❶ 蚁群优化算法的使用-编码的问题!
“蚁群算法”学习包下载
下载地址: http://board.verycd.com/t196436.html (请使用 eMule 下载)
近一百多篇文章,打包压缩后有 24.99MB ,基本上是从维普数据库中下载来的,仅供学习和研究之用,请务用于商业活动或其他非法活动中,各文章版权归原作者所有。
如果您觉得本人这样做侵犯了您的版权,请在本帖后回复,本人会马上删除相应的文章。
以下是文件列表,全是 PDF 格式的:
基于蚁群优化算法递归神经网络的短期负荷预测
蚁群算法的小改进
基于蚁群算法的无人机任务规划
多态蚁群算法
MCM基板互连测试的单探针路径优化研究
改进的增强型蚁群算法
基于云模型理论的蚁群算法改进研究
基于禁忌搜索与蚁群最优结合算法的配电网规划
自适应蚁群算法在序列比对中的应用
基于蚁群算法的QoS多播路由优化算法
多目标优化问题的蚁群算法研究
多线程蚁群算法及其在最短路问题上的应用研究
改进的蚁群算法在2D HP模型中的应用
制造系统通用作业计划与蚁群算法优化
基于混合行为蚁群算法的研究
火力优化分配问题的小生境遗传蚂蚁算法
基于蚁群算法的对等网模拟器的设计与实现
基于粗粒度模型的蚁群优化并行算法
动态跃迁转移蚁群算法
基于人工免疫算法和蚁群算法求解旅行商问题
基于信息素异步更新的蚁群算法
用于连续函数优化的蚁群算法
求解复杂多阶段决策问题的动态窗口蚁群优化算法
蚁群算法在铸造生产配料优化中的应用
多阶段输电网络最优规划的并行蚁群算法
求解旅行商问题的混合粒子群优化算法
微粒群优化算法研究现状及其进展
随机摄动蚁群算法的收敛性及其数值特性分析
广义蚁群与粒子群结合算法在电力系统经济负荷分配中的应用
改进的蚁群算法及其在TSP中的应用研究
蚁群算法的全局收敛性研究及改进
房地产开发项目投资组合优化的改进蚁群算法
一种改进的蚁群算法用于灰色约束非线性规划问题求解
一种自适应蚁群算法及其仿真研究
一种动态自适应蚁群算法
蚂蚁群落优化算法在蛋白质折叠二维亲-疏水格点模型中的应用
用改进蚁群算法求解函数优化问题
连续优化问题的蚁群算法研究进展
蚁群算法概述
Ant colony system algorithm for the optimization of beer fermentation control
蚁群算法在K—TSP问题中的应用
Parallel ant colony algorithm and its application in the capacitated lot sizing problem for an agile supply chain
基于遗传蚁群算法的机器人全局路径规划研究
改进的蚁群算法在矿山物流配送路径优化中的研究
基于蚁群算法的配电网络综合优化方法
基于蚁群算法的分类规则挖掘算法
蚁群算法在连续性空间优化问题中的应用
蚁群算法在矿井通风系统优化设计中的应用
基于蚁群算法的液压土锚钻机动力头优化设计
改进蚁群算法设计拉式膜片弹簧
计算机科学技术
基本蚁群算法及其改进
TSP改进算法及在PCB数控加工刀具轨迹中的应用
可靠性优化的蚁群算法
对一类带聚类特征TSP问题的蚁群算法求解
蚁群算法理论及应用研究的进展
基于二进制编码的蚁群优化算法及其收敛性分析
蚁群算法的理论及其应用
基于蚁群行为仿真的影像纹理分类
启发式蚁群算法及其在高填石路堤稳定性分析中的应用
蚁群算法的研究现状
一种快速全局优化的改进蚁群算法及仿真
聚类问题的蚁群算法
蚁群最优化——模型、算法及应用综述
基于信息熵的改进蚁群算法及其应用
机载公共设备综合管理系统任务分配算法研究
基于改进蚁群算法的飞机低空突防航路规划
利用信息量留存的蚁群遗传算法
An Improved Heuristic Ant-Clustering Algorithm
改进型蚁群算法在内燃机径向滑动轴承优化设计中的应用
基于蚁群算法的PID参数优化
基于蚁群算法的复杂系统多故障状态的决策
蚁群算法在数据挖掘中的应用研究
基于蚁群算法的基因联接学习遗传算法
基于细粒度模型的并行蚁群优化算法
Binary-Coding-Based Ant Colony Optimization and Its Convergence
运载火箭控制系统漏电故障诊断研究
混沌扰动启发式蚁群算法及其在边坡非圆弧临界滑动面搜索中的应用
蚁群算法原理的仿真研究
Hopfield neural network based on ant system
蚁群算法及其实现方法研究
分层实体制造激光头切割路径的建模与优化
配送网络规划蚁群算法
基于蚁群算法的城域交通控制实时滚动优化
基于蚁群算法的复合形法及其在边坡稳定分析中的应用
Ant Colony Algorithm for Solving QoS Routing Problem
多产品间歇过程调度问题的建模与优化
基于蚁群算法的两地之间的最佳路径选择
蚁群算法求解问题时易产生的误区及对策
用双向收敛蚁群算法解作业车间调度问题
物流配送路径安排问题的混合蚁群算法
求解TSP问题的模式学习并行蚁群算法
基于蚁群算法的三维空间机器人路径规划
蚁群优化算法及其应用
蚁群算法不确定性分析
一种求解TSP问题的相遇蚁群算法
基于蚁群优化算法的彩色图像颜色聚类的研究
钣金件数控激光切割割嘴路径的优化
基于蚁群算法的图像分割方法
一种基于蚁群算法的聚类组合方法
圆排列问题的蚁群模拟退火算法
智能混合优化策略及其在流水作业调度中的应用
蚁群算法在QoS网络路由中的应用
一种改进的自适应路由算法
基于蚁群算法的煤炭运输优化方法
基于蚁群智能和支持向量机的人脸性别分类方法
蚁群算法在啤酒发酵控制优化中的应用
一种基于时延信息的多QoS快速自适应路由算法
蚁群算法中参数α、β、ρ设置的研究——以TSP问题为例
基于人工蚁群优化的矢量量化码书设计算法
具有自适应杂交特征的蚁群算法
蚁群算法在原料矿粉混匀优化中的应用
基于多Agent的蚁群算法在车间动态调度中的应用研究
用蚁群优化算法求解中国旅行商问题
蚁群算法在婴儿营养米粉配方中的应用
蚁群算法在机械优化设计中的应用
蚁群优化算法的研究现状及研究展望
蚁群优化算法及其应用研究进展
蚁群算法的理论与应用
简单蚁群算法的仿真分析
一种改进的蚁群算法求解最短路径问题
基于模式求解旅行商问题的蚁群算法
一种求解TSP的混合型蚁群算法
基于MATLAB的改进型基本蚁群算法
动态蚁群算法求解TSP问题
用蚁群算法求解类TSP问题的研究
蚁群算法求解连续空间优化问题的一种方法
用混合型蚂蚁群算法求解TSP问题
求解复杂TSP问题的随机扰动蚁群算法
基于蚁群算法的中国旅行商问题满意解
蚁群算法的研究现状和应用及蚂蚁智能体的硬件实现
蚁群算法概述
蚁群算法的研究现状及其展望
基于蚁群算法的配电网网架优化规划方法
用于一般函数优化的蚁群算法
协同模型与遗传算法的集成
基于蚁群最优的输电网络扩展规划
自适应蚁群算法
凸整数规划问题的混合蚁群算法
一种新的进化算法—蛟群算法
基于协同工作方式的一种蚁群布线系统
❷ 分析标准粒子群算法的不足及改进的方法
一个以上的目标,以优化
相对传统的多目标优化方法在解决多目标问题,PSO具有很大的优势。首先,PSO算法和高效的搜索功能,有利于在这个意义上,多目标的最优解;其次,PSO代表了整个解决方案的人口集固有的并行性,同时搜索多个非劣解,所以容易搜索多个Pareto最佳的解决方案;此外,PSO通用的适合处理所有类型的目标函数和约束条件,PSO容易与传统相结合的方法,和然后提出了有效的方法来解决一个具体的问题。 PSO本身,为了更好地解决多目标优化问题,必须解决的问题的全局最优粒子和个人选择的最优粒子。为全局最优粒子的选择,一方面,该算法具有更好的收敛速度,另一方面帕累托边界分散体的溶液中。如果在最佳的单个颗粒的选择,需要较少的计算复杂性,并且是仅由较少数量的比较非
劣解更新。迄今为止,基于PSO的多目标优化,主要有以下
思路:
(1)向量法和加权方法。文献[20]的固定权重法,自适应权重法和向量评估方法的第一次,PSO解决MO问题。然而,对于一个给定的优化问题,权重的方法通常是很难获得一组合适的权重向量评价方法MO的问题是,往往无法得到满意的解决方案。
(2)基于Pareto方法。 [21]帕累托排序机制和PSO相结合,处理的问题,多目标优化,Pareto排序方法来选择一组的精英,和轮盘赌选择全局最优粒子。虽然轮盘赌选择机制,使所有的帕累托个人选择的概率是一样的,但实际上只有少数人的选择的概率就越大,因此不利于保持种群多样性;文献[22]通过引入在PSO帕累托竞争机制,选择全局最优粒子的颗粒知识基础。候选个人随机选自人口比较集进行比较,以确定非劣解,该算法的成功取决于比较集的大小的参数设置。如果这个参数是太小了,选择的过程,从人口的非劣效性个人可能是太小了,如果这个参数是太大,它可能会出现过早收敛。
(3)距离的方法。 [23],被分配的各个的当前的解决方案之间的距离的基础上Pa2reto的解决方案,其适应值,以便选择全局最优粒子。随着距离的方法需要被初始化潜在的解决方案,如果初始电位值太大,不同的解决方案,以适应不同的值并不显着。这将导致在选择压力太小或个别均匀分布,导致在PSO算法收敛速度非常慢。
(4)附近的“。文献[24]提出了动态邻域的选择策略,为优化目标的定义,目标,和其他所有的目标定义的目标附近,然后选择全局最优粒子的动态邻域的策略,但该方法更敏感的目标函数的优化目标选择和附近的排序。
(5)多组法。文献[25]的人口划分成多个子群,以及每个子群PSO算法,通过搜索Pareto最优解的各种子群之间的信息交流。然而,由于需要增加的粒子的数量增加的计算量。
(6)非排名的方法。 [26]使用非主导的排序选择全局最优的粒子。整个人口,粒子的个人最好成绩粒子和它的后代,有利于提供一个适当的选择压力,小生境技术,以增加种群多样性。比较所有粒子的个人最好成绩颗粒在整个人群遗传给后代,但是,由于其本身的性质是不利于人口的多样性,容易形成早熟。此外,文献[27]最大最小策略,博弈论引入PSO解决多MO。最大最小策略,以确定粒子的适应值,可以判断帕累托最优的解决方案,而不需要集群和小生境技术。
2约束优化
在最近几年也取得了一些进展,PSO算法在约束最优化。基于PSO-的约束优化工作分为两种类型:①罚函数法;②设计特定的进化操作或约束修正系数。 [28]采用罚函数法,采用非固定多段映射罚函数将约束的优化问题,然后利用PSO解决问题的转换后,模拟结果表明,该算法相对进化策略和遗传算法的优势,但罚函数的设计过于复杂,不利于解决;文献[29],一个可行的解决方案,保留策略处理约束,即,一方面要更新所有的颗粒的存储区域中到只保留可行的解决方案,在另一方面在初始化阶段的所有的颗粒从一个可行的解决方案的空间值?初始的可行的解决方案空间,然而,是难以确定的很多问题,文献[30 ]提出的多层信息共享策略粒子群与约束原则来处理,根据约束矩阵多层Pareto排序机制的微粒,从而一些微粒,以确定个人的搜索方向的其余。
3离散优化为离散优化解决方案空间是离散点的集合,而不是连续PSO解决离散优化问题,必须予以纠??正的速度和位置更新公式,或变形。基于PSO的离散优化可分为以下三类:
速度(1)的位置变化的概率。 [31]首先提出了离散二进制PSO。二进制粒子的位置编码器,Sigmoid函数,速度约束在[0,1],代表粒子的概率立场;法[32] [31]在文献
提高的地址更换安排。安排更换颗粒,速度是指根据两个粒子的相似性,以确定粒子的位置变化也引入突变操作,以防止陷入局部极小的最优粒子的概率。
(2)重新定义的PSO的操作。 [33]通过重新定义粒子的位置,速度,和他们的加法和减法乘法运算,提出了一种新的离散粒子群,并为解决旅行商问题。虽然该算法是有效的,但它提供了一种新的思维方式求解组合优化问题。
(3)连续PSO离散的情况下。 [34]采用连续PSO,解决分布式计算机任务的分配问题。于实数被转换为一个正整数,和符号的实数部分和小数部分的
分除去。结果表明,在溶液中的质量和速度的方法的算法是优于遗传算法。
4动态优化
在许多实际工程问题,优化环境是不确定的,或动态。因此,优化算法必须有能力与环境的动态变化做出相应的调整,以最佳的解决方案,该算法具有一定的鲁棒性。 [35]首次提出了PSO跟踪动态系统[36]提出了自适应PSO自动跟踪动态系统的变化,种群粒子检测方法和粒子重新初始化PSO系统变化的跟踪能力增强;文献[37]迅速变化的动态环境中,在粒子速度更新公式的变化条目的增加,消除了需要在环境中的变化来检测,可以跟踪环境处理。虽然该研究少得多,但不容质疑的,是一个重要的研究内容。
粒子群算法的MATLAB程序
初始化粒子群;
对于每个粒子
计算他们的身体健康;
如果(健身优于粒子的历史最好值)
历史最好的个人裨锡更新;
如果选择当前粒子群粒子;(当前的最优粒子比历史最好粒子组)
与目前最好的粒子更新PG组;对于每个粒子
更新粒子类型①速度;
更新的位置粒子类型②;
完
虽然还没有达到最大迭代次数,或不符合的最小误差。
❸ 对内排序算法的改进及性能比较
public class XPX
{
public static void main(String args[])
{
int i,j,t,min;
int a[]={9,8,7,6,5,4,3,2,1};
for(i=0;i<8;i++)
{
min = a[i];
for(j=i;j<a.length;j++)
{
if(min>a[j])
{
min = a[j];
a[j]=a[i];
a[i]=min;
}
}
}
for(i=0;i<a.length;i++)
{
System.out.print(" "+a[i]);
}
System.out.println();
}
}
❹ 智能优化算法及其应用的目录
第1章绪论1
1.1最优化问题及其分类1
1.1.1函数优化问题1
1.1.2组合优化问题10
1.2优化算法及其分类12
1.3邻域函数与局部搜索13
1.4计算复杂性与NP完全问题14
1.4.1计算复杂性的基本概念14
1.4.2P,NP,NP?C和NP?hard14
第2章模拟退火算法17
2.1模拟退火算法17
2.1.1物理退火过程和Metropolis准则17
2.1.2组合优化与物理退火的相似性18
2.1.3模拟退火算法的基本思想和步骤19
2.2模拟退火算法的马氏链描述20
2.3模拟退火算法的收敛性21
2.3.1时齐算法的收敛性21
2.3.2非时齐算法的收敛性26
2.3.3SA算法渐进性能的逼近26
2.4模拟退火算法关键参数和操作的设计27
2.5模拟退火算法的改进29
2.6并行模拟退火算法31
2.7算法实现与应用32
2.7.1组合优化问题的求解32
2.7.2函数优化问题的求解33
第3章遗传算法36
3.1遗传算法的基本流程36
3.2模式定理和隐含并行性38
3.3遗传算法的马氏链描述及其收敛性40
3.3.1预备知识40
3.3.2标准遗传算法的马氏链描述41
3.3.3标准遗传算法的收敛性42
3.4一般可测状态空间上遗传算法的收敛性44
3.4.1问题描述45
3.4.2算法及其马氏链描述45
3.4.3收敛性分析和收敛速度估计45
3.5算法关键参数与操作的设计47
3.6遗传算法的改进50
3.7免疫遗传算法51
3.7.1引言51
3.7.2免疫遗传算法及其收敛性52
3.7.3免疫算子的机理与构造54
3.7.4TSP问题的免疫遗传算法56
3.8并行遗传算法58
3.9算法实现与应用59
第4章禁忌搜索算法62
4?1禁忌搜索62
4?1?1引言62
4?1?2禁忌搜索示例63
4?1?3禁忌搜索算法流程67
4?2禁忌搜索的收敛性68
4?3禁忌搜索的关键参数和操作70
4?4并行禁忌搜索算法75
4?5禁忌搜索的实现与应用77
4?5?1基于禁忌搜索的组合优化77
4?5?2基于禁忌搜索的函数优化78
第5章神经网络与神经网络优化算法83
5.1神经网络简介83
5.1.1神经网络发展回顾83
5.1.2神经网络的模型84
5.2基于Hopfield反馈网络的优化策略89
5.2.1基于Hopfield模型优化的一般流程89
5.2.2基于Hopfield模型优化的缺陷90
5.2.3基于Hopfield模型优化的改进研究90
5.3动态反馈神经网络的稳定性研究94
5.3.1动态反馈网络的稳定性分析94
5.3.1.1离散对称动态反馈网络的渐近稳定性分析95
5.3.1.2非对称动态反馈网络的全局渐近稳定性分析99
5.3.1.3时延动态反馈网络的全局渐近稳定性分析101
5.3.2动态反馈神经网络的收敛域估计103
5.4基于混沌动态的优化研究概述105
5.4.1基于混沌神经网络的组合优化概述106
5.4.2基于混沌序列的函数优化研究概述108
5.4.3混沌优化的发展性研究109
5.5一类基于混沌神经网络的优化策略110
5.5.1ACNN模型的描述110
5.5.2ACNN模型的优化机制111
5.5.3计算机仿真研究与分析112
5.5.4模型参数对算法性能影响的几点结论116
第6章广义邻域搜索算法及其统一结构118
6.1广义邻域搜索算法118
6.2广义邻域搜索算法的要素119
6.3广义邻域搜索算法的统一结构120
6?4优化算法的性能评价指标123
6?5广义邻域搜索算法研究进展125
6.5.1理论研究概述125
6.5.2应用研究概述128
6.5.3发展性研究129
第7章混合优化策略130
7.1引言130
7.2基于统一结构设计混合优化策略的关键问题131
7.3一类GASA混合优化策略132
7.3.1GASA混合优化策略的构造出发点132
7.3.2GASA混合优化策略的流程和特点133
7.3.3GASA混合优化策略的马氏链描述135
7.3.4GASA混合优化策略的收敛性136
7.3.5GASA混合优化策略的效率定性分析141
第8章混合优化策略的应用143
8.1基于模拟退火?单纯形算法的函数优化143
8.1.1单纯形算法简介143
8.1.2SMSA混合优化策略144
8.1.3算法操作与参数设计145
8.1.4数值仿真与分析146
8.2基于混合策略的控制器参数整定和模型参数估计研究149
8.2.1引言149
8.2.2模型参数估计和PID参数整定149
8.2.3混合策略的操作与参数设计150
8.2.4数值仿真与分析151
8.3基于混合策略的TSP优化研究154
8.3.1TSP的混合优化策略设计154
8.3.2基于典型算例的仿真研究156
8.3.3对TSP的进一步讨论158
8.4基于混合策略的加工调度研究159
8.4.1基于混合策略的Job?shop优化研究159
8.4.1.1引言159
8.4.1.2JSP的析取图描述和编码161
8.4.1.3JSP的混合优化策略设计163
8.4.1.4基于典型算例的仿真研究166
8.4.2基于混合策略的置换Flow?shop优化研究170
8.4.2.1混合优化策略170
8.4.2.2算法操作与参数设计172
8.4.2.3数值仿真与分析172
8.4.3基于混合策略的一类批量可变流水线调度问题的优化研究174
8.4.3.1问题描述及其性质174
8.4.3.2混合优化策略的设计175
8.4.3.3仿真结果和分析177
8.5基于混合策略的神经网络权值学习研究177
8.5.1BPSA混合学习策略178
8.5.2GASA混合学习策略178
8.5.3GATS混合学习策略179
8.5.4编码和优化操作设计180
8.5.5仿真结果与分析180
8.6基于混合策略的神经网络结构学习研究184
8.6.1RBF网络简介184
8.6.2RBF网络结构优化的编码和操作设计184
8.6.3RBF网络结构的混合优化策略186
8.6.4计算机仿真与分析187
8.7基于混合策略的光学仪器设计研究189
8.7.1引言189
8.7.2模型设计190
8.7.3仿真研究和设计结果191
附录Benchmark问题193
A:TSP Benchmark问题193
B: 置换Flow?shop Benchmark问题195
C:Job?shop Benchmark问题211
参考文献217