这是凯撒秘密
属于对称加密
--------------------
楼下回答很搞笑
古典密码全部都是对称加密
Ⅱ 几种常见加密算法解析及使用
几种对称性加密算法:AES,DES,3DES
DES是一种分组数据加密技术(先将数据分成固定长度的小数据块,之后进行加密),速度较快,适用于大量数据加密,而3DES是一种基于DES的加密算法,使用3个不同密匙对同一个分组数据块进行3次加密,如此以使得密文强度更高。
相较于DES和3DES算法而言,AES算法有着更高的速度和资源使用效率,安全级别也较之更高了,被称为下一代加密标准。
几种非对称性加密算法:RSA,DSA,ECC
RSA和DSA的安全性及其它各方面性能都差不多,而ECC较之则有着很多的性能优越,包括处理速度,带宽要求,存储空间等等。
几种线性散列算法(签名算法):MD5,SHA1,HMAC
这几种算法只生成一串不可逆的密文,经常用其效验数据传输过程中是否经过修改,因为相同的生成算法对于同一明文只会生成唯一的密文,若相同算法生成的密文不同,则证明传输数据进行过了修改。通常在数据传说过程前,使用MD5和SHA1算法均需要发送和接收数据双方在数据传送之前就知道密匙生成算法,而HMAC与之不同的是需要生成一个密匙,发送方用此密匙对数据进行摘要处理(生成密文),接收方再利用此密匙对接收到的数据进行摘要处理,再判断生成的密文是否相同。
对于各种加密算法的选用:
由于对称加密算法的密钥管理是一个复杂的过程,密钥的管理直接决定着他的安全性,因此当数据量很小时,我们可以考虑采用非对称加密算法。
在实际的操作过程中,我们通常采用的方式是:采用非对称加密算法管理对称算法的密钥,然后用对称加密算法加密数据,这样我们就集成了两类加密算法的优点,既实现了加密速度快的优点,又实现了安全方便管理密钥的优点。
如果在选定了加密算法后,那采用多少位的密钥呢?一般来说,密钥越长,运行的速度就越慢,应该根据的我们实际需要的安全级别来选择,一般来说,RSA建议采用1024位的数字,ECC建议采用160位,AES采用128为即可。
Ⅲ 求解一简单加密算法
temppass=StrReverse(left(password&"xzcvbmn,./",10)) '密码在password中,不足10位的补足十位
templen=len(password) '获得密码长度.
mmpassword=""
for j=1 to 10
mmpassword=mmpassword+chr(asc(mid(temppass,j,1))-templen+int(j*1.1)) '加密核心
next
password=replace(mmpassword,"'","B") '在转化一下.
Ⅳ 谁帮我介绍下加密对称算法
A.对称加密技术 a. 描述 对称算法(symmetric algorithm),有时又叫传统密码算法,就是加密密钥能够从解密密钥中推算出来,同时解密密钥也可以从加密密钥中推算出来。而在大多数的对称算法中,加密密钥和解密密钥是相同的。所以也称这种加密算法为秘密密钥算法或单密钥算法。它要求发送方和接收方在安全通信之前,商定一个密钥。对称算法的安全性依赖于密钥,泄漏密钥就意味着任何人都可以对他们发送或接收的消息解密,所以密钥的保密性对通信性至关重要。 b.特点分析 对称加密的优点在于算法实现后的效率高、速度快。 对称加密的缺点在于密钥的管理过于复杂。如果任何一对发送方和接收方都有他们各自商议的密钥的话,那么很明显,假设有N个用户进行对称加密通信,如果按照上述方法,则他们要产生N(N-1)把密钥,每一个用户要记住或保留N-1把密钥,当N很大时,记住是不可能的,而保留起来又会引起密钥泄漏可能性的增加。常用的对称加密算法有DES,DEA等。 B.非对称加密技术 a.描述 非对称加密(dissymmetrical encryption),有时又叫公开密钥算法(public key algorithm)。这种加密算法是这样设计的:用作加密的密钥不同于用作解密的密钥,而且解密密钥不能根据加密密钥计算出来(至少在合理假定的长时间内)。之所以又叫做公开密钥算法是由于加密密钥可以公开,即陌生人可以得到它并用来加密信息,但只有用相应的解密密钥才能解密信息。在这种加密算法中,加密密钥被叫做公开密钥(public key),而解密密钥被叫做私有密钥(private key)。 b.特点分析 非对称加密的缺点在于算法实现后的效率低、速度慢。 非对称加密的优点在于用户不必记忆大量的提前商定好的密钥,因为发送方和接收方事先根本不必商定密钥,发放方只要可以得到可靠的接收方的公开密钥就可以给他发送信息了,而且即使双方根本互不相识。但为了保证可靠性,非对称加密算法需要一种与之相配合使用的公开密钥管理机制,这种公开密钥管理机制还要解决其他一些公开密钥所带来的问题。常用的非对称加密算法有RSA等。 (3) 关于密码技术 密码技术包括加密技术和密码分析技术,也即加密和解密技术两个方面。在一个新的加密算法的研发需要有相应的数学理论证明,证明这个算法的安全性有多高,同时还要从密码分析的角度对这个算法进行安全证明,说明这个算法对于所知的分析方法来说是有防范作用的。 三、对称加密算法分析 对称加密算法的分类 对称加密算法可以分成两类:一类为序列算法(stream algorithm):一次只对明文中单个位(有时为字节)加密或解密运算。另一类为分组算法(block algorithm):一次明文的一组固定长度的字节加密或解密运算。 现代计算机密码算法一般采用的都是分组算法,而且一般分组的长度为64位,之所以如此是由于这个长度大到足以防止分析破译,但又小到足以方便使用。 1.DES加密算法 (Data Encryption Standard )
(1) 算法简介
1973 年 5 月 15 日,美国国家标准局 (NBS) 在“联邦注册”上发布了一条通知,征求密码算法,用于在传输和存储期间保护数据。IBM 提交了一个候选算法,它是 IBM 内部开发的,名为 LUCIFER。在美国国家安全局 (NSA) 的“指导”下完成了算法评估之后,在 1977 年 7 月 15 日,NBS 采纳了 LUCIFER 算法的修正版作为新的数据加密标准。
原先规定使用10年,但由于新的加密标准还没有完成,所以DES算法及其的变形算法一直广泛的应用于信息加密方面。 (2) 算法描述 (包括加密和解密)
Feistel结构(画图说明)。
DES 的工作方式:可怕的细节
DES 将消息分成 64 位(即 16 个十六进制数)一组进行加密。DES 使用“密钥”进行加密,从符号的角度来看,“密钥”的长度是 16 个十六进制数(或 64 位)。但是,由于某些原因(可能是因为 NSA 给 NBS 的“指引”),DES 算法中每逢第 8 位就被忽略。这造成密钥的实际大小变成 56 位。编码系统对“强行”或“野蛮”攻击的抵抗力与其密钥空间或者系统可能有多少密钥有直接关系。使用的位数越多转换出的密钥也越多。密钥越多,就意味着强行攻击中计算密钥空间中可能的密钥范围所需的时间就越长。从总长度中切除 8 位就会在很大程度上限制了密钥空间,这样系统就更容易受到破坏。
DES 是块加密算法。这表示它处理特定大小的纯文本块(通常是 64 位),然后返回相同大小的密码块。这样,64 位(每位不是 0 就是 1)有 264 种可能排列,DES 将生成其中的一种排列。每个 64 位的块都被分成 L、R 左右两块,每块 32 位。
DES 算法使用以下步骤:
1. 创建 16 个子密钥,每个长度是 48 位。根据指定的顺序或“表”置换 64 位的密钥。如果表中的第一项是 "27",这表示原始密钥 K 中的第 27 位将变成置换后的密钥 K+ 的第一位。如果表的第二项是 36,则这表示原始密钥中的第 36 位将变成置换后密钥的第二位,以此类推。这是一个线性替换方法,它创建了一种线性排列。置换后的密钥中只出现了原始密钥中的 56 位。
2. 接着,将这个密钥分成左右两半,C0 和 D0,每一半 28 位。定义了 C0 和 D0 之后,创建 16 个 Cn 和 Dn 块,其中 1<=n<=16。每一对 Cn 和 Dn 块都通过使用标识“左移位”的表分别从前一对 Cn-1 和 Dn-1 形成,n = 1, 2, ..., 16,而“左移位”表说明了要对哪一位进行操作。在所有情况下,单一左移位表示这些位轮流向左移动一个位置。在一次左移位之后,28 个位置中的这些位分别是以前的第 2、3……28 位。
通过将另一个置换表应用于每一个 CnDn 连接对,从而形成密钥 Kn,1<=n<=16。每一对有 56 位,而置换表只使用其中的 48 位,因为每逢第 8 位都将被忽略。
3. 编码每个 64 位的数据块。
64 位的消息数据 M 有一个初始置换 IP。这将根据置换表重新排列这些位,置换表中的项按这些位的初始顺序描述了它们新的排列。我们以前见过这种线性表结构。
使用函数 f 来生成一个 32 位的块,函数 f 对两个块进行操作,一个是 32 位的数据块,一个是 48 位的密钥 Kn,连续迭代 16 次,其中 1<=n<=16。用 + 表示 XOR 加法(逐位相加,模除 2)。然后,n 从 1 到 16,计算 Ln = Rn-1 Rn = Ln-1 + f(Rn-1,Kn)。即在每次迭代中,我们用前一结果的右边 32 位,并使它们成为当前步骤中的左边 32 位。对于当前步骤中的右边 32 位,我们用算法 f XOR 前一步骤中的左边 32 位。
要计算 f,首先将每一块 Rn-1 从 32 位扩展到 48 位。可以使用选择表来重复 Rn-1 中的一些位来完成这一操作。这个选择表的使用就成了函数 f。因此 f(Rn-1) 的输入块是 32 位,输出块是 48 位。f 的输出是 48 位,写成 8 块,每块 6 位,这是通过根据已知表按顺序选择输入中的位来实现的。
我们已经使用选择表将 Rn-1 从 32 位扩展成 48 位,并将结果 XOR 密钥 Kn。现在有 48 位,或者是 8 组,每组 6 位。每组中的 6 位现在将经历一次变换,该变换是算法的核心部分:在叫做“S 盒”的表中,我们将这些位当作地址使用。每组 6 位在不同的 S 盒中表示不同的地址。该地址中是一个 4 位数字,它将替换原来的 6 位。最终结果是 8 组,每组 6 位变换成 8 组,每组 4 位(S 盒的 4 位输出),总共 32 位。
f 计算的最后阶段是对 S 盒输出执行置换 P,以得到 f 的最终值。f 的形式是 f = P(S1(B1)S2(B2)...S8(B8))。置换 P 根据 32 位输入,在以上的过程中通过置换输入块中的位,生成 32 位输出。
解密只是加密的逆过程,使用以上相同的步骤,但要逆转应用子密钥的顺序。DES 算法是可逆的
(2) 算法的安全性分析
在知道一些明文和密文分组的条件下,从理论上讲很容易知道对DES进行一次穷举攻击的复杂程度:密钥的长度是56位,所以会有 种的可能的密钥。
在1993年的一年一度的世界密码大会上,加拿大北方电信公司贝尔实验室的 Michael Wiener 描述了如何构造一台专用的机器破译DES,该机器利用一种每秒能搜索5000万个密钥的专用芯片。而且此机器的扩展性很好,投入的经费越多则效率越高。用100万美元构造的机器平均3.5小时就可以破译密码。
如果不用专用的机器,破译DES也有其他的方法。在1994年的世界密码大会上,M.Matsui 提出一种攻克DES的新方法--"线性密码分析"法。它可使用平均 个明文及其密文,在12台HP9000/735工作站上用此方法的软件实现,花费50天时间完成对DES的攻击。
如前所述DES作为加密算法的标准已经二十多年了,可以说是一个很老的算法,而在新的加密算法的国际标准出现之前,许多DES的加固性改进算法仍有实用价值,在本文的3.4节详细的描述,同时考虑的以上所述DES的安全性已受到了威胁。
(4) 算法的变体 三重DES(TDEA),使用3个密钥,执行3次DES算法:
加密:C = Ek3[Dk2[Ek1[P]]] 解密:P = Dk1[Ek2[Dk3[C]]]
特点:安全性得到增强,但是速度变慢。
2.AES
自 20 世纪 70 年代以来一直广泛使用的“数据加密标准”(DES) 日益显出衰老的痕迹,而一种新的算法 -- Rijndael -- 正顺利地逐渐变成新标准。这里,Larry Loeb 详细说明了每一种算法,并提供了关于为什么会发生这种变化的内幕信息。
DES 算法是全世界最广泛使用的加密算法。最近,就在 2000 年 10 月,它在其初期就取得的硬件方面的优势已经阻碍了其发展,作为政府加密技术的基础,它已由“高级加密标准”(AES) 中包含的另一种加密算法代替了。AES 是指定的标准密码系统,未来将由政府和银行业用户使用。AES 用来实际编码数据的加密算法与以前的 DES 标准不同。我们将讨论这是如何发生的,以及 AES 中的 Rijndael 算法是如何取代 DES 的算法的。
“高级加密标准”成就
但直到 1997 年,美国国家标准技术局 (NIST) 才开始打着 AES 项目的旗帜征集其接任者。1997 年 4 月的一个 AES 研讨会宣布了以下 AES 成就的最初目标:
• 可供政府和商业使用的功能强大的加密算法
• 支持标准密码本方式
• 要明显比 DES 3 有效
• 密钥大小可变,这样就可在必要时增加安全性
• 以公正和公开的方式进行选择
• 可以公开定义
• 可以公开评估
AES 的草案中最低可接受要求和评估标准是:
A.1 AES 应该可以公开定义。
A.2 AES 应该是对称的块密码。
A.3 AES 应该设计成密钥长度可以根据需要增加。
A.4 AES 应该可以在硬件和软件中实现。
A.5 AES 应该 a) 可免费获得。
A.6 将根据以下要素评价符合上述要求的算法:
1. 安全性(密码分析所需的努力)
2. 计算效率
3. 内存需求
4. 硬件和软件可适用性
5. 简易性
6. 灵活性
7. 许可证需求(见上面的 A5)
Rijndael:AES 算法获胜者
1998年8月20日NIST召开了第一次AES侯选会议,并公布了15个AES侯选算法。经过一年的考察,MARS,RC6,Rijndael,Serpent,Twofish共5种算法通过了第二轮的选拔。2000 年 10 月,NIST 选择 Rijndael(发音为 "Rhine dale")作为 AES 算法。它目前还不会代替 DES 3 成为政府日常加密的方法,因为它还须通过测试过程,“使用者”将在该测试过程后发表他们的看法。但相信它可以顺利过关。
Rijndael 是带有可变块长和可变密钥长度的迭代块密码。块长和密钥长度可以分别指定成 128、192 或 256 位。
Rijndael 中的某些操作是在字节级上定义的,字节表示有限字段 GF(28) 中的元素,一个字节中有 8 位。其它操作都根据 4 字节字定义。
加法照例对应于字节级的简单逐位 EXOR。
在多项式表示中,GF(28) 的乘法对应于多项式乘法模除阶数为 8 的不可约分二进制多项式。(如果一个多项式除了 1 和它本身之外没有其它约数,则称它为不可约分的。)对于 Rijndael,这个多项式叫做 m(x),其中:m(x) = (x8 + x4 + x3 + x + 1) 或者十六进制表示为 '11B'。其结果是一个阶数低于 8 的二进制多项式。不像加法,它没有字节级的简单操作。
不使用 Feistel 结构!
在大多数加密算法中,轮回变换都使用着名的 Feistel 结构。在这个结构中,中间 State 的位部分通常不做更改调换到另一个位置。(这种线性结构的示例是我们在 DES 部分中讨论的那些表,即使用固定表的形式交换位。)Rijndael 的轮回变换不使用这个古老的 Feistel 结构。轮回变换由三个不同的可逆一致变换组成,叫做层。(“一致”在这里表示以类似方法处理 State 中的位。)
线性混合层保证了在多个轮回后的高度扩散。非线性层使用 S 盒的并行应用,该应用程序有期望的(因此是最佳的)最差非线性特性。S 盒是非线性的。依我看来,这就 DES 和 Rijndael 之间的密钥概念差异。密钥加法层是对中间 State 的轮回密钥 (Round Key) 的简单 EXOR,如以下所注。
Rijndael算法
加密算法
Rijndael算法是一个由可变数据块长和可变密钥长的迭代分组加密算法,数据块长和密钥长可分别为128,192或256比特。
数据块要经过多次数据变换操作,每一次变换操作产生一个中间结果,这个中间结果叫做状态。状态可表示为二维字节数组,它有4行,Nb列,且Nb等于数据块长除32。如表2-3所示。
a0,0 a0,1 a0,2 a0,3 a0,4 a0,5
a1,0 a1,1 a1,2 a1,3 a1,4 a1,5
a2,0 a2,1 a2,2 a2,3 a2,4 a2,5
a3,0 a3,1 a3,2 a3,3 a3,4 a3,5
数据块按a0,0 , a1,0 , a2,0 , a3,0 , a0,1 , a1,1 , a2,1 , a3,1 , a0,2…的顺序映射为状态中的字节。在加密操作结束时,密文按同样的顺序从状态中抽取。
密钥也可类似地表示为二维字节数组,它有4行,Nk列,且Nk等于密钥块长除32。算法变换的圈数Nr由Nb和Nk共同决定,具体值列在表2-4中。
表3-2 Nb和Nk决定的Nr的值
Nr Nb = 4 Nb = 6 Nb = 8
Nk = 4 10 12 14
Nk = 6 12 12 14
Nk = 8 14 14 14
3.2.1圈变换
加密算法的圈变换由4个不同的变换组成,定义成:
Round(State,RoundKey)
{
ByteSub(State);
ShiftRow(State);
MixColumn(State);
AddRoundKey(State,RoundKey); (EXORing a Round Key to the State)
}
加密算法的最后一圈变换与上面的略有不同,定义如下:
FinalRound(State,RoundKey)
{
ByteSub(State);
ShiftRow(State);
AddRoundKey(State,RoundKey);
}
ByteSub变换
ByteSub变换是作用在状态中每个字节上的一种非线形字节变换。这个S盒子是可逆的且由以下两部分组成:
把字节的值用它的乘法逆替代,其中‘00’的逆就是它自己。
经(1)处理后的字节值进行如下定义的仿射变换:
y0 1 1 1 1 1 0 0 0 x0 0
y1 0 1 1 1 1 1 0 0 x1 1
y2 0 0 1 1 1 1 1 0 x2 1
y3 0 0 0 1 1 1 1 1 x3 0
y4 = 1 0 0 0 1 1 1 1 x4 + 0
y5 1 1 0 0 0 1 1 1 x5 0
y6 1 1 1 0 0 0 1 1 x6 1
y7 1 1 1 1 0 0 0 1 x7 1
ShiftRow变换
在ShiftRow变换中,状态的后3行以不同的移位值循环右移,行1移C1字节,行2移C2字节,行3移C3字节。
移位值C1,C2和C3与加密块长Nb有关,具体列在表2-5中:
表3-3 不同块长的移位值
Nb C1 C2 C3
4 1 2 3
MixColumn变换
在MixColumn变换中,把状态中的每一列看作GF(28)上的多项式与一固定多项式c(x)相乘然后模多项式x4+1,其中c(x)为:
c(x) =‘03’x3 + ‘01’x2 + ‘01’x + ‘02’
圈密钥加法
在这个操作中,圈密钥被简单地使用异或操作按位应用到状态中。圈密钥通过密钥编制得到,圈密钥长等于数据块长Nb。
在这个表示法中,“函数”(Round, ByteSub, ShiftRow,...) 对那些被提供指针 (State, RoundKey) 的数组进行操作。ByteSub 变换是非线性字节交换,各自作用于每个 State 字节上。在 ShiftRow 中,State 的行按不同的偏移量循环移位。在 MixColumn 中,将 State 的列视为 GF(28) 多项式,然后乘以固定多项式 c( x ) 并模除 x4 + 1,其中 c( x ) = '03' x3 + '01' x2+ '01' x + '02'。这个多项式与 x4 + 1 互质,因此是可逆的。
轮回密钥通过密钥计划方式从密码密钥 (Cipher Key) 派生而出。它有两个组件:密钥扩展 (Key Expansion) 和轮回密钥选择 (Round Key Selection)。轮回密钥的总位数等于块长度乘以轮回次数加 1(例如,块长度等于 128 位,10 次轮回,那么就需要 1408 个轮回密钥位)。
密码密钥扩充成扩展密钥 (Expanded Key)。轮回密钥是通过以下方法从这个扩展密钥中派生的:第一个轮回密钥由前 Nb(Nb = 块长度)个字组成,第二个由接着的 Nb 个字组成,以此类推。
加密算法由以下部分组成:初始轮回密钥加法、Nr-1 个轮回和最后一个轮回。在伪 C 代码中:
Rijndael(State,CipherKey)
{
KeyExpansion(CipherKey,ExpandedKey);
AddRoundKey(State,ExpandedKey);
For( i=1 ; i<Nr ; i++ ) Round(State,ExpandedKey + Nb*i);
FinalRound(State,ExpandedKey + Nb*Nr).
}
如果已经预先执行了密钥扩展,则可以根据扩展密钥指定加密算法。
Rijndael(State,ExpandedKey)
{
AddRoundKey(State,ExpandedKey);
For( i=1 ; i<Nr ; i++ ) Round(State,ExpandedKey + Nb*i);
FinalRound(State,ExpandedKey + Nb*Nr);
}
由于 Rijndael 是可逆的,解密过程只是颠倒上述的步骤。
最后,开发者将仔细考虑如何集成这种安全性进展,使之成为继 Rijndael 之后又一个得到广泛使用的加密算法。AES 将很快应一般商业团体的要求取代 DES 成为标准,而该领域的发展进步无疑将追随其后。
3.IDEA加密算法 (1) 算法简介 IDEA算法是International Data Encryption Algorithmic 的缩写,意为国际数据加密算法。是由中国学者朱学嘉博士和着名密码学家James Massey 于1990年联合提出的,当时被叫作PES(Proposed Encryption Standard)算法,后为了加强抵抗差分密码分,经修改于1992年最后完成,并命名为IDEA算法。 (2) 算法描述 这个部分参见论文上的图 (3) 算法的安全性分析 安全性:IDEA的密钥长度是128位,比DES长了2倍多。所以如果用穷举强行攻击的话, 么,为了获得密钥需要 次搜索,如果可以设计一种每秒能搜索十亿把密钥的芯片,并且 采用十亿个芯片来并行处理的话,也要用上 年。而对于其他攻击方式来说,由于此算法 比较的新,在设计时已经考虑到了如差分攻击等密码分析的威胁,所以还未有关于有谁 发现了能比较成功的攻击IDEA方法的结果。从这点来看,IDEA还是很安全的。
4.总结
几种算法的性能对比
算法 密钥长度 分组长度 循环次数
DES 56 64 16
三重DES 112、168 64 48
AES 128、192、256 128 10、12、14
IDEA 128 64 8
速度:在200MHz的奔腾机上的对比。
C++ DJGP(++pgcc101)
AES 30.2Mbps 68.275Mbps
DES(RSAREF) 10.6Mbps 16.7Mbps
3DES 4.4Mbps 7.3Mbps
Celeron 1GHz的机器上AES的速度,加密内存中的数据
128bits密钥:
C/C++ (Mbps) 汇编(Mbps)
Linux 2.4.7 93 170
Windows2K 107 154
256bits密钥:
C/C++ (Mbps) 汇编(Mbps)
Linux 2.4.7 76 148
Windows2K 92 135
安全性
1990年以来,特制的"DES Cracker"的机器可在几个小时内找出一个DES密钥。换句话说,通过测试所有可能的密钥值,此硬件可以确定用于加密信息的是哪个密钥。假设一台一秒内可找出DES密钥的机器(如,每秒试255个密钥),如果用它来找出128-bit AES的密钥,大约需要149万亿年。
四、对称加密应用 在保密通信中的应用。(保密电话) 附加内容
安全哈希算法(SHA)
由NIST开发出来的。
此算法以最大长度不超过264位的消息为输入,生成160位的消息摘要输出。主要步骤:
1. 附加填充位
2. 附加长度
3. 初始化MD缓冲区,为160位的数据
A=67452301
B=EFCDAB89
C=89BADCFE
D=10325476
E=C3D2E1F0
4. 处理512位消息块,将缓冲虚数据和消息块共同计算出下一个输出
5. 输出160位摘要
此外还有其他哈希算法,如MD5(128位摘要),RIPEMD-160(160位摘要)等。
Ⅳ 用c语言设计一个简单地加密算,解密算法,并说明其中的原理
恰巧这两天刚看的一种思路,很简单的加密解密算法,我说一下吧。
算法原理很简单,假设你的原密码是A,用A与数B按位异或后得到C,C就是加密后的密码,用C再与数B按位异或后能得回A。即(A异或B)异或B=A。用C实现很简单的。
这就相当于,你用原密码A和特定数字B产生加密密码C,别人拿到这个加密的密码C,如果不知道特定的数字B,他是无法解密得到原密码A的。
对于密码是数字的情况可以用下面的代码:
#include <stdio.h>
#define BIRTHDAY 19880314
int main()
{
long a, b;
scanf("%ld", &a);
printf("原密码:%ld\n", a);
b = BIRTHDAY;
a ^= b;
printf("加密密码:%ld\n", a);
a ^= b; printf("解密密码:%ld\n", a);
return 0;
}
如果密码是字符串的话,最简单的加密算法就是对每个字符重新映射,只要加密解密双方共同遵守同一个映射规则就行啦。
Ⅵ 有没有一种加密简单,解密难的算法如果有请说说原理
原本的加解密都要保证效率的否则没啥太多意义,你说的这种加密快,解密慢的比较常见的就是压缩文件加密,加密很快,解密的时候你不给出密码,只给一个范围,比如密码由大小写字母、数字,多少位,任何人拿到这个都只能用暴力破解的方法,破解的时间随你的密码的长度和复杂度而定。
Ⅶ 假设使用一种加密算法
,它的加密方法很简单:将每一个字母加5,即a加密为f,b加密为g.这种算法的密钥就是5,那么它属于() A对称密码术 B分组密码术 C公钥密码术 D单项函数密码术
Ⅷ 帮忙说一种加密方法实际应用的案例
md5的全称是message-digest algorithm 5(信息-摘要算法),在90年代初由mit laboratory for computer science和rsa data security inc的ronald l. rivest开发出来,经md2、md3和md4发展而来。它的作用是让大容量信息在用数字签名软件签署私人密匙前被"压缩"成一种保密的格式(就是把一个任意长度的字节串变换成一定长的大整数)。不管是md2、md4还是md5,它们都需要获得一个随机长度的信息并产生一个128位的信息摘要。虽然这些算法的结构或多或少有些相似,但md2的设计与md4和md5完全不同,那是因为md2是为8位机器做过设计优化的,而md4和md5却是面向32位的电脑。这三个算法的描述和c语言源代码在internet rfcs 1321中有详细的描述(h++p://www.ietf.org/rfc/rfc1321.txt),这是一份最权威的文档,由ronald l. rivest在1992年8月向ieft提交。
rivest在1989年开发出md2算法。在这个算法中,首先对信息进行数据补位,使信息的字节长度是16的倍数。然后,以一个16位的检验和追加到信息末尾。并且根据这个新产生的信息计算出散列值。后来,rogier和chauvaud发现如果忽略了检验和将产生md2冲突。md2算法的加密后结果是唯一的--既没有重复。
为了加强算法的安全性,rivest在1990年又开发出md4算法。md4算法同样需要填补信息以确保信息的字节长度加上448后能被512整除(信息字节长度mod 512 = 448)。然后,一个以64位二进制表示的信息的最初长度被添加进来。信息被处理成512位damg?rd/merkle迭代结构的区块,而且每个区块要通过三个不同步骤的处理。den boer和bosselaers以及其他人很快的发现了攻击md4版本中第一步和第三步的漏洞。dobbertin向大家演示了如何利用一部普通的个人电脑在几分钟内找到md4完整版本中的冲突(这个冲突实际上是一种漏洞,它将导致对不同的内容进行加密却可能得到相同的加密后结果)。毫无疑问,md4就此被淘汰掉了。
尽管md4算法在安全上有个这么大的漏洞,但它对在其后才被开发出来的好几种信息安全加密算法的出现却有着不可忽视的引导作用。除了md5以外,其中比较有名的还有sha-1、ripe-md以及haval等。
一年以后,即1991年,rivest开发出技术上更为趋近成熟的md5算法。它在md4的基础上增加了"安全-带子"(safety-belts)的概念。虽然md5比md4稍微慢一些,但却更为安全。这个算法很明显的由四个和md4设计有少许不同的步骤组成。在md5算法中,信息-摘要的大小和填充的必要条件与md4完全相同。den boer和bosselaers曾发现md5算法中的假冲突(pseudo-collisions),但除此之外就没有其他被发现的加密后结果了。
van oorschot和wiener曾经考虑过一个在散列中暴力搜寻冲突的函数(brute-force hash function),而且他们猜测一个被设计专门用来搜索md5冲突的机器(这台机器在1994年的制造成本大约是一百万美元)可以平均每24天就找到一个冲突。但单从1991年到2001年这10年间,竟没有出现替代md5算法的md6或被叫做其他什么名字的新算法这一点,我们就可以看出这个瑕疵并没有太多的影响md5的安全性。上面所有这些都不足以成为md5的在实际应用中的问题。并且,由于md5算法的使用不需要支付任何版权费用的,所以在一般的情况下(非绝密应用领域。但即便是应用在绝密领域内,md5也不失为一种非常优秀的中间技术),md5怎么都应该算得上是非常安全的了。
算法的应用
md5的典型应用是对一段信息(message)产生信息摘要(message-digest),以防止被篡改。比如,在unix下有很多软件在下载的时候都有一个文件名相同,文件扩展名为.md5的文件,在这个文件中通常只有一行文本,大致结构如:
md5 (tanajiya.tar.gz) =
这就是tanajiya.tar.gz文件的数字签名。md5将整个文件当作一个大文本信息,通过其不可逆的字符串变换算法,产生了这个唯一的md5信息摘要。如果在以后传播这个文件的过程中,无论文件的内容发生了任何形式的改变(包括人为修改或者下载过程中线路不稳定引起的传输错误等),只要你对这个文件重新计算md5时就会发现信息摘要不相同,由此可以确定你得到的只是一个不正确的文件。如果再有一个第三方的认证机构,用md5还可以防止文件作者的"抵赖",这就是所谓的数字签名应用。
md5还广泛用于加密和解密技术上。比如在unix系统中用户的密码就是以md5(或其它类似的算法)经加密后存储在文件系统中。当用户登录的时候,系统把用户输入的密码计算成md5值,然后再去和保存在文件系统中的md5值进行比较,进而确定输入的密码是否正确。通过这样的步骤,系统在并不知道用户密码的明码的情况下就可以确定用户登录系统的合法性。这不但可以避免用户的密码被具有系统管理员权限的用户知道,而且还在一定程度上增加了密码被破解的难度。
正是因为这个原因,现在被黑客使用最多的一种破译密码的方法就是一种被称为"跑字典"的方法。有两种方法得到字典,一种是日常搜集的用做密码的字符串表,另一种是用排列组合方法生成的,先用md5程序计算出这些字典项的md5值,然后再用目标的md5值在这个字典中检索。我们假设密码的最大长度为8位字节(8 bytes),同时密码只能是字母和数字,共26+26+10=62个字符,排列组合出的字典的项数则是p(62,1)+p(62,2)….+p(62,8),那也已经是一个很天文的数字了,存储这个字典就需要tb级的磁盘阵列,而且这种方法还有一个前提,就是能获得目标账户的密码md5值的情况下才可以。这种加密技术被广泛的应用于unix系统中,这也是为什么unix系统比一般操作系统更为坚固一个重要原因。
算法描述
对md5算法简要的叙述可以为:md5以512位分组来处理输入的信息,且每一分组又被划分为16个32位子分组,经过了一系列的处理后,算法的输出由四个32位分组组成,将这四个32位分组级联后将生成一个128位散列值。
在md5算法中,首先需要对信息进行填充,使其字节长度对512求余的结果等于448。因此,信息的字节长度(bits length)将被扩展至n*512+448,即n*64+56个字节(bytes),n为一个正整数。填充的方法如下,在信息的后面填充一个1和无数个0,直到满足上面的条件时才停止用0对信息的填充。然后,在在这个结果后面附加一个以64位二进制表示的填充前信息长度。经过这两步的处理,现在的信息字节长度=n*512+448+64=(n+1)*512,即长度恰好是512的整数倍。这样做的原因是为满足后面处理中对信息长度的要求。
md5中有四个32位被称作链接变量(chaining variable)的整数参数,他们分别为:a=0x01234567,b=0x89abcdef,c=0xfedcba98,d=0x76543210。
当设置好这四个链接变量后,就开始进入算法的四轮循环运算。循环的次数是信息中512位信息分组的数目。
将上面四个链接变量复制到另外四个变量中:a到a,b到b,c到c,d到d。
主循环有四轮(md4只有三轮),每轮循环都很相似。第一轮进行16次操作。每次操作对a、b、c和d中的其中三个作一次非线性函数运算,然后将所得结果加上第四个变量,文本的一个子分组和一个常数。再将所得结果向右环移一个不定的数,并加上a、b、c或d中之一。最后用该结果取代a、b、c或d中之一。
以一下是每次操作中用到的四个非线性函数(每轮一个)。
f(x,y,z) =(x&y)|((~x)&z)
g(x,y,z) =(x&z)|(y&(~z))
h(x,y,z) =x^y^z
i(x,y,z)=y^(x|(~z))
(&是与,|是或,~是非,^是异或)
这四个函数的说明:如果x、y和z的对应位是独立和均匀的,那么结果的每一位也应是独立和均匀的。
f是一个逐位运算的函数。即,如果x,那么y,否则z。函数h是逐位奇偶操作符。
假设mj表示消息的第j个子分组(从0到15),<<
ff(a,b,c,d,mj,s,ti)表示a=b+((a+(f(b,c,d)+mj+ti)<< gg(a,b,c,d,mj,s,ti)表示a=b+((a+(g(b,c,d)+mj+ti)<< hh(a,b,c,d,mj,s,ti)表示a=b+((a+(h(b,c,d)+mj+ti)<< ii(a,b,c,d,mj,s,ti)表示a=b+((a+(i(b,c,d)+mj+ti)<<
这四轮(64步)是:
第一轮
ff(a,b,c,d,m0,7,0xd76aa478)
ff(d,a,b,c,m1,12,0xe8c7b756)
ff(c,d,a,b,m2,17,0x242070db)
ff(b,c,d,a,m3,22,0xc1bdceee)
ff(a,b,c,d,m4,7,0xf57c0faf)
ff(d,a,b,c,m5,12,0x4787c62a)
ff(c,d,a,b,m6,17,0xa8304613)
ff(b,c,d,a,m7,22,0xfd469501)
ff(a,b,c,d,m8,7,0x698098d8)
ff(d,a,b,c,m9,12,0x8b44f7af)
ff(c,d,a,b,m10,17,0xffff5bb1)
ff(b,c,d,a,m11,22,0x895cd7be)
ff(a,b,c,d,m12,7,0x6b901122)
ff(d,a,b,c,m13,12,0xfd987193)
ff(c,d,a,b,m14,17,0xa679438e)
ff(b,c,d,a,m15,22,0x49b40821)
第二轮
gg(a,b,c,d,m1,5,0xf61e2562)
gg(d,a,b,c,m6,9,0xc040b340)
gg(c,d,a,b,m11,14,0x265e5a51)
gg(b,c,d,a,m0,20,0xe9b6c7aa)
gg(a,b,c,d,m5,5,0xd62f105d)
gg(d,a,b,c,m10,9,0x02441453)
gg(c,d,a,b,m15,14,0xd8a1e681)
gg(b,c,d,a,m4,20,0xe7d3fbc8)
gg(a,b,c,d,m9,5,0x21e1cde6)
gg(d,a,b,c,m14,9,0xc33707d6)
gg(c,d,a,b,m3,14,0xf4d50d87)
gg(b,c,d,a,m8,20,0x455a14ed)
gg(a,b,c,d,m13,5,0xa9e3e905)
gg(d,a,b,c,m2,9,0xfcefa3f8)
gg(c,d,a,b,m7,14,0x676f02d9)
gg(b,c,d,a,m12,20,0x8d2a4c8a)
第三轮
hh(a,b,c,d,m5,4,0xfffa3942)
hh(d,a,b,c,m8,11,0x8771f681)
hh(c,d,a,b,m11,16,0x6d9d6122)
hh(b,c,d,a,m14,23,0xfde5380c)
hh(a,b,c,d,m1,4,0xa4beea44)
hh(d,a,b,c,m4,11,0x4bdecfa9)
hh(c,d,a,b,m7,16,0xf6bb4b60)
hh(b,c,d,a,m10,23,0xbebfbc70)
hh(a,b,c,d,m13,4,0x289b7ec6)
hh(d,a,b,c,m0,11,0xeaa127fa)
hh(c,d,a,b,m3,16,0xd4ef3085)
hh(b,c,d,a,m6,23,0x04881d05)
hh(a,b,c,d,m9,4,0xd9d4d039)
hh(d,a,b,c,m12,11,0xe6db99e5)
hh(c,d,a,b,m15,16,0x1fa27cf8)
hh(b,c,d,a,m2,23,0xc4ac5665)
第四轮
ii(a,b,c,d,m0,6,0xf4292244)
ii(d,a,b,c,m7,10,0x432aff97)
ii(c,d,a,b,m14,15,0xab9423a7)
ii(b,c,d,a,m5,21,0xfc93a039)
ii(a,b,c,d,m12,6,0x655b59c3)
ii(d,a,b,c,m3,10,0x8f0ccc92)
ii(c,d,a,b,m10,15,0xffeff47d)
ii(b,c,d,a,m1,21,0x85845dd1)
ii(a,b,c,d,m8,6,0x6fa87e4f)
ii(d,a,b,c,m15,10,0xfe2ce6e0)
ii(c,d,a,b,m6,15,0xa3014314)
ii(b,c,d,a,m13,21,0x4e0811a1)
ii(a,b,c,d,m4,6,0xf7537e82)
ii(d,a,b,c,m11,10,0xbd3af235)
ii(c,d,a,b,m2,15,0x2ad7d2bb)
ii(b,c,d,a,m9,21,0xeb86d391)
常数ti可以如下选择:
在第i步中,ti是4294967296*abs(sin(i))的整数部分,i的单位是弧度。(4294967296等于2的32次方)
所有这些完成之后,将a、b、c、d分别加上a、b、c、d。然后用下一分组数据继续运行算法,最后的输出是a、b、c和d的级联。
当你按照我上面所说的方法实现md5算法以后,你可以用以下几个信息对你做出来的程序作一个简单的测试,看看程序有没有错误。
md5 ("") =
md5 ("a") =
md5 ("abc") =
md5 ("message digest") =
md5 ("abcdefghijklmnopqrstuvwxyz") =
md5 ("") =
md5 ("
01234567890") =
如果你用上面的信息分别对你做的md5算法实例做测试,最后得出的结论和标准答案完全一样,那我就要在这里象你道一声祝贺了。要知道,我的程序在第一次编译成功的时候是没有得出和上面相同的结果的。
md5的安全性
md5相对md4所作的改进:
1. 增加了第四轮;
2. 每一步均有唯一的加法常数;
3. 为减弱第二轮中函数g的对称性从(x&y)|(x&z)|(y&z)变为(x&z)|(y&(~z));
4. 第一步加上了上一步的结果,这将引起更快的雪崩效应;
5. 改变了第二轮和第三轮中访问消息子分组的次序,使其更不相似;
6. 近似优化了每一轮中的循环左移位移量以实现更快的雪崩效应。各轮的位移量互不相同。
[color=red]简单的说:
MD5叫信息-摘要算法,是一种密码的算法,它可以对任何文件产生一个唯一的MD5验证码,每个文件的MD5码就如同每个人的指纹一样,都是不同的,这样,一旦这个文件在传输过程中,其内容被损坏或者被修改的话,那么这个文件的MD5码就会发生变化,通过对文件MD5的验证,可以得知获得的文件是否完整。
Ⅸ 假设使用一种加密算法
觉的答案是C 公钥密码术
Ⅹ rsa加密算法的疑惑
什么是RSA
RSA算法是第一个能同时用于加密和数字签名的算法,也易于理解和操作。
RSA是被研究得最广泛的公钥算法,从提出到现在已近二十年,经历了各种攻击的考验,逐渐为人们接受,普遍认为是目前最优秀的公钥方案之一。RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价。即RSA的重大缺陷是无法从理论上把握它的保密性能如何,而且密码学界多数人士倾向于因子分解不是NPC问题。
RSA的缺点主要有:A)产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次一密。B)分组长度太大,为保证安全性,n 至少也要 600 bits以上,使运算代价很高,尤其是速度较慢,较对称密码算法慢几个数量级;且随着大数分解技术的发展,这个长度还在增加,不利于数据格式的标准化。目前,SET(Secure Electronic Transaction)协议中要求CA采用2048比特长的密钥,其他实体使用1024比特的密钥。
这种算法1978年就出现了,它是第一个既能用于数据加密也能用于数字签名的算法。它易于理解和操作,也很流行。算法的名字以发明者的名字命名:Ron Rivest, AdiShamir 和Leonard Adleman。
RSA算法是一种非对称密码算法,所谓非对称,就是指该算法需要一对密钥,使用其中一个加密,则需要用另一个才能解密。
RSA的算法涉及三个参数,n、e1、e2。
其中,n是两个大质数p、q的积,n的二进制表示时所占用的位数,就是所谓的密钥长度。
e1和e2是一对相关的值,e1可以任意取,但要求e1与(p-1)*(q-1)互质;再选择e2,要求(e2*e1)mod((p-1)*(q-1))=1。
(n及e1),(n及e2)就是密钥对。
RSA加解密的算法完全相同,设A为明文,B为密文,则:A=B^e1 mod n;B=A^e2 mod n;
e1和e2可以互换使用,即:
A=B^e2 mod n;B=A^e1 mod n;
[编辑本段]一、RSA 的安全性
RSA的安全性依赖于大数分解,但是否等同于大数分解一直未能得到理论上的证明,因为没有证明破解 RSA就一定需要作大数分解。假设存在一种无须分解大数的算法,那它肯定可以修改成为大数分解算法。目前, RSA 的一些变种算法已被证明等价于大数分解。不管怎样,分解n是最显然的攻击方法。现在,人们已能分解多个十进制位的大素数。因此,模数n 必须选大一些,因具体适用情况而定。
[编辑本段]二、RSA的速度
由于进行的都是大数计算,使得RSA最快的情况也比DES慢上倍,无论是软件还是硬件实现。速度一直是RSA的缺陷。一般来说只用于少量数据加密。
[编辑本段]三、RSA的选择密文攻击
RSA在选择密文攻击面前很脆弱。一般攻击者是将某一信息作一下伪装( Blind),让拥有私钥的实体签署。然后,经过计算就可得到它所想要的信息。实际上,攻击利用的都是同一个弱点,即存在这样一个事实:乘幂保留了输入的乘法结构:
( XM )^d = X^d *M^d mod n
前面已经提到,这个固有的问题来自于公钥密码系统的最有用的特征--每个人都能使用公钥。但从算法上无法解决这一问题,主要措施有两条:一条是采用好的公钥协议,保证工作过程中实体不对其他实体任意产生的信息解密,不对自己一无所知的信息签名;另一条是决不对陌生人送来的随机文档签名,签名时首先使用One-Way HashFunction 对文档作HASH处理,或
[编辑本段]四、RSA的公共模数攻击
若系统中共有一个模数,只是不同的人拥有不同的e和d,系统将是危险的。最普遍的情况是同一信息用不同的公钥加密,这些公钥共模而且互质,那末该信息无需私钥就可得到恢复。设P为信息明文,两个加密密钥为e1和e2,公共模数是n,则:
C1 = P^e1 mod n
C2 = P^e2 mod n
密码分析者知道n、e1、e2、C1和C2,就能得到P。
因为e1和e2互质,故用Euclidean算法能找到r和s,满足:
r * e1 + s * e2 = 1
假设r为负数,需再用Euclidean算法计算C1^(-1),则
( C1^(-1) )^(-r) * C2^s = P mod n
另外,还有其它几种利用公共模数攻击的方法。总之,如果知道给定模数的一对e和d,一是有利于攻击者分解模数,一是有利于攻击者计算出其它成对的e’和d’,而无需分解模数。解决办法只有一个,那就是不要共享模数n。
RSA的小指数攻击。 有一种提高 RSA速度的建议是使公钥e取较小的值,这样会使加密变得易于实现,速度有
所提高。但这样作是不安全的,对付办法就是e和d都取较大的值。
RSA算法是第一个能同时用于加密和数字签名的算法,也易于理解和操作。RSA是被研究得最广泛的公钥算法,从提出到现在已近二十年,经历了各种攻击的考验,逐渐为人们接受,普遍认为是目前最优秀的公钥方案之一。RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价。即RSA的重大缺陷是无法从理论上把握它的保密性能如何,而且密码学界多数人士倾向于因子分解不是NPC问题。 RSA的缺点主要有:A)产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次一密。B)分组长度太大,为保证安全性,n 至少也要 600 bits 以上,使运算代价很高,尤其是速度较慢,较对称密码算法慢几个数量级;且随着大数分解技术的发展,这个长度还在增加,不利于数据格式的标准化。目前,SET( Secure Electronic Transaction )协议中要求CA采用比特长的密钥,其他实体使用比特的密钥。
[编辑本段]五、RSA 加密算法的缺点
)产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次一密。
2)安全性, RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价,而且密码学界多数人士倾向于因子分解不是NPC问题。目前,人们已能分解140多个十进制位的大素数,这就要求使用更长的密钥,速度更慢;另外,目前人们正在积极寻找攻击RSA的方法,如选择密文攻击,一般攻击者是将某一信息作一下伪装(Blind),让拥有私钥的实体签署。然后,经过计算就可得到它所想要的信息。实际上,攻击利用的都是同一个弱点,即存在这样一个事实:乘幂保留了输入的乘法结构:
( XM )d = Xd *Md mod n
前面已经提到,这个固有的问题来自于公钥密码系统的最有用的特征--每个人都能使用公钥。但从算法上无法解决这一问题,主要措施有两条:一条是采用好的公钥协议,保证工作过程中实体不对其他实体任意产生的信息解密,不对自己一无所知的信息签名;另一条是决不对陌生人送来的随机文档签名,签名时首先使用One-Way Hash Function对文档作HASH处理,或同时使用不同的签名算法。除了利用公共模数,人们还尝试一些利用解密指数或φ(n)等等攻击.
3)速度太慢,由于RSA 的分组长度太大,为保证安全性,n 至少也要 600 bitx以上,使运算代价很高,尤其是速度较慢,较对称密码算法慢几个数量级;且随着大数分解技术的发展,这个长度还在增加,不利于数据格式的标准化。目前,SET(Secure Electronic Transaction)协议中要求CA采用2048比特长的密钥,其他实体使用1024比特的密钥。为了速度问题,目前人们广泛使用单,公钥密码结合使用的方法,优缺点互补:单钥密码加密速度快,人们用它来加密较长的文件,然后用RSA来给文件密钥加密,极好的解决了单钥密码的密钥分发问题。
[编辑本段]六、已公开的的攻击方法
针对RSA最流行的攻击一般是基于大数因数分解。1999年,RSA-155(512 bits)被成功分解,花了五个月时间(约8000 MIPS 年)和224 CPU hours 在一台有3.2G中央内存的Cray C916计算机上完成 。
2002年,RSA-158也被成功因数分解。
RSA-158表示如下: