导航:首页 > 源码编译 > 用户行为分析的算法

用户行为分析的算法

发布时间:2022-06-14 06:09:13

Ⅰ 常用的数据分析方法有哪些

常用的列了九种供参考:

一、公式拆解

所谓公式拆解法就是针对某个指标,用公式层层分解该指标的影响因素。
举例:分析某产品的销售额较低的原因,用公式法分解

可以看到,数据可以被分到红蓝绿三个不同的簇(cluster)中,每个簇应有其特有的性质。显然,聚类分析是一种无监督学习,是在缺乏标签的前提下的一种分类模型。当我们对数据进行聚类后并得到簇后,一般会单独对每个簇进行深入分析,从而得到更加细致的结果。

Ⅱ 数据分析中,你认为用户行为分析最重要的3个点是什么

我认为用户行为分析最重要的三点:黏性,活跃和产出。

用户行为指标统计的时间段,可以通过根据网站业务特点和用户的行为密度进行选择,对于一般的网站,建议每月统计一次会比较合适,也可以针对某些用户或分类来比较每月的行为指标数据的变化。

Ⅲ 用户行为分析系统建立所需步骤和所需软件

Web日志挖掘分析的方法

日志文件的格式及其包含的信息
①2006-10-17 00:00:00②202.200.44.43 ③218.77.130.24 80 ④GET ⑤/favicon.ico
⑥Mozilla/5.0+(Windows;+U;+Windows+NT+5.1;+zh-CN;+rv:1.8.0.3)+Gecko/20060426
+Firefox/1.5.0.3。
①访问时间;②用户IP地址;③访问的URL,端口;④请求方法(“GET”、“POST”等);
⑤访问模式;⑥agent,即用户使用的操作系统类型和浏览器软件。

一、日志的简单分析
1、注意那些被频繁访问的资源
2、注意那些你网站上不存在资源的请求。常见的扫描式攻击还包括传递恶意参数等:
3、观察搜索引擎蜘蛛的来访情况
4、观察访客行为
应敌之策:
1、封杀某个IP
2、封杀某个浏览器类型(Agent)
3、封杀某个来源(Referer)
4、防盗链
5、文件重命名
作用:
1.对访问时间进行统计,可以得到服务器在某些时间段的访问情况。
2.对IP进行统计,可以得到用户的分布情况。
3.对请求URL的统计,可以得到网站页面关注情况。
4.对错误请求的统计,可以更正有问题的页面。

二、Web挖掘
根据所挖掘的Web 数据的类型,可以将Web 数据挖掘分为以下三类:Web 内容挖掘(Web Content Mining)、Web 结构挖掘(Web Structure Mining)、Web 使用挖掘(Web Usage Mining)(也称为Web日志挖掘)。
①Web内容挖掘。Web内容挖掘是指从文档的内容中提取知识。Web内容挖掘又分为文本挖掘和多媒体挖掘。目前多媒体数据的挖掘研究还处于探索阶段,Web文本挖掘已经有了比较实用的功能。Web文本挖掘可以对Web上大量文档集合的内容进行总结、分类、聚类、关联分析,以及利用Web文档进行趋势预测等。Web文档中的标记,例如<Title>和<Heading>等蕴含了额外的信息,可以利用这些信息来加强Web文本挖掘的作用。
②Web结构挖掘。Web结构挖掘是从Web的组织结构和链接关系中推导知识。它不仅仅局限于文档之间的超链接结构,还包括文档内部的结构。文档中的URL目录路径的结构等。Web结构挖掘能够利用网页间的超链接信息对搜索引擎的检索结果进行相关度排序,寻找个人主页和相似网页,提高Web搜索蜘蛛在网上的爬行效率,沿着超链接优先爬行。Web结构挖掘还可以用于对Web页进行分类、预测用户的Web链接使用及Web链接属性的可视化。对各个商业搜索引擎索引用的页数量进行统计分析等。
③Web使用记录挖掘。Web使用记录挖掘是指从Web的使用记录中提取感兴趣的模式,目前Web使用记录挖掘方面的研究较多,WWW中的每个服务器都保留了访问日志,记录了关于用户访问和交互的信息,可以通过分析和研究Web日志记录中的规律,来识别网站的潜在用户;可以用基于扩展有向树模型来识别用户浏览序列模式,从而进行Web日志挖掘;可以根据用户访问的Web记录挖掘用户的兴趣关联规则,存放在兴趣关联知识库中,作为对用户行为进行预测的依据,从而为用户预取一些Web页面,加快用户获取页面的速度,分析这些数据还可以帮助理解用户的行为,从而改进站点的结构,或为用户提供个性化的服务。
通过对Web服务器日志中大量的用户访问记录深入分析,发现用户的访问模式和兴趣爱好等有趣、新颖、潜在有用的以及可理解的未知信息和知识,用于分析站点的使用情况,从而辅助管理和支持决策。当前,web日志挖掘主要被用于个性化服务与定制、改进系统性能和结构、站点修改、商业智能以及web特征描述等诸多领域。

三、Web日志挖掘的方法
(一)首先,进行数据的预处理。
从学习者的访问日志中得到的原始日志记录并不适于挖掘,必须进行适当的处理才能进行挖掘。因此,需要通过日志清理,去除无用的记录;对于某些记录,我们还需要通过站点结构信息,把URL路径补充成完整的访问序列;然后划分学习者,并把学习者的会话划分成多个事务。
(二)其次,进行模式发现
一旦学习者会话和事务识别完成,就可以采用下面的技术进行模式发现。模式发现, 是对预处理后的数据用数据挖掘算法来分析数据。分有统计、分类、聚类、关等多种方法。
① 路径分析。它可以被用于判定在一个站点中最频繁访问的路径,还有一些其它的有关路径的信息通过路径分析可以得出。路径分析可以用来确定网站上的频繁访问路径, 从而调整和优化网站结构, 使得用户访问所需网页更加简单快捷, 还可以根据用户典型的浏览模式用于智能推荐和有针对性的电子商务活动。例如:70% 的学习者在访问/ E-Business /M2时,是从/EB开始,经过/ E-Business /SimpleDescription,/ E-Business /M1;65%的学习者在浏览4个或更少的页面内容后就离开了。利用这些信息就可以改进站点的设计结构。
② 关联规则。 使用关联规则发现方法,可以从Web的访问事务中找到的相关性。关联规则是寻找在同一个事件中出现的不同项的相关性,用数学模型来描述关联规则发现的问题:x=>y的蕴含式,其中x,y为属性——值对集(或称为项目集),且X∩Y空集。在数据库中若S%的包含属性——值对集X的事务也包含属性——值集Y,则关联规则X=>Y的置信度为C%。
③ 序列模式。在时间戳有序的事务集中,序列模式的发现就是指那些如“一些项跟随另一个项”这样的内部事务模式。它能发现数据库中如“在某一段时间内,客户购买商品A,接着会购买商品B,尔后又购买商品C,即序列A→B→C出现的频率高”之类的信息。序列模式描述的问题是:在给定的交易序列数据库中,每个序列按照交易的时间排列的一组交易集,挖掘序列函数作用是返回该数据库中高频率出现有序列。
④ 分类分析。发现分类规则可以给出识别一个特殊群体的公共属性的描述,这种描述可以用于分类学习者。分类包括的挖掘技术将找出定义了一个项或事件是否属于数据中某特定子集或类的规则。该类技术是最广泛应用于各类业务问题的一类挖掘技术。分类算法最知名的是决策树方法,此外还有神经元网络、Bayesian分类等。例如:在/ E-Business /M4学习过的学习者中有40%是20左右的女大学生。
⑤聚类分析。可以从Web访问信息数据中聚类出具有相似特性的学习者。在Web事务日志中,聚类学习者信息或数据项能够便于开发和设计未来的教学模式和学习群体。聚类是将数据集划分为多个类,使得在同一类中的数据之间有较高的相似度,而在不同类中的数据差别尽可能大。在聚类技术中,没有预先定义好的类别和训练样本存在,所有记录都根据彼此相似程度来加以归类。主要算法有k—means、DBSCAN等。聚类分析是把具有相似特征的用户或数据项归类,在网站管理中通过聚类具有相似浏览行为的用户。基于模糊理论的Web页面聚类算法与客户群体聚类算法的模糊聚类定义相同,客户访问情况可用URL(Uj)表示。有Suj={(Ci,fSuj(Ci))|Ci∈C},其中fSuj(Ci)→[0,1]是客户Ci和URL(Uj)间的关联度:式中m为客户的数量,hits(Ci)表示客户Ci访问URL(Uj)的次数。利用Suj和模糊理论中的相似度度量Sfij定义建立模糊相似矩阵,再根据相似类[Xi]R的定义构造相似类,合并相似类中的公共元素得到的等价类即为相关Web页面。
⑥统计。统计方法是从Web 站点中抽取知识的最常用方法, 它通过分析会话文件, 对浏览时间、浏览路径等进行频度、平均值等统计分析。虽然缺乏深度, 但仍可用于改进网站结构, 增强系统安全性, 提高网站访问的效率等。
⑦协同过滤。协同过滤技术采用最近邻技术,利用客户的历史、喜好信息计算用户之间的距离,目标客户对特点商品的喜好程度由最近邻居对商品的评价的加权平均值来计算。
(三)最后,进行模式分析。
模式分析。基于以上的所有过程,对原始数据进行进一步分析,找出用户的浏览模式规律,即用户的兴趣爱好及习惯,并使其可视化,为网页的规划及网站建设的决策提供具体理论依据。其主要方法有:采用SQL查询语句进行分析;将数据导入多维数据立方体中,用OLAP工具进行分析并给出可视化的结果输出。(分类模式挖掘、聚类模式挖掘、时间序列模式挖掘、序列模式挖掘、关联规则等)

四、关联规则
(一)关联规则
顾名思义,关联规则(association rule)挖掘技术用于于发现数据库中属性之间的有趣联系。一般使用支持度(support)和置信度(confidence)两个参数来描述关联规则的属性。
1.支持度。规则 在数据库 中的支持度 是交易集中同时包含 , 的事务数与所有事务数之比,记为 。支持度描述了 , 这两个项集在所有事务中同时出现的概率。
2.置信度。规则 在事务集中的置信度(confidence)是指同时包含 , 的事务数与包含 的事务数之比,它用来衡量关联规则的可信程度。记为

规则 A Þ C:支持度= support({A}È{C}) = 50%,置信度= support({A}È{C})/support({A}) = 66.6%

(二)Apriori方法简介
Apriori算法最先是由Agrawal等人于1993年提出的,它的基本思想是:首先找出所有具有超出最小支持度的支持度项集,用频繁的(k—1)-项集生成候选的频繁k-项集;其次利用大项集产生所需的规则;任何频繁项集的所有子集一定是频繁项集是其核心。
Apriori算法需要两个步骤:第一个是生成条目集;第二个是使用生成的条目集创建一组关联规则。当我们把最小置信度设为85%,通过关联规则的形成以及对应置信度的计算,我们可以从中得到以下有用的信息:
1.置信度大于最小置信度时:我们可以这样认为,用户群体在浏览相关网页时,所呈列的链接之间是有很大关联的,他们是用户群的共同爱好,通过网页布局的调整,从某种意义上,可以带来更高的点击率及潜在客户;
2.置信度小于最小置信度时:我们可以这样认为,用户群体对所呈列链接之间没太多的关联,亦或关联规则中的链接在争夺用户。

五、网站中Web日志挖掘内容
(1)网站的概要统计。网站的概要统计包括分析覆盖的时间、总的页面数、访问数、会话数、惟一访问者、以及平均访问、最高访问、上周访问、昨日访问等结果集。
(2)内容访问分析。内容访问分析包括最多及最少被访问的页面、最多访问路径、最多访问的新闻、最高访问的时间等。
(3)客户信息分析。客户信息分析包括访问者的来源省份统计、访问者使用的浏览器及操作系统分析、访问来自的页面或者网站、来自的IP地址以及访问者使用的搜索引擎。
(4)访问者活动周期行为分析。访问者活动周期行为分析包括一周7天的访问行为、一天24小时的访问行为、每周的最多的访问日、每天的最多访问时段等。
(5)主要访问错误分析。主要访问错误分析包括服务端错误、页面找不到错误等。
(6)网站栏目分析。网站栏目分析包括定制的频道和栏目设定,统计出各个栏目的访问情况,并进行分析。
(7)商务网站扩展分析。商务网站扩展分析是专门针对专题或多媒体文件或下载等内容的访问分析。
(8)有4个方向可以选择:①对用户点击行为的追踪,click stream研究;②对网页之间的关联规则的研究;③对网站中各个频道的浏览模式的研究;④根据用户浏览行为,对用户进行聚类,细分研究;(如果你能够结合现有的互联网产品和应用提出一些自己的建议和意见,那就更有价值了。)
(9)发现用户访问模式。通过分析和探究Web日志记录中的规律,可以识别电子商务的潜在客户,提高对最终用户的服务质量,并改进Web服务器系统的性能。
(10)反竞争情报活动。反竞争情报是企业竞争情报活动的重要组成部分。

六、相关软件及算法
(一)相关软件:
1.数据挖掘的专用软件wake。
2.用OLAP工具
3.已经有部分公司开发出了商用的网站用户访问分析系统,如WebTrends公司的CommerceTrends 3.0,它能够让电子商务网站更好地理解其网站访问者的行为,帮助网站采取一些行动来将这些访问者变为顾客。CommerceTrends主要由3部分组成:Report Generation Server、Campain Analyzer和Webhouse Builder。
4.Accrue公司的Accrue Insight,它是一个综合性的Web分析工具,它能够对网站的运行状况有个深入、细致和准确的分析,通过分析顾客的行为模式,帮助网站采取措施来提高顾客对于网站的忠诚度,从而建立长期的顾客关系。
(二)相关算法:
1.运用各种算法进行数据挖掘:GSP算法, Prefixspana算法,
2.关联规则分析:Apriori、FP-growth算法等。
3.Apriori算法及其变种算法
4.基于数据库投影的序列模式生长技术(database project based sequential pattern growth)
5. Wake算法、MLC++等
6. PageRank算法和HITS算法利用Web页面间的超链接信息计算“权威型”(Authorities)网页和“目录型”(Hubs)网页的权值。Web结构挖掘通常需要整个Web的全局数据,因此在个性化搜索引擎或主题搜索引擎研究领域得到了广泛的应用。
7.参考检索引擎的挖掘算法,比如Apache的lucene等。

Ⅳ 大数据技术中,关于用户行为分析方面的有哪些技术

做用户行为分析的基础是获得用户行为数据,例如用户页面停留时间、跳转来源等等。这些信息有些能直接拿到,有些是需要做一些计算才能拿到的。一般来说用户访问时的一些信息都是以日志的形式打到web容器的日志空间中去,这其中包含了最通用的一些访问信息以及一些自定义的日志打点。

题主提到了大数据技术中对用户行为进行分析,那么可以假定网站或者App的访问量是比较傲多的。由于系统流量比较大,计算维度又比较多,后续数据消费者的需求增长比较快,所以对计算分析平台有了一定的要求。具体表现为:
1.负载能力。流量增大以后带来的压力是多方面的,比如网络带宽的压力、计算复杂度带来的压力、存储上的压力等等。一般来说这些都是比较显而易见的,会对产生比较直接的影响,比如计算实时性下降、消息出现了堆积、OOM等等。为了解决这一现象,一般来说会选择一些分布式的框架来解决这个问题,比如引入分布式计算框架storm、spark,分布式文件系统hdfs等。
2.实时性。在系统资源捉襟见肘时消息的实时性会立即受到严重影响,这使得部分算法失效(例如对计算和收集上来的数据进行行为分析后,反馈到推荐系统上,当整体响应时间过场时会严重影响推荐效果和准确度)。对于这个情况来说可能会选择storm这种具有高实时性的分布式流式计算框架来完成任务。
3.系统管理和平台化相关技术手段。在大数据情景下,企业内数据环境和应用环境都是比较复杂的,用户行为分析应用不是一成不变的,那么就要求用户行为分析这种多变的应用在复杂环境中能有效生存,这包括算法数据材料的获得、系统运维、系统任务调度、系统资源调度等等,相关的技术很多时候要求团队自研,但也有ganglia、yarn、mesos这类开源系统可以参考或者直接使用。
4.数据链路。企业技术环境一般来说是非常复杂的,一层一层交错在一起,远不是一句MVC三层架构能够概括得了的,为了避免消息流通呈复杂的网状结构,一般会考虑应用服务化、企业服务总线(ESB)及消息总线来做传输,有兴趣的话题主可以网络一下这几个方向的技术和开源工具。
5.应用快速生成工具。我个人认为在大数据环境下应用都摆脱不了一个快速开发的要求,用户行为分析也是如此,这时候要考虑对接一些开源的分布式数据分析算法库而不是通过自己去实现,比如像spark ml,mahout这类的库用得好能减少很多工作量。

Ⅳ 如何做用户行为路径分析

如何做用户行为路径分析

用户行为路径分析是互联网行业特有的一类数据分析方法,它主要根据每位用户在App或网站中的点击行为日志,分析用户在App或网站中各个模块的流转规律与特点,挖掘用户的访问或点击模式,进而实现一些特定的业务用途,如App核心模块的到达率提升、特定用户群体的主流路径提取与浏览特征刻画,App产品设计的优化与改版等。

本文会对用户行为路径分析方法作一些简单的探讨,更多的偏向于一些路径分析业务场景与技术手段的介绍,起到抛砖引玉的作用,欢迎致力于互联网数据分析的朋友们拍砖与批评。以后有机会可以继续介绍分享与实际业务结合较多的用户行为路径分析案例。

一、 路径分析业务场景

用户行为路径分析的一个重要终极目的便是优化与提升关键模块的转化率,使得用户可以便捷地依照产品设计的期望主流路径直达核心模块。具体在分析过程中还存在着以下的应用场景:

用户典型路径识别与用户特征分析

用户特征分析中常常使用的都是一些如性别、地域等人口统计数据或订单价、订单数等运营数据,用户访问路径数据为我们了解用户特征打开了另一扇大门。例如对于一款图片制作上传分享的应用,我们可以通过用户的App使用操作数据,来划分出乐于制作上传的创作型用户,乐于点赞评论的互动型用户,默默浏览看图的潜水型用户,以及从不上传只会下载图片的消费型用户。

产品设计的优化与改进

路径分析对产品设计的优化与改进有着很大的帮助,可以用于监测与优化期望用户路径中各模块的转化率,也可以发现某些冷僻的功能点。一款视频创作分享型App应用中,从开始拍摄制作视频到视频的最终发布过程中,用户往往会进行一系列的剪辑操作;通过路径分析,我们可以清晰的看到哪些是用户熟知并喜爱的编辑工具,哪些操作过于冗长繁琐,这样可以帮助我们针对性地改进剪辑操作模块,优化用户体验。如果在路径分析过程中用户的创作数量与用户被点赞、评论以及分享的行为密切相关,就可以考虑增强这款App的社交性,增强用户黏性与创作欲望。

3、产品运营过程的监控

产品关键模块的转化率本身即是一项很重要的产品运营指标,通过路径分析来监测与验证相应的运营活动结果,可以方便相关人员认识了解运营活动效果。

二、 路径分析数据获取

互联网行业对数据的获取有着得天独厚的优势,路径分析所依赖的数据主要就是服务器中的日志数据。用户在使用App过程中的每一步都可以被记录下来,这时候需要关注的便是优秀的布点策略,它应当与我们所关心的业务息息相关。这里可以推荐一下诸葛io,一款基于用户洞察的精细化运营分析工具;将诸葛io的SDK集成到App或网站中,便能获得应用内的所有用户行为数据。事实上,诸葛io认为在每个App里,不是所有事件都有着同样的价值,基于对核心事件的深度分析需求,诸葛io推荐大家使用层级化的自定义事件布点方式,每一个事件由三个层次组成的:事件(Event)、属性(Key)和属性值(Value)。同时,诸葛io还为开发者们提供数据监测布点咨询服务,可以根据丰富的行业经验为客户提供个性化的事件布点咨询和技术支持。

三、 漏斗模型与路径分析的关系

以上提到的路径分析与我们较为熟知的漏斗模型有相似之处,广义上说,漏斗模型可以看作是路径分析中的一种特殊情况,是针对少数人为特定模块与事件节点的路径分析。

漏斗模型通常是对用户在网站或App中一系列关键节点的转化率的描述,这些关键节点往往是我们人为指定的。例如我们可以看到某购物App应用的购买行为在诸葛io中的漏斗转化情况。这款购物App平台上,买家从浏览到支付成功经历了4个关键节点,商品浏览、加入购物车、结算、付款成功,从步骤1到步骤4,经历了其关键节点的人群越来越少,节点的转化率呈现出一个漏斗状的情形,我们可以针对各个环节的转化效率、运营效果及过程进行监控和管理,对于转化率较低的环节进行针对性的深入分析与改进。其他的漏斗模型分析场景可以根据业务需求灵活运用,诸葛io平台中拥有十分强大的漏斗分析工具,是您充分发挥自己对于数据的想象力的平台,欢迎参看一个基于漏斗模型的分析案例《漏斗/留存新玩儿法》。

路径分析与漏斗模型存在不同之处,它通常是对每一个用户的每一个行为路径进行跟踪与记录,在此基础上分析挖掘用户路径行为特点,涉及到每一步的来源与去向、每一步的转化率。可以说,漏斗模型是事先的、人为的、主动的设定了若干个关键事件节点路径,而路径分析是探索性的去挖掘整体的行为路径,找出用户的主流路径,甚至可能发现某些事先不为人知的有趣的模式路径。从技术手段上来看,漏斗模型简单直观计算并展示出相关的转化率,路径分析会涉及到一些更为广泛的层面。

四、路径分析常见思路与方法

1、朴素的遍历统计与可视化分析探索

通过解析布点获得的用户行为路径数据,我们可以用最简单与直接的方式将每个用户的事件路径点击流数据进行统计,并用数据可视化方法将其直观地呈现出来。D3.js是当前最流行的数据可视化库之一,我们可以利用其中的Sunburst Partition来刻画用户群体的事件路径点击状况。从该图的圆心出发,层层向外推进,代表了用户从开始使用产品到离开的整个行为统计;sunburst事件路径图可以快速定位用户的主流使用路径。通过提取特定人群或特定模块之间的路径数据,并使用sunburst事件路径图进行分析,可以定位到更深层次的问题。灵活使用sunburst路径统计图,是我们在路径分析中的一大法宝。

诸葛io不仅能够便捷获取布点数据,也为客户提供了个性化的sunburst事件路径图分析,并可为客户产品制作定制化的产品分析报告。

2、基于关联分析的序列路径挖掘方法

提到关联规则分析,必然免不了数据挖掘中的经典案例“啤酒与尿布”。暂且不论“啤酒与尿布”是不是Teradata的一位经理胡编乱造吹嘘出来的“神话故事”,这个案例在一定程度上让人们理解与懂得了购物篮分析(关联分析)的流程以及背后所带来的业务价值。将超市的每个客户一次购买的所有商品看成一个购物篮,运用关联规则算法分析这些存储在数据库中的购买行为数据,即购物篮分析,发现10%的顾客同事购买了尿布与啤酒,且在所有购买了尿布的顾客中,70%的人同时购买了啤酒。于是超市决定将啤酒与尿布摆放在一起,结果明显提升了销售额。

我们在此不妨将每个用户每次使用App时操作所有事件点看成“购物篮”中的“一系列商品”,与上面提到的购物篮不同的是,这里的所有事件点击行为都是存在严格的前后事件顺序的。我们可以通过改进关联规则中的Apriori或FP-Growth算法,使其可以挖掘存在严格先后顺序的频繁用户行为路径,不失为一种重要的用户路径分析思路。我们可以仔细考量发掘出来的规则序列路径所体现的产品业务逻辑,也可以比较分析不同用户群体之间的规则序列路径。

社会网络分析(或链接分析)

早期的搜索引擎主要基于检索网页内容与用户查询的相似性或者通过查找搜索引擎中被索引过的页面为用户查找相关的网页,随着90年代中后期互联网网页数量的爆炸式增长,早期的策略不再有效,无法对大量的相似网页给出合理的排序搜索结果。现今的搜索引擎巨头如Google、网络都采用了基于链接分析的搜索引擎算法来作为这个问题解决方法之一。网页与网页之间通过超链接结合在一起,如同微博上的社交网络通过关注行为连接起来,社交网络中有影响力很大的知名权威大V们,互联网上也存在着重要性或权威性很高的网页。将权威性较高的网页提供到搜索引擎结果的前面,使得搜索的效果更佳。

我们将社交网络中的人看作一个个节点,将互联网中的网页看作一个个节点,甚至可以将我们的App产品中的每一个模块事件看作一个个节点,节点与节点之间通过各自的方式连接组成了一个特定的网络图,以下将基于这些网络结构的分析方法统称为社会网络分析。

社会网络分析中存在一些较为常见的分析方法可以运用到我们的路径分析中来,如节点的中心性分析,节点的影响力建模,社区发现等。通过中心性分析,我们可以去探索哪些模块事件处于中心地位,或者作为枢纽连接了两大类模块事件,或者成为大多数模块事件的最终到达目的地。通过社区发现,我们可以去探索这个社会网络中是否存在一些“小圈子”,即用户总是喜欢去操作的一小部分行为路径,而该部分路径又与其他大部分模块相对独立。

以上是小编为大家分享的关于如何做用户行为路径分析的相关内容,更多信息可以关注环球青藤分享更多干货

Ⅵ 如何用数据来分析用户的消费行为

这就是数据分析前期数据搜集的作用。
互联网的数据越来越多,包括行为数据交易数据等。分析这些数据有以下几个大的作用
1.分析用户的行为数据,设计和完善互联网产品
2.分析用户的消费数据,拉广告主,并且设计出更好的付费产品;
3.分析用户的潜在行为数据,建立模型挖掘,找到市场未来的发展方向
等等
数据分析就像巡航导弹上的卫星定位系统,能帮助我们精确地分析:竞争对手的信息,自家产品的优缺点,用户喜恶程度,可以分析我们为何没成功? 为何为我们带来收入?等等
不过数据分析,关键是要分析人员对业务非常自家熟悉,并且能建立一个有效的分析模型,并且不停用采集的数据去验证模型的算法,最后给出指导性建议和报告,帮助产品设计和运营人员改善产品,增强用户体验,针对性地营销,更多地为公司make money!数据分析是一个非常消耗公司人力和物理资源的事情,所以必须控制投入产出,若是投入产出比率对,必须重新评估分析负责人能力? 或对数据分析报告的执行力?
数据分析总是要从无数个偶然性数据,分析出可能的内在必然性关联事件!
数据相对论,数据对需要的人有用,对不需要的人无用。
分析要主动,被动的接受一些分析结果是无意义的。数据分析的结果是给出结论。

Ⅶ 基于用户行为分析建立用户偏好模型

基于用户行为分析建立用户偏好模型
我们经常将个性化推荐的思想简单地抽象为:通过用户的行为推测出用户的兴趣,从而给用户推荐满足他们兴趣的物品。那我们其实就是要通过用户行为分析建立一个用户偏好(偏好即兴趣)模型,模型中包含各个用户的一个或更多个偏好。
插叙一段
像“用户行为”,“用户兴趣”这样的词,大多数人都有一个默认的感知,甚至对于这种词的理解可能已固化为常识,所以我很少见到有文章使用这些词时解释它们。我感觉涉及到算法模型时,对这些词的不加限定的宽泛认知就容易影响对算法模型的深入理解,会导致感知模糊却不自知。因为不同人对这些词的基本理解可能一致,但是拓展理解各不相同。本文会作出限定解释,且本文所谈用户行为都是指网络(可以是电信网络,互联网)上的行为。
概念解释
实体域
当我们想基于用户行为分析来建立用户偏好模型时,我们必须把用户行为和兴趣主题限定在一个实体域上。个性化推荐落实在具体的推荐中都是在某个实体域的推荐。比如对于阅读网站,实体域包括所有的图书,我们可以称之为图书域。其他还有,个性化音乐推荐,个性化电影推荐,个性化资讯推荐等。
用户行为
用户在门户网站点击资讯,评论资讯,在社交网站发布状态,评论状态,在电商网站浏览商品,购买商品,点评商品,以及在其他类型网站的种种行为都可是用户行为。本文所指的用户行为都是指用户在某实体域上的行为。比如用户在图书域产生的行为有阅读,购买,评分,评论等。
兴趣主题
用户的兴趣维度,同样是限定在某实体域的兴趣,通常可以以标签的形式来表示。比如,对于图书阅读,兴趣主题可以是“悬疑”,“科技”,“情感”等等分类标签。值得一提的是,兴趣主题,只是从用户行为中抽象出来的兴趣维度,并无统一标准。比如qq阅读和豆瓣阅读的图书分类标签大不一样。而兴趣维度的粒度也不固定,就像门户网站有“新闻”,“体育”,“娱乐”等一级分类,而新闻下有“国内”,“社会”,“国际”二级分类,娱乐下有“明星”,“星座”,“八卦”二级分类。我们选取什么粒度的兴趣空间取决于我们对用户偏好模型的要求。
兴趣空间
在同一层次上兴趣维度的集合,比如豆瓣阅读中,可以用“新上架”,“热门”,“特价”,“免费”来构成一个兴趣空间(当然,如果使用这个兴趣空间来表征用户的兴趣,就太粗了,这里只是假设),也可以用“小说”,“幻想”,“计算机”,“科技”,“历史”·····“美食”构成一个兴趣空间。这是两种不同的分类维度。如果将“新上架”也加入到后者集合里,就显然有些莫名其妙。值得一提是,这也并非不可能,这取决于一个如何看待这个集合的问题,如果不把它看作基于内容的分类,而是图书标签库,那么也是可行的,甚至利于建立更好地模型。本文后面我有提到。
用户行为数据
项亮在他的《推荐系统实践》的2.1节有详细介绍。通常在经过对行为日志的汇总处理后生成的比较容易理解的数据就是一份描述用户行为的会话日志。这种日志记录了用户的各种行为,比如在图书阅读app中这些行为主要包括点击,试读,购买,阅读(在本地app中,阅读行为有可能追踪不到),评分,评论。
建立用户偏好模型
基于用户行为分析建立用户偏好模型的核心工作就是:将用户的行为转换为用户的偏好。
我们采用矩阵运算的思维方式,以图书阅读为例说明。
下图表示用户(user)集合:
下图表示图书(item)集合:
那么用户的行为矩阵可以表达为:
行表示用户,列表示图书,我们暂只考虑图书的购买行为,1表示用户看过该图书,0表示用户没有看过该图书。
如何将上述用户行为矩阵转化为用户兴趣矩阵(即行代表用户,列代表兴趣维度),一种显着的方法是我们先确定图书与兴趣维度的对应关系矩阵。而这个的前提是我们确定了使用何种兴趣空间。一种常见的方式是专家给出一些样本的分类结果,也就是一般意义的训练数据,然后通过分类算法,得到分类模型,然后应用到其余数据的分类问题当中,解决其余大量数据的分类问题。这种分类的特点是一本图书只被标记为一种类别,假如有3个类别,
那么图书-兴趣矩阵为:
那么用户行为矩阵转换为用户兴趣矩阵的运算公式即可表示为下图,行表示用户,列表示兴趣,算出的矩阵再经过归一化后,每个值就代表某个用户在某个兴趣的偏好权重。
选择这样的兴趣空间的局限显而易见:一本图书只能属于一个兴趣维度。实际情况中,一本图书通常不只属于某个分类,并且当图书的数据巨大时,寄希望于编辑分类可能会越来越难以维持,所以通常是由用户主动给图书添加标签,或者机器基于内容,提取关键词。但是这种形式得到的标签集会存在同义,生僻,维度过多等情况,需要经过标签清洗的重要工作。前面已经看到兴趣空间的选择真的是非常重要,直接影响所得到用户的兴趣矩阵。所以同样的方法都得到了用户偏好,但是好不好用,就跟这部分工作有关了。
用户行为加权
上面展示的用户行为矩阵示例是一个非常简单的,直接可以从数据库里提取的例子。而实际中在数据能够支撑的情况下,我们不可能只考虑一种行为。为了获得更合理的行为矩阵,我们就需要进行行为加权。比如,A1表示用户点击的行为矩阵,A2表示购买的行为矩阵,A3表示评分的行为矩阵,那么加权矩阵就是:
至于各矩阵的权重跟我们建立用户偏好模型的目的有关,如果我们更希望找准用户的品味偏好,那么权重可能是:a1 < a2 < a3;如果我们更希望用户购买,那么权重可能是:a1 < a3 < a2。
其他用户行为分析方法
上面介绍的方法也算是一种主流的方法。但是从上面介绍的“兴趣主题”,“兴趣空间”也可以看出作出好的分类并不容易,分类粒度,分类维度等都不好控制,用户打标签也需要复杂的标签清洗工作。在图书,电影这样的实体域,我们还可以通过类别给用户推荐喜欢的物品,而在个性化资讯推荐领域(这里仅举个例子,资讯推荐应该有其特殊之处),我们不见得能通过类别推荐用户喜欢的资讯,甚至用户本身也不在意类别。我们并不需要显式地构建物品-兴趣对应关系矩阵,也可以将用户和所喜欢类别的物品关联起来。这就涉及到隐含语义分析技术。这个部分会日后在此文补充。
小总结
以上可以看出基于用户行为分析的用户偏好建模的常规方法非常简单明了。事实上也的确如此,在使用这些方法或者思想编写程序计算都不是什么难事。而实际上,我们遇到的问题却并非是方法本身,而是数据本身。数据方面的两大问题是稀疏和长尾分布。通常有行为数据用户很少,而用户的行为对象也集中在不多的物品上。方法易学,而数据问题只能在实战中才能深刻体会,才会发现主要的精力和难点都在解决数据的稀疏和长尾上。希望日后能结合实际问题写写解决数据问题的文章。
此外,上面虽然是用矩阵运算的思想讲述,但我在实际项目中发现其运算的本质其实是对用户行为的统计。所以在实战中,不一定要先建矩阵,再做计算,直接在数据库里使用sql计算非常方便。

Ⅷ 如何用商业思维分析用户行为数据

如何用商业思维分析用户行为数据

数据这么多,各类数据的表达不一样,具体应该如何处理?有人说:“产品初期,活动为辅,处理数据在于稳定。”有人说:“产品中期,活动为主,处理数据在于调控。”有人说:“产品末期,活动为核,处理数据在于激励。”还有人说:“处理产品数据要先四步走!”

第1步:看整体数据,主要看整体数据有何异常,以及哪些数据的趋势较好(例如,整体数据,游戏人数稳定,月收入对比极端)

第2步:看细分数据(例如,细分数据,游戏新增用户和流失活跃付费用户成正比,新增用户不付费,大R流失严重)

第3步:结合数据分析(例如,分析数据,付费玩家为什么流失?没有付费竞争?还是付费后达到游戏金字塔顶端失去乐趣?)

第4步:根据数据行动(例如,更新版本,开展玩家召回活动,换量….)

估计这样的知识各位同学早已经倒背如流。在这篇文章中,作者将和运营童鞋们一起深入发掘数据价值以及互联网中的商业思维。笔者认为:数据≠数学!如果你用函数思维看游戏,那只能说你数学不错;在互联网行业,必须将用户行为数据与商业思维相结合,才能创造互联网价值。

1. 培养数据的商业敏感性

最近看了某工作室高层频繁辞职,项目组陆续被裁,各大猎头忙着抢人的新闻,最近又和HR交谈,得知现在某网的简历已经涨到15块钱一份;初步看来,没什么关联,细细品味,关联又很大,如果将思维转换,则又是另一种景象……

以智联为例,网站主要看注册量,及硬广/守株待兔的套路,HR买简历去智联,不一定能拿到中意的简历;而猎头可谓是闻风而动,往往主动行动,掌握了大部分的高质量简历,不仅省了钱,也拿到了好的资源;把握市场动向,培养商业敏感性,将此原则代入到游戏中不难发现,若一款MMO游戏的用户大量流失(因为托?关服?其他…)而作为另一款MMO产品运营的你能提前敏感的嗅到这缕商业气息吗?如果不能,则用户重返渠道(其他游戏),那你无疑只能继续守株待兔,恳求渠道施舍流量,这无疑是失败的。

当然,我们无法从别人后台调取数据,那么一般从哪里看其他游戏的数据走向呢?看竞品论坛,游戏更新力度,看论坛用户活跃度,都能看出一丝端倪,然后深入接触用户,一切自然水落石出,至于如何拉拢用户,自然是因人而异。

2. 培养数据的衍生敏感性

如果市场上的牙刷销量增加了,你能感觉到牙膏的销量也会增加吗?如果放在互联网市场,不难看出一个很悲观的事实,牙刷销量增加,一夜之间,白玉牙刷,象牙牙刷,卡通牙刷,玛瑙牙刷等等产品一夜崛起,最后通货膨胀,大家都没得做。

对于这种情况,是开发者的心态问题,所以笔者无法说什么;本段主要说的是数据的衍生敏感性,例如一件稀有装备从100元涨到200元,那么产出稀有装备的副本/特殊地图的进场道具也会从10元涨到20元;道具上涨,玩家的充值力度就得加大;玩家充值力度加大,ARPU值随之提升,如何最大化的提升arpu值;从产品层面来说,加大充值活动力度,调整装备产出概率,抓住用户需求,投其所好,实现利益最大化;而不是装备增值,便增加多种装备,这样只会适得其反。

3. 换位思考看数据

有些CP选渠道,会很重视流量这个东西,无论产品怎样,只要渠道流量好,便一个劲地上渠道,铺推广,搞营销….

流量这东西,讲究的是适不适合,渠道流量再多,那也不是你的,即使是你的,那也不是你一个人的,换个角度思考;从渠道的角度看产品,渠道看产品,看转化,看付费,看留存;知根知底,数据这东西是双向的,只不过彼此看的角度不同,你若真想要量,至少得用产品数据交换渠道数据。

换个角度来说,若产品的各类数据较高;最好摸清楚用户是从那个渠道来的,主要贡献的用户群体是谁?这样一来,产品设计可以更倾向用户喜好,这样投其所好的行为是提升转换率的一种好方法。(以MMO混服为例,区分用户可给包打上渠道标识,简单易懂)

4. 用商业思维看行为数据

行为数据,即用户行为占有率,例如活跃度,留存率,付费率…

商业思维,即利益分析,例如用户周期价值,用户可挖掘价值的探索性…

例如,两个公会冲突,游戏内打得火热,公会成员拼活跃,比等级;公会会长拼装备,比充值,两方打得火热,不死不休,无论是在线还是充值都达到了一个可观的水平;作为运营,你怎么办?如果你什么也不做,在那里偷偷乐呵,并且沾沾自喜;笔者读过一本书,书里说过一句话:“坐着就是为了等死!”如果你不信,次月两个公会和好,或者一个公会被赶出游戏,后悔也晚了。

“你想坐着等死吗?”如果不想,就得学会用商业思维看待行为数据;例如,这两个帮会的竞争平台有哪些?论坛?贴吧?哪些人在活跃,哪些人在付费?影响他们的人是谁?他们是否还有可继续发掘价值?

如何平衡这种关系?皮球效应很重要,压得越狠,弹得越高,什么都不管,只会越弹越低,归于平静;目前游戏较为常见的就是托这种催化剂;的确,托是起到了一定作用,但是治标不治本;如果用商业思维去思考,以天涯贴吧为例,话题已经存在,真实的用户已经存在,那么口碑营销是很容易实现的,通过原有用户的话题,吸引潜在用户,带来更多的商业利益;通过对用户习惯(例如:爱凑热闹)和人性弱点(例如:地位越高,越好面子)的把控,制造一场营销,此类营销效果显着,最重要的是不要钱!

很简单的一次用户行为,很常见的用户行为数据,换个角度分析,或许就是一场商业营销!

5. 通过数据看用户与产品关系

很多人对固定的数据很看重,arpu等核心数据形成了一套标榜,无数人逐条核对,衡量自己的产品好坏,无数运营以此核对,衡量运营的成功与否,如果你仅仅是为了KPI,那你是成功的,如果你还想做的更高,那这是远远不够的。

用户与产品关系,多数同学还定义在用户定位、产品定位上;再深入进去,就是一套的核心数据考核,运营流程….

笔者认为,数据、用户、产品;三者形成一种三角关系,可以探索的方面太多太多,例如:一个用户在线5分钟,一个用户在线10分钟,他们有什么不同?如果将10分钟定义为活跃用户,5分钟用户和10分钟用户的在线目标在哪?什么等级段的用户在什么时间段留存多少时间?这些很杂,也很容易被忽略。

再举个例子,同一时间内,若某用户一次性购买两个宝石,他是算一次性购买?还是重复购买?不要小看此类数据,用户单次购买和分次购买直接决定用户的需求量,同样的数量面前,区间价值很大!

最后换个行业思考,编剧行业对剧本有一个定义,剧本只有5分钟!这个5分钟说的不是电影周期,而是你只有5分钟去打动你的用户,若五分钟不行,用户便会失去耐性;游戏也是一样,回到开头所说,一个用户在线5分钟,一个用户在线10分钟,他们的区别不仅仅在于时间的差别,更在于产品的时间粘性,以此为例,若开场动画很精美,进入游戏画面也很赞,用户用10分钟去沉迷于此,是很容易的情况,若开场的新手引导繁琐拖拉,则引导5分钟也无法支持。

终上所述,通过数据看用户与产品关系,通过数据发现问题,通过用户整理问题,通过产品解决问题,这不仅仅涉及到运营,更涉及到策划,美术等各个部门,毕竟产品不是上线就交给运营了,一个团队,团结合作才是重点!

数据很多,也很杂,他们彼此形成一张关系网,触一发而动全身;至于具体如何理解,不同的人有不同的领悟,只能说一句:“数据很重要!重要的不是他的算法多么准确,而是接地气!他告诉我们,接下来,该怎么做!”

以上是小编为大家分享的关于如何用商业思维分析用户行为数据的相关内容,更多信息可以关注环球青藤分享更多干货

Ⅸ 基于大数据的图书馆个性化服务读者行为分析方法和策略

1. 基于大数据的图书馆个性化服务读者行为分析方法与步骤

基于大数据的图书馆个性化服务读者行为分析,是指图书馆基于事件存储大数据库数据的支持,通过对用户海量数据进行采集、过滤、分析和定义,从中发现读者行为数据中蕴含的行为关系、用户需求和知识,是对读者的行为进行分析、判定、定义和匹配的过程,也是图书馆掌握读者阅读习惯和发现服务需求,提高个性化服务精确性和用户满意度的关键,读者行为分析与判定流程见图2-2。

读者行为分析过程可分为用户行为事件采集、用户行为事件的存储、用户行为事件初步过滤、用户行为定义、用户行为分析与判定、用户行为匹配、用户行为存储大数据库的更新、行为分析与判定过程的完善8部分内容。在用户行为事件分析、判定前,图书馆应全面、规范地采集读者行为数据,并对数据进行科学分类、综合分析、行为定义和人工匹配,构建具备海量存储、高效管理和查询功能的用户行为事件存储大数据库。

当图书馆完成对用户行为数据的采集后,首先,应依据对用户行为的分类和管理员经验,对用户行为数据进行价值过滤和人工筛选,以提高行为数据的价值密度和可用性。其次,对用户行为发生的时间、地点、方式、作用对象和结果进行定义,采用高效算法对存储于用户行为事件大数据库中的资源进行分析、判定,并对用户行为的类型进行详细定义。再次,应将已定义的用户行为和用户行为存储大数据库中的数据进行比对,进一步完善、规范用户行为存储大数据库的资源。同时,利用用户行为存储大数据库资源,对用户行为分析与判定的规则实施反馈,完成对用户行为分析、判定规则的动态修改与完善。最后,图书馆可依据读者行为分析与判定的结果,明确读者阅读需求及其变化趋势,为读者提供个性化的阅读推送式服务。

图2-2 图书馆读者行为分析与判定流程图

个性化服务是一个不断完善的过程,多次经过行为模拟和分析反复校准才能让个性化服务尽可能贴近每一个用户。如通过记录用户访问某些专业内容来判断为用户推荐的相关内容或深度内容是否精准,就需要不断地积累用户在某专业内容上的行为记录,记录次数越多,记录越精细,在下一次为用户做个性化推荐时的精准度就越高。所以个性化服务所需的数据分析系统包括采集与感知都是循环起效的,这是一个闭环上升的垂直优化体系。

2.基于大数据的图书馆个性化服务读者行为分析策略

(1)发现读者需求及变化趋势。大数据背景下,图书馆可通过监控设备、传感器网络和其他读者行为采集设备,获取读者阅读活动的服务内容与方式、阅读终端与服务模式、阅读社会关系组成、成员信息交流、论坛、博客、微博、微信朋友圈等社交网络上的思想表达、移动阅读中读者个体的行为路径、传感器网络对读者活动的记录、服务系统的运行参数信息等数据,这些数据蕴含着巨大的社会和商业价值。因此,图书馆力图采集读者行为大数据,将读者行为进行解析、描述和量化,最终实现对读者服务需求、服务模式变化趋势预测与控制。同时,图书馆应注重读者行为数据分析的时效性,及时获取读者阅读情绪和服务需求的变化数据,并将数据变化结果可视化表现出来,确保服务策略和内容随着读者个性化需求变化而动态调整。

(2)最大范围的采集读者行为数据。科学采集高价值读者行为数据,是准确分析和预测读者需求,提高读者忠诚度和服务满意度的关键。首先,图书馆应从读者服务全局出发,收集读者的行为数据,采集来自服务器运行监控设备、传感器网络、用户阅读终端设备、系统运行日志、读者论坛与博客、读者服务反馈系统、网页cookies、搜索引擎、读者阅读行为监控设备的数据,尽量减少用户行为数据采集的盲点,提高数据的完整性、精确性、及时性和有效性。其次,所采集的数据应具有海量和实时性特点,依据读者阅读需求对读者行为分析的内容,选取数据和应用对象进行调整,避免读者行为分析过程中可能会对读者服务产生的消极影响,最终实现从理解读者阅读行为到掌握读者阅读需求的转变。再次,图书馆应与第三方服务商合作,以服务协作和大数据资源共享的方式,努力拓展读者行为数据采集的广度和深度,在实现以读者为中心的读者行为数据选择、过滤、共享和互补前提下,提高数据应用分析和增强数据的可用性。

(3)保证读者行为数据的安全性和可用性。读者行为数据具有海量、全面、高价值和实时性的特点,图书馆应加强对读者行为数据的安全性和可用性管理,保证用户保密信息和隐私数据的安全。但是,移动终端工作模式和使用环境的不确定性,严重影响了图书馆大数据阅读服务的安全性,因此,必须加强阅读终端的安全性管理。首先,图书馆应依据阅读终端的安全设计标准及其移动性、开放性,以及阅读终端与读者阅读行为的关联性,为不同类型的阅读终端划分相应安全度,并通过严格限制阅读终端的使用对象、安全模式、应用环境和通信方式来保证设备安全。其次,应将读者行为数据划分为用户隐私数据、读者特征数据、行为日志数据和公开数据四个安全等级,执行相应的安全存储、管理和使用策略,并依据用户行为数据生命周期发展规律,加强数据收集、存储、使用、转移和删除五个环节的安全管理。再次,应坚持读者需求精确感知、行为关系全面挖掘、服务模式发展准确预测和读者行为科学分析的原则,实现读者行为数据的良性监控和采集,避免采集与读者阅读服务保障无关的个人隐私行为数据。

(4)重点突出读者阅读行为数据挖掘的知识关联分析。知识关联分析就是从海量数据中发现存在于大量数据集中的关联性或相关性,从而描述了一个事物中某些属性同时出现的规律和模式,通过读者阅读行为数据的知识关联分析,发现读者不同行为之间的联系,以及读者的阅读习惯和服务需求,是图书馆以读者需求为中心制定服务策略的前提。图书馆应在三维空间开展读者阅读行为数据的交叉关联分析,所涉及的主要内容包括读者阅读活动频率、阅读的时间与地点、阅读内容分布规律、阅读习惯和爱好、阅读关键词关联度、阅读社会关系交集、热点内容的关注度等。同时,行为数据的选择要坚持以服务保障为中心和高价值的原则,特别加强对读者阅读活动的热点内容、主要阅读模式和个性化服务需求反馈行为数据之间的关联分析。此外,基于读者阅读行为数据挖掘的知识关联分析,应加强对读者阅读行为的跟踪和监控,在加强对读者显性行为特征数据监控的同时,还应突出利用显性行为数据挖掘,而获得隐性行为信息。对读者阅读需求、阅读热点、阅读行为关联性等进行关联分析,增强读者行为知识关联分析的广度、深度和有效性。

Ⅹ 如何用java做用户行为分析用什么算法

据我所知,java好像对大数据分析方面没有什么现成的方法或包可以调用。
现在做数据分析(机器学习)用的比较多的是Python和R还有Matlib;
//如果是简单的汇总分析,分类,回归的话,excel就足够了。java使用数据库也可以完成。
其中Python算比较简单的,有现成的科学计算工具和非常活跃的社区。
常用的算法:回归分析,支持向量机(SVM),决策树,K-近邻(KNN),K-均值(k-means)。。。还有比较火的深度学习(DL)。可以了解一下。

阅读全文

与用户行为分析的算法相关的资料

热点内容
阿里用的什么数据库服务器 浏览:337
玩剑网用哪个攻略app 浏览:76
javamysql数据库操作 浏览:225
眉山参加少儿编程培训 浏览:986
androidaes加密java 浏览:816
蜜字的app叫什么 浏览:544
程序员配乐 浏览:453
做一个解压屋 浏览:619
品牌衣服用什么app 浏览:151
python3链接数据库 浏览:55
教课书英语是什么app 浏览:884
环液式压缩机 浏览:479
android控件事件 浏览:967
云服务器的镜像选择什么 浏览:755
python如何设置cplex 浏览:10
linux的mv命令详解 浏览:359
怎么把安装好的python放在桌面上 浏览:121
mysql退出当前命令 浏览:743
现在还有什么手机好用的app 浏览:326
java字符处理函数 浏览:276