就是01,如果是女,就是10。你說的啞變數,也就是大家常說的獨熱編碼,在sklearn里有onehotencoder,可以去查查怎麼用。拿著個男女屬性被轉化成獨熱編碼以後,通過邏輯回歸,可以算出那個特徵的權重。

H. 人工智慧專業好學嗎

入門都是很簡單的。具體基礎知識如下:
人工智慧入門需要掌握這些知識:
1.基礎數學知識:線性代數、概率論、統計學、圖論
2.基礎計算機知識:操作系統、linux、網路、編譯原理、數據結構、資料庫
3.編程語言基礎:C/C++、Python、Java
4.人工智慧基礎知識:ID3、C4.5、邏輯回歸、SVM、分類器、等演算法的特性、性質、和其他演算法對比的區別等內容。
5.工具基礎知識:opencv、matlab、caffe等

I. Python語言學什麼

這里整理了一份系統全面的Python開發學習路線,主要涉及以下知識,感興趣的小夥伴歡迎一起來學習~
第一階段:專業核心基礎
階段目標:
1. 熟練掌握Python的開發環境與編程核心知識
2. 熟練運用Python面向對象知識進行程序開發
3. 對Python的核心庫和組件有深入理解
4. 熟練應用SQL語句進行資料庫常用操作
5. 熟練運用Linux操作系統命令及環境配置
6. 熟練使用MySQL,掌握資料庫高級操作
7. 能綜合運用所學知識完成項目
知識點:
Python編程基礎、Python面向對象、Python高級進階、MySQL資料庫、Linux操作系統。
1、Python編程基礎,語法規則,函數與參數,數據類型,模塊與包,文件IO,培養扎實的Python編程基本功,同時對Python核心對象和庫的編程有熟練的運用。
2、Python面向對象,核心對象,異常處理,多線程,網路編程,深入理解面向對象編程,異常處理機制,多線程原理,網路協議知識,並熟練運用於項目中。
3、類的原理,MetaClass,下劃線的特殊方法,遞歸,魔術方法,反射,迭代器,裝飾器,UnitTest,Mock。深入理解面向對象底層原理,掌握Python開發高級進階技術,理解單元測試技術。
4、資料庫知識,範式,MySQL配置,命令,建庫建表,數據的增刪改查,約束,視圖,存儲過程,函數,觸發器,事務,游標,PDBC,深入理解資料庫管理系統通用知識及MySQL資料庫的使用與管理。為Python後台開發打下堅實基礎。
5、Linux安裝配置,文件目錄操作,VI命令,管理,用戶與許可權,環境配置,Docker,Shell編程Linux作為一個主流的伺服器操作系統,是每一個開發工程師必須掌握的重點技術,並且能夠熟練運用。
第二階段:PythonWEB開發
階段目標:
1. 熟練掌握Web前端開發技術,HTML,CSS,JavaScript及前端框架
2. 深入理解Web系統中的前後端交互過程與通信協議
3. 熟練運用Web前端和Django和Flask等主流框架完成Web系統開發
4. 深入理解網路協議,分布式,PDBC,AJAX,JSON等知識
5. 能夠運用所學知識開發一個MiniWeb框架,掌握框架實現原理
6. 使用Web開發框架實現貫穿項目
知識點:
Web前端編程、Web前端高級、Django開發框架、Flask開發框架、Web開發項目實戰。
1、Web頁面元素,布局,CSS樣式,盒模型,JavaScript,JQuery與Bootstrap掌握前端開發技術,掌握JQuery與BootStrap前端開發框架,完成頁面布局與美化。
2、前端開發框架Vue,JSON數據,網路通信協議,Web伺服器與前端交互熟練使用Vue框架,深入理解HTTP網路協議,熟練使用Swagger,AJAX技術實現前後端交互。
3、自定義Web開發框架,Django框架的基本使用,Model屬性及後端配置,Cookie與Session,模板Templates,ORM數據模型,Redis二級緩存,RESTful,MVC模型掌握Django框架常用API,整合前端技術,開發完整的WEB系統和框架。
4、Flask安裝配置,App對象的初始化和配置,視圖函數的路由,Request對象,Abort函數,自定義錯誤,視圖函數的返回值,Flask上下文和請求鉤子,模板,資料庫擴展包Flask-Sqlalchemy,資料庫遷移擴展包Flask-Migrate,郵件擴展包Flask-Mail。掌握Flask框架的常用API,與Django框架的異同,並能獨立開發完整的WEB系統開發。
第三階段:爬蟲與數據分析
階段目標:
1. 熟練掌握爬蟲運行原理及常見網路抓包工具使用,能夠對HTTP及HTTPS協議進行抓包分析
2. 熟練掌握各種常見的網頁結構解析庫對抓取結果進行解析和提取
3. 熟練掌握各種常見反爬機制及應對策略,能夠針對常見的反爬措施進行處理
4. 熟練使用商業爬蟲框架Scrapy編寫大型網路爬蟲進行分布式內容爬取
5. 熟練掌握數據分析相關概念及工作流程
6. 熟練掌握主流數據分析工具Numpy、Pandas和Matplotlib的使用
7. 熟練掌握數據清洗、整理、格式轉換、數據分析報告編寫
8. 能夠綜合利用爬蟲爬取豆瓣網電影評論數據並完成數據分析全流程項目實戰
知識點:
網路爬蟲開發、數據分析之Numpy、數據分析之Pandas。
1、爬蟲頁面爬取原理、爬取流程、頁面解析工具LXML,Beautifulfoup,正則表達式,代理池編寫和架構、常見反爬措施及解決方案、爬蟲框架結構、商業爬蟲框架Scrapy,基於對爬蟲爬取原理、網站數據爬取流程及網路協議的分析和了解,掌握網頁解析工具的使用,能夠靈活應對大部分網站的反爬策略,具備獨立完成爬蟲框架的編寫能力和熟練應用大型商業爬蟲框架編寫分布式爬蟲的能力。
2、Numpy中的ndarray數據結構特點、numpy所支持的數據類型、自帶的數組創建方法、算術運算符、矩陣積、自增和自減、通用函數和聚合函數、切片索引、ndarray的向量化和廣播機制,熟悉數據分析三大利器之一Numpy的常見使用,熟悉ndarray數據結構的特點和常見操作,掌握針對不同維度的ndarray數組的分片、索引、矩陣運算等操作。
3、Pandas裡面的三大數據結構,包括Dataframe、Series和Index對象的基本概念和使用,索引對象的更換及刪除索引、算術和數據對齊方法,數據清洗和數據規整、結構轉換,熟悉數據分析三大利器之一Pandas的常見使用,熟悉Pandas中三大數據對象的使用方法,能夠使用Pandas完成數據分析中最重要的數據清洗、格式轉換和數據規整工作、Pandas對文件的讀取和操作方法。
4、matplotlib三層結構體系、各種常見圖表類型折線圖、柱狀圖、堆積柱狀圖、餅圖的繪制、圖例、文本、標線的添加、可視化文件的保存,熟悉數據分析三大利器之一Matplotlib的常見使用,熟悉Matplotlib的三層結構,能夠熟練使用Matplotlib繪制各種常見的數據分析圖表。能夠綜合利用課程中所講的各種數據分析和可視化工具完成股票市場數據分析和預測、共享單車用戶群里數據分析、全球幸福指數數據分析等項目的全程實戰。
第四階段:機器學習與人工智慧
階段目標:
1. 理解機器學習相關的基本概念及系統處理流程
2. 能夠熟練應用各種常見的機器學習模型解決監督學習和非監督學習訓練和測試問題,解決回歸、分類問題
3. 熟練掌握常見的分類演算法和回歸演算法模型,如KNN、決策樹、隨機森林、K-Means等
4. 掌握卷積神經網路對圖像識別、自然語言識別問題的處理方式,熟悉深度學習框架TF裡面的張量、會話、梯度優化模型等
5. 掌握深度學習卷積神經網路運行機制,能夠自定義卷積層、池化層、FC層完成圖像識別、手寫字體識別、驗證碼識別等常規深度學習實戰項目
知識點:
1、機器學習常見演算法、sklearn數據集的使用、字典特徵抽取、文本特徵抽取、歸一化、標准化、數據主成分分析PCA、KNN演算法、決策樹模型、隨機森林、線性回歸及邏輯回歸模型和演算法。熟悉機器學習相關基礎概念,熟練掌握機器學習基本工作流程,熟悉特徵工程、能夠使用各種常見機器學習演算法模型解決分類、回歸、聚類等問題。
2、Tensorflow相關的基本概念,TF數據流圖、會話、張量、tensorboard可視化、張量修改、TF文件讀取、tensorflow playround使用、神經網路結構、卷積計算、激活函數計算、池化層設計,掌握機器學習和深度學習之前的區別和練習,熟練掌握深度學習基本工作流程,熟練掌握神經網路的結構層次及特點,掌握張量、圖結構、OP對象等的使用,熟悉輸入層、卷積層、池化層和全連接層的設計,完成驗證碼識別、圖像識別、手寫輸入識別等常見深度學習項目全程實戰。

閱讀全文

與python語言邏輯回歸相關的資料

熱點內容
壓縮包解碼器下載 瀏覽:130
愛旅行的預備程序員 瀏覽:111
安卓qq瀏覽器怎麼轉換到ios 瀏覽:292
不同編譯器的庫可以調用嗎 瀏覽:455
灰度信託基金加密 瀏覽:421
宿遷程序員兼職網上接單 瀏覽:924
電視編譯器怎麼設置 瀏覽:276
手機如何解壓漢字密碼的壓縮包 瀏覽:701
為什麼很多程序員愛用vim 瀏覽:828
安卓手機怎麼連接寶華韋健音響 瀏覽:555
12星座製作解壓球 瀏覽:867
java調用oracle數據 瀏覽:827
怎麼在伺服器上上傳小程序源碼 瀏覽:304
空中加油通達信指標公式源碼 瀏覽:38
分卷解壓只解壓了一部分 瀏覽:760
php網站自動登錄 瀏覽:705
合肥凌達壓縮機招聘 瀏覽:965
怎麼找到文件夾的圖標 瀏覽:237
linuxc編程pdf百度雲 瀏覽:192
會計pdf下載 瀏覽:835