1. 定积分计算
定积分的算法有两种:换元积分法如果 ;x=ψ(t)在[α,β]上单值、可导;当α≤t≤β时,a≤ψ(t)≤b,且ψ(α)=a,ψ(β)=b, 则 分部积分法设u=u(x),v=v(x)均在区间[a,b]上可导,且u′,v′∈R([a,b]),则有分部积分公式: (1)计算定积分算法扩展阅读 定积分的性质: 1、当a=b时, 2、当a>b时, 3、常数可以提到积分号前。 4、代数和的积分等于积分的代数和。 5、定积分的可加性:如果积分区间[a,b]被c分为两个子区间[a,c]与[c,b]则有又由于性质2,若f(x)在区间D上可积,区间D中任意c(可以不在区间[a,b]上)满足条件。 6、如果在区间[a,b]上,f(x)≥0,则 7、积分中值定理:设f(x)在[a,b]上连续,则至少存在一点ε在(a,b)内使
2. 定积分计算
定积分的概念起源于由计算平面上封闭曲线围成的区域的面积而产生,通过前人的总结,得到了比较清晰的极限概念之后,定积分的理论基础才得以逐步建立起来,换句话说定积分的理论基础是极限。早在公元263年我国刘徽提出的割圆术,也是定积分的思想。
3. 简单的定积分计算
定积分的计算方法如下:
1、
;
2、常数可以提到积分号前
;
3、代数和的积分等于积分的代数和
;
4、定积分的可加性:如果积分区间[a,b]被c分为两个子区间[a,c]与[c,b]则有
又由于性质2,若f(x)在区间D上可积,区间D中任意c(可以不在区间[a,b]上)满足条件;
5、Risch
算法;
6、如果在区间[a,b]上,f(x)≥0,则
;
7、积分中值定理:设f(x)在[a,b]上连续,则至少存在一点
t
在(a,b)内使
;
4. 定积分怎么算
计算定积分常用的方法:
拓展资料:
定积分的数学定义:如果函数f(x)在区间[a,b]上连续,用分点xi将区间[a,b]分为n个小区间,在每个小区间[xi-1,xi]上任取一点ri(i=1,2,3„,n),作和式f(r1)+...+f(rn),当n趋于无穷大时,上述和式无限趋近于某个常数A,这个常数叫做y=f(x)在区间上的定积计做/abf(x)dx即/abf(x)dx=limn>00[f(r1)+...+f(rn)],这里,a与b叫做积分下限与积分上限,区间[a,b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式。
几何定义:可以理解为在Oxy坐标平面上,由曲线y=f(x)与直线x=a,x=b以及x轴围成的曲边梯形的面积值。(一种确定的实数值)
5. 定积分的近似计算方法
我们知道,用牛顿-莱布尼兹公式计算定积分时,首先要求出被积函数的原函数。但在工程技术问题中,常常会遇到下面的一些情况。例如,被积函数不是用解析表达式表示,而是由曲线或表格给出的;有些被积函数虽然能用解析式表示,可是它的原函数不一定能用初等函数来表示,或者被积函数的原函数虽然是被初等函数,但不容易求出。对于这些情况,将如何计算定积分呢?可以采用近似计算的方法来求定积分的近似值。
根据定积分∫(a→b)f(x)dx(f(x)≥0)的几何意义,它在数值上都表示以曲线y=f(x)为曲边与直线x=a、x=b(a<b)及x轴所围成的曲边梯形的面积。因此,无论f(x)以什么形式给出或代表什么具体意,只要近似地算出相应的曲边梯形的面积,就可得到所给它积分的近似值。
定积分的近似计算方法是利用定积分的几何意义来求定积分的近似值的方法。它有三种近似计算法一一矩形法、梯形法和抛物线法及由这些近似计算法所导出的全部公式。
6. 定积分的运算公式
具体计算公式参照如图:
定积分
限多个原函数。
定积分 (definite integral)
定积分就是求函数f(X)在区间[a,b]中的图像包围的面积。即由 y=0,x=a,x=b,y=f(X)所围成图形的面积。这个图形称为曲边梯形,特例是曲边三角形。
这里应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值(曲边梯形的面积),而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式),其它一点关系都没有!
一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;
若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。
积分在实际问题中的应用
(一)经济问题
某工厂技术人员告诉他的老板某种产品的总产量关于时间的变化率为R′(t)=50+5t-0.6t2,现在老板想知道4个小时内他的工人到底能生产出多少产品。
如果我们假设这段时间为[1,5],生产的产品总量为R,则总产量R在t时刻的产量,即微元dR=R′(t)dt=(50+5t-0.6t2)dt。因此,在[1,5]内总产量为
(二)压缩机做功问题
在生产生活过程中,压缩机做功问题由于关系到能源节约问题,因此备受大家关注。假设地面上有一个底半径为5 m, 高为20 m的圆柱形水池, 往里灌满了水。
如果要把池中所有的水抽出,则需要压缩机做多少功?此时,由于考虑到池中的水被不间断地抽出,可将抽出的水分割成不同的水层。
同时, 把每层的水被抽出时需要的功定义为功微元。这样,该问题就可通过微元法解决了。
具体操作如下: 将水面看做是原点所在的位置, 竖直向下做x轴。当水平从x处下降了dx时, 我们近似地认为厚度为dx的这层水都下降了x,因而这层水所做的功微元dw≈25πxdx(J)。当水被完全抽出, 池内的水从20 m下降为 0 m。
根据微元法, 压缩机所做的功为W=25πxdx=15708(J) 。
(三)液体静压力问题
在农业生产过程中,为了保证农田的供水,常常需要建造各种储水池。因此,我们需要了解有关静压力问题。
在农田中有一个宽为 4 m, 高为3 m, 且顶部在水下 5 m的闸门, 它垂直于水面放置。此闸门所受的水压力为多少?我们可以考虑将闸门分成若干个平行于水面的小长方体。
此时, 闸门所受的压力可看做是小长方体所受的压力总和。 当小长方体的截面很窄的情况下, 可用其截面沿线上的压强来近似代替各个点处的压强。 任取一小长方体,其压强可表示为1・x=x, 长方体截面的面积为ΔA=4dx, 从而ΔF≈x・4dx,
利用微元法求解定积分,还可以解决很多实际工程问题,关键是要掌握好换“元” 的技巧。这就需要我们解决问题时,要特别注意思想方法。思想方法形式多种多样,如以直代曲、以均匀代不均匀、以不变代变化等。
网络-定积分