㈠ 数学三位数简便计算方法
数学三位数简便计算例子362+556
解题思路:四则运算规则(按顺序计算,先算乘除后算加减,有括号先算括号,有乘方先算乘方)即脱式运算(递等式计算)需在该原则前提下进行
解题过程:
362+556
=350+550+(12+6)
=900+18
=918
(1)三位数乘15怎么简便算法扩展阅读~竖式计算:两个加数的个位对齐,再分别在相同计数单位上的数相加,相加结果满10则向高位进1,高位相加需要累加低位进1的结果。
解题过程:
步骤一:2+6=8
步骤二:6+5=1 向高位进1
步骤三:3+5+1=9
根据以上计算步骤组合计算结果为918
存疑请追问,满意请采纳
㈡ 三位数相乘有简便方法吗
三位数与三位数相乘的速算
首先声明,不是所有百位数相乘都有简便算法,能够简便相乘的数是有限的,一般分为两种。
1.两个百位数相同且十位数上都为0的数相乘,一般在心里按一下方法计算,把乘积分成三部分。
A0B * A0C 乘积的组成部分
个位数 B C B*C=bc 积的低位部分
A*(B+C)=de 积的中间部分 (也可能A*(B+C)=nde)
百位数 A A A*A=fg 积的高位部分 (如nde,A*A=fg+n)
计算完后,我们把这三部分依次排列为 fgdebc就是计算结果
1) 接近100的两个三位数相乘最为简便。
例1.108*103=11124
109*106=11554
104*107=11128
简便算法从个位数入手找出结果
乘数1 * 乘数2 = 结果
108 * 103
个位数 8 3 3*8=24
3+8=11
百位数 1 1 1*1=1
结果 11124
109 * 106
个位数 9 6 9*6=54
9+6=15
百位数 1 1 1*1=1
结果 11554
104 * 107
个位数 4 7 4*7=28
4+7=11
百位数 1 1 1*1=1
结果 11128
2)其他的百位数相乘
例如 209*207
2*2=4,2*(9+7)=32,9*7=63,结果43263
509*508
5*5=25 5*(9+8)=85 9*8=72,结果258572
909*909
高位9*9=81 9*(9+9)=162,这里百位数如果比较大,使得中间部分变成三位数,把中间部分的后两位保留,中间部分最高位与积的高位部分相加,然后按顺序排列即为最后结果。81+1=82
这样我们就不用计算,可以直接写出下列相乘的结果:
909*909=826281
808*807=652056
603*604=364212
309*305=94245
2.百位数不相同的一般方法
A0B * D0C
百位数 A A A*D=fg 积的高位部分
A*C+D*B=de(或1de,留de,1和fg相加) 积的中间部分
个位数 B C B*C=bc 积的低位部分
从这里我们可以看出,两个三位数相乘乘积有三部分组成,我们把这三部分分别叫积的高中低部分,这样结果依次排列为 fgdebc或者(fg+1)debc
206*308=63448
506*605=306130
509*908=462172 注意:中间部分是三位数,所以高位部分加1
706*807=569742
109*905=98645
908*809=734572 注意:中间部分是三位数,所以高位部分加1
对于接近1000的两个三位数的计算更简便,在下一次讲解。
㈢ 三位数乘15的巧算方法
原式=(700+20+8)*15
=700*15+20*15+8*15
=10500+300+120
=10920
㈣ 320乘15坚式计算
320乘15坚式计算如下:
解析:从右起,依次用第二个因数每位上的数去乘第一个因数,乘到哪一位,得数的末尾就和第二个因数的哪一位对个因数的哪一位对齐。
如果要进位的,哪一位的乘积满几十,就向前进几,然后再继续往下乘。然后把每次乘得的数加起来。
整数末尾有0的乘法:可以先把0前面的数相乘,然后看各因数的末尾一共有几个0,就在乘得的数的末尾添写几个0。
一、多位数乘一位数的竖式计算
1、 相同数位对齐。
2、 用这个数分别去乘多位数每一个数位上的数,从个位数乘起,即从右往左乘。
3、 乘到哪一位就把积写在哪一位数位对应的下面。
4、如果要进位的,哪一位的乘积满几十,就向前进几,然后再继续往下乘。
二、多位数乘两位数
1、 把数位较多的因数写在上面,数位较少的写在下面 。
2、 下面的因数要与写在上面的因数的数位要对齐。
3、 用第二个因数(即写在下面的因数)的个位数与写在上面的数的个位相乘,把相乘得到的积的末位写在个位上,再与十位上的数相乘写在十位上,……。
4、 要仅为的,哪一位的乘积满几十,就向前进几,然后再继续往下乘。
5、 再用写在下面的因数的十位与写在上面的因数的各个位数分别相乘,把相乘得到的积的末位写在对应的十位上。
6、 然后把每次乘得的数加起来。
㈤ 32乘15的简便算法
32x15=(30+2)x15=30x15+2x15=450+30=480
㈥ 三位数的乘法速算
三位数的乘法速算
1、个位数上下相乘。
2、个位数和十位数交叉相乘积相加(有进位的加进位)。
3、个位数和百位数交叉相乘加上十位数上下相乘(有进位的加进位)。
4、十位数和百位数交叉相乘积相加(有进位的加进位)。
5、百位数上下相乘(有进位的加进位)。
比如:125 X 125,尾数相乘5X5=25直接写在十位和个位上,首数12加上1为13,再两数相乘13X12=156。两计算结果相连:15625。
(6)三位数乘15怎么简便算法扩展阅读
1、三位数与两位的个位和个位要对齐,十位数要跟十位数对齐。
2、用两位数的个位分别与三位数的每一位数相乘,在用两位数的十位分别与三位数的每一位数相乘,乘结果的个位要与前面结果的十位对齐,然后两个结果相加就得到三位数乘两位数的结果。
3、三位数的乘法先用数a的个位依次与数b的各位(个、十、百)相乘,再用数a的十位依次与数b的各位(个、十、百)相乘,然后用数a的百位依次与数b的各位(个、十、百)相乘,最后把三次的乘积相加。
㈦ 数学乘法简便计算方法技巧有哪些
一、结合法
一个数连续乘两个一位数,可根据情况改写成用这个数乘这两个数的积的形式,使计算简便。
示例:
计算:19×4×5
19×4×5
=19×(4×5)
=19×20
=380
在计算时,添加一个小括号可以使计算简便。因为括号前是乘号,所以括号内不变号。
二、分解法
一个数乘一个两位数,可根据情况把这个两位数分解成两个一位数相乘的形式,再用这个数连续乘两个一位数,使计算简便。
示例:
计算:45×18
48×18
=45×(2×9)
=45×2×9
=90×9
=810
将18分解成2×9的形式,再将括号去掉,使计算简便。
三、拆数法
有些题目,如果一步一步地进行计算,比较麻烦,我们可以根据因数及其他数的特征,灵活运用拆数法进行简便计算。
示例:
计算:99×99+199
(1)在计算时,可以把199写成99+100的形式,由此得到第一种简便算法:
99×99+199
=99×99+99+100
=99×(99+1)+100
=99×100+100
=10000
(2)把99写成100-1的形式,199写成100+(100-1)的形式,可以得到第二种简便算法:
99×99+199
=(100-1)×99+(100-1)+100
=(100-1)×(99+1)+100
=(100-1)×100+100
=10000
四、改数法
有些题目,可以根据情况把其中的某个数进行转化,创造条件化繁为简。
示例:
计算:25×5×48
25×5×48
=25×5×4×12
=(25×4)×(5×12)
=100×60
=6000
把48转化成4×12的形式,使计算简便。
数学乘法运算定律
整数的乘法运算满足:交换律,结合律,分配律,消去律。
随着数学的发展, 运算的对象从整数发展为更一般群。
群中的乘法运算不再要求满足交换律。 最有名的非交换例子,就是哈密尔顿发现的四元数群。 但是结合律仍然满足。
1、乘法交换律:ab=ba,注:字母与字母相乘,乘号不用写,或者可以写成“·”。
2、乘法结合律:(ab)c=a(bc)
3、乘法分配律:(a+b)c=ac+bc
㈧ 三位数连乘难点简便算法的算式
能够熟练的运用乘法运算律,把其中两个乘数相乘得到积是整十或者整百,最后用整十或者整百数去乘另外一个乘数。
㈨ 3位数乘法的竖式计算
三位数乘两位数竖式的计算方法:
1、先要用两位数个位和十位上的数依次分别去乘三位数。
2、用两位数哪一位上的数去乘,乘得的数末位就和哪一位对齐。
3、再把两次乘得的数相加得到计算结果。
4、计算过程中,我们特别要注意每次相乘时积的定位要准确,乘数中间有0时不能漏乘,进位时口算要正确。
5、竖式计算是指在计算过程中列一道竖式计算,使计算简便。
6、相同数位对齐,若和超过10,则向前进1。
7、相同数位对齐,若不够减,则向前一位借1当10。
8、一个数的第i位乘上另一个数的第j位,就应加在积的第i+j-1位上。
9、除法用竖式计算时,从最高位开始除起,若除不了,那么就用最高位和下一位合成一个数来除,直到能除以除数为止。
㈩ 数学简便计算,有哪几种方法
数学简便计算方法:
一、运用乘法分配律简便计算
简便计算中最常用的方法是乘法分配律。乘法分配律指的是:
ax(b+c)=axb+axc
cx(a-b)=axc-bxc
例1:38X101,我们要怎么拆呢?看谁更加的靠近整百或者整十,当然是101更好些,那我们就把101拆成100+1即可。
38X101
=38X(100+1)
=38X100+38X1
=3800+38
=3838
例2:47X98,这样该怎么拆呢?要拆98,使它更接近100。
47X98
=47X(100-2)
=47X100-47X2
=4700-94
=4606
二、基准数法
在一系列数中找出一个比较折中的数来代表全部的数,要记得这个数的选取不能偏离这一系列数。
例:
2072+2052+2062+2042+2083
=(2062x5)+10-10-20+21
=10310+1
=10311
三、加法结合律法
对加法结合律(a+b)+c=a+(b+c)的运用,通过改变加数的位置来获得更简便的运算。
例:
5.76+13.67+4.24+6.33
=(5.76+4.24)+(13.67+6.33)
=30
四、拆分法
顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。注意不要改变数的大小哦!
例:
3.2×12.5×25
=8×0.4×12.5×25
=8×12.5×0.4×25
=1000
五、提取公因式法
这个方法实际上是运用了乘法分配律,将相同因数提取出来。
例:
0.92×1.41+0.92×8.59
=0.92×(1.41+8.59)
=9.2