导航:首页 > 源码编译 > 微粒群算法由哪几部分构成

微粒群算法由哪几部分构成

发布时间:2022-07-06 16:13:46

① 粒子群优化的算法参数

PSO参数包括:群体规模m,惯性权重w,加速常数c1和c2,最大速度Vmax,最大代数Gmax,解空间[Xmin Xmax]。
Vmax决定在当前位置与最好位置之间的区域的分辨率(或精度)。如果Vmax太高,微粒可能会飞过好解,如果Vmax太小,微粒不能进行足够的探索,导致陷入局部优值。该限制有三个目的:防止计算溢出;实现人工学习和态度转变;决定问题空间搜索的粒度。
惯性权重w使微粒保持运动的惯性,使其有扩展搜索空间的趋势,有能力探索新的区域。
加速常数c1和c2代表将每个微粒推向pbest和gbest位置的统计加速项的权重。低的值允许微粒在被拉回来之前可以在目标区域外徘徊,而高的值导致微粒突然的冲向或者越过目标区域。
如果没有后两部分,即c1 = c2 = 0,微粒将一直以当前的速度飞行,直到到达边界。由于它只能搜索有限的区域,将很难找到好的解。
如果没有第一部分,即w = 0,则速度只取决于微粒当前的位置和它们历史最好位置pbest和gbest,速度本身没有记忆性。假设一个微粒位于全局最好位置,它将保持静止。而其它微粒则飞向它本身最好位置pbest和全局最好位置gbest的加权中心。在这种条件下,微粒群将统计的收缩到当前的全局最好位置,更象一个局部算法。
在加上第一部分后,微粒有扩展搜索空间的趋势,即第一部分有全局搜索的能力。这也使得w的作用为针对不同的搜索问题,调整算法全局和局部搜索能力的平衡。
如果没有第二部分,即c1 = 0,则微粒没有认知能力,也就是“只有社会(social-only)”的模型。在微粒的相互作用下,有能力到达新的搜索空间。它的收敛速度比标准版本更快,但是对复杂问题,比标准版本更容易陷入局部优值点。
如果没有第三部分,即c2 = 0,则微粒之间没有社会信息共享,也就是“只有认知(cognition-only)”的模型。因为个体间没有交互,一个规模为m的群体等价于m个单个微粒的运行。因而得到解的几率非常小。

② 关于粒子群算法的问题

粒子群的版本甚多,常用的是加有惯性权重w的
v[] = w * v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[])
一般选择惯性权重在迭代过程中线性下降,目的是在迭代的初期,以比较大的权重分配给粒子的原速度,而防止粒子过早的倾向于其本身的局部最优与全局最优,此时的全局搜索能力是可以的。但粒子群是基于牛顿力学的,随着w的减小,速度v的作用会在更新中弱化,对应的是,pbest和gbest的作用得到了加强,这也就意味着,粒子会更加趋向于pbest和gbest的方向移动。这个时候粒子就特别容易陷入局部最优了。

其实陷入局部最优不只是粒子群的问题,进化类的算法都存在这个问题,只不过有些算法随机性强一些,收敛速度慢一些,所以更加容易跳出局部最优(但不是绝对避免)

③ 遗传算法,蚁群算法和粒子群算法都是什么算法

遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。
蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。
粒子群算法,也称粒子群优化算法(Particle Swarm Optimization),缩写为 PSO, 是近年来由J. Kennedy和R. C. Eberhart等[1] 开发的一种新的进化算法(Evolutionary Algorithm - EA)。PSO 算法属于进化算法的一种,和模拟退火算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算法规则更为简单,它没有遗传算法的“交叉”(Crossover) 和“变异”(Mutation) 操作,它通过追随当前搜索到的最优值来寻找全局最优。

④ 什么是“集群微粒仿生技术”

微粒群算法,又称粒子群优化(Particle Swarm Optimization, PSO),是由J. Kennedy和R. C. Eberhart等于1995年开发的一种演化计算技术,来源于对一个简化社会模型的模拟。其中“群(swarm)”来源于微粒群符合M. M. Millonas在开发应用于人工生命(artificial life)的模型时所提出的群体智能的5个基本原则。“粒子(particle)”是一个折衷的选择,因为既需要将群体中的成员描述为没有质量、没有体积的,同时也需要描述它的速度和加速状态。

⑤ pso的算法结构

对微粒群算法结构的改进方案有很多种,对其可分类为:采用多个子种群;改进微粒学习对象的选取策略;修改微粒更新迭代公式;修改速度更新策略;修改速度限制方法、位置限制方法和动态确定搜索空间;与其他搜索技术相结合;以及针对多模问题所作的改进。
第一类方案是采用多个子种群。柯晶考虑优化问题对收敛速度和寻优精度的双重要求并借鉴多群体进化算法的思想,将寻优微粒分成两组,一组微粒采用压缩因子的局部模式PSO算法,另一组微粒采用惯性权重的全局模式PSO算法,两组微粒之间采用环形拓扑结构。对于高维优化问题,PSO算法需要的微粒个数很多,导致计算复杂度常常很高,并且很难得到好的解。因此,出现了一种协作微粒群算法(Cooperative ParticleSwarm Optimizer, CPSO-H),将输入向量拆分成多个子向量,并对每个子向量使用一个微粒群来进行优化。虽然CPSO-H算法使用一维群体来分别搜索每一维,但是这些搜索结果被一个全局群体集成起来之后,在多模问题上的性能与原始PSO算法相比有很大的改进。Chow使用多个互相交互的子群,并引入相邻群参考速度。冯奇峰提出将搜索区域分区,使用多个子群并通过微粒间的距离来保持多样性。陈国初将微粒分成飞行方向不同的两个分群,其中一分群朝最优微粒飞行,另一分群微粒朝相反方向飞行;飞行时,每一微粒不仅受到微粒本身飞行经验和本分群最优微粒的影响,还受到全群最优微粒的影响。Niu在PSO算法中引入主—从子群模式,提出一种多种群协作PSO算法。Seo提出一种多组PSO算法(Multigrouped PSO),使用N组微粒来同时搜索多模问题的N个峰。Selleri使用多个独立的子群,在微粒速度的更新方程中添加了一些新项,分别使得微粒向子群历史最优位置运动,或者远离其他子群的重心。王俊年借鉴递阶编码的思想,构造出一种多种群协同进化PSO算法。高鹰借鉴生态学中环境和种群竞争的关系,提出一种基于种群密度的多种群PSO算法。
第二类方案是改进微粒学习对象的选取策略。Al-kazemi提出多阶段PSO算法,将微粒按不同阶段的临时搜索目标分组,这些临时目标允许微粒向着或背着它自己或全局最好位置移动。Ting对每个微粒的pBest进行操作,每一维从其他随机确定的维度学习,之后如果新的pBest更好则替换原pBest;该文还比较了多种不同学习方式对应的PSO算法的性能。Liang提出一种新颖的学习策略CLPSO,利用所有其他微粒的历史最优信息来更新微粒的速度;每个微粒可以向不同的微粒学习,并且微粒的每一维可以向不同的微粒学习。该策略能够保持群体的多样性,防止早熟收敛,可以提高PSO算法在多模问题上的性能;通过实验将该算法与其它几种PSO算法的变种进行比较,实验结果表明该算法在解决多模复杂问题时效果很好。Zhao在PSO算法中使用适应值最好的n个值来代替速度更新公式中的gBest。Abdelbar提出一种模糊度量,从而使得每个邻域中有多个适应值最好的微粒可以影响其它微粒。Wang也采用多个适应值最好的微粒信息来更新微粒速度,并提出一种模糊规则来自适应地确定参数。崔志华提出一种动态调整的改进PSO算法,在运行过程中动态调整极限位置,使得每个微粒的极限位置在其所经历的最好位置与整体最好位置所形成的动态圆中分布。与原始PSO算法相反,有一类方法是远离最差位置而非飞向最优位置。Yang提出在算法中记录最差位置而非最优位置,所有微粒都远离这些最差位置。与此类似,Leontitsis在微粒群算法中引入排斥子的概念,在使用个体最优位置和群体最优位置信息的同时,在算法中记录当前的个体最差位置和群体最差位置,并利用它们将微粒排斥到最优位置,从而让微粒群更快地到达最优位置。孟建良提出一种改进的PSO算法,在进化的初期,微粒以较大的概率向种群中其他微粒的个体最优学习;在进化后期,微粒以较大的概率向当前全局最优个体学习。Yang在PSO算法中引入轮盘选择技术来确定gBest,使得所有个体在进化早期都有机会引领搜索方向,从而避免早熟。
第三类方案是修改微粒更新公式。Hendtlass在速度更新方程中给每个微粒添加了记忆能力。He在速度更新方程中引入被动聚集机制。曾建潮通过对PSO算法的速度进化迭代方程进行修正,提出一种保证全局收敛的随机PSO算法。Zeng在PSO算法中引入加速度项,使得PSO算法从一个二阶随机系统变为一个三阶随机系统,并使用PID控制器来控制算法的演化。为了改进PSO算法的全局搜索能力,Ho提出一种新的微粒速度和位置更新公式,并引入寿命(Age)变量。
第四类方案是修改速度更新策略。Liu认为过于频繁的速度更新会弱化微粒的局部开采能力并减慢收敛,因此提出一种松弛速度更新(RVU)策略,仅当微粒使用原速度不能进一步提高适应值时才更新速度,并通过试验证明该策略可以大大减小计算量并加速收敛。罗建宏对同步模式和异步模式的PSO算法进行了对比研究,试验结果表明异步模式收敛速度显着提高,同时寻优效果更好。Yang在微粒的更新规则中引入感情心理模型。Liu采用一个最小速度阈值来控制微粒的速度,并使用一个模糊逻辑控制器来自适应地调节该最小速度阈值。张利彪提出了对PSO算法增加更新概率,对一定比例的微粒并不按照原更新公式更新,而是再次随机初始化。Dioan利用遗传算法(GA)来演化PSO算法的结构,即微粒群中各微粒更新的顺序和频率。
第五类方案是修改速度限制方法、位置限制方法和动态确定搜索空间。Stacey提出一种重新随机化速度的速度限制和一种重新随机化位置的位置限制。Liu在[76]的基础上,在PSO算法中引入动量因子,来将微粒位置限制在可行范围内。陈炳瑞提出一种根据微粒群的最佳适应值动态压缩微粒群的搜索空间与微粒群飞行速度范围的改进PSO算法。
第六类方案是通过将PSO算法与一些其他的搜索技术进行结合来提高PSO算法的性能,主要目的有二,其一是提高种群多样性,避免早熟;其二是提高算法局部搜索能力。这些混合算法包括将各种遗传算子如选择、交叉、变异引入PSO算法,来增加种群的多样性并提高逃离局部最小的能力。Krink通过解决微粒间的冲突和聚集来增强种群多样性,提出一种空间扩展PSO算法(Spatial ExtensionPSO,SEPSO);但是SEPSO算法的参数比较难以调节,为此Monson提出一种自适应调节参数的方法。用以提高种群多样性的其他方法或模型还包括“吸引—排斥”、捕食—被捕食模型、耗散模型、自组织模型、生命周期模型(LifeCycle model)、贝叶斯优化模型、避免冲突机制、拥挤回避(Crowd Avoidance)、层次化公平竞争(HFC)、外部记忆、梯度下降技术、线性搜索、单纯形法算子、爬山法、劳动分工、主成分分析技术、卡尔曼滤波、遗传算法、随机搜索算法、模拟退火、禁忌搜索、蚁群算法(ACO)、人工免疫算法、混沌算法、微分演化、遗传规划等。还有人将PSO算法在量子空间进行了扩展。Zhao将多主体系统(MAS)与PSO算法集成起来,提出MAPSO算法。Medasani借鉴概率C均值和概率论中的思想对PSO算法进行扩展,提出一种概率PSO算法,让算法分勘探和开发两个阶段运行。
第七类方案专门针对多模问题,希望能够找到多个较优解。为了能使PSO算法一次获得待优化问题的多个较优解,Parsopoulos使用了偏转(Deflection)、拉伸(Stretching)和排斥(Repulsion)等技术,通过防止微粒运动到之前已经发现的最小区域,来找到尽可能多的最小点。但是这种方法会在检测到的局部最优点两端产生一些新的局部最优点,可能会导致优化算法陷入这些局部最小点。为此,Jin提出一种新的函数变换形式,可以避免该缺点。基于类似思想,熊勇提出一种旋转曲面变换方法。
保持种群多样性最简单的方法,是在多样性过小的时候,重置某些微粒或整个微粒群。Lvbjerg在PSO算法中采用自组织临界性作为一种度量,来描述微粒群中微粒相互之间的接近程度,来确定是否需要重新初始化微粒的位置。Clerc提出了一种“Re-Hope”方法,当搜索空间变得相当小但是仍未找到解时(No-Hope),重置微粒群。Fu提出一种带C-Pg变异的PSO算法,微粒按照一定概率飞向扰动点而非Pg。赫然提出了一种自适应逃逸微粒群算法,限制微粒在搜索空间内的飞行速度并给出速度的自适应策略。
另一种变种是小生境PSO算法,同时使用多个子种群来定位和跟踪多个最优解。Brits还研究了一种通过调整适应值计算方式的方法来同时找到多个最优解。Li在PSO算法中引入适应值共享技术来求解多模问题。Zhang在PSO算法中采用顺序生境(SequentialNiching)技术。在小生境PSO算法的基础上,还可以使用向量点积运算来确定各个小生境中的候选解及其边界,并使该过程并行化,以获得更好的结果。但是,各种小生境PSO算法存在一个共同的问题,即需要确定一个小生境半径,且算法性能对该参数很敏感。为解决该问题,Bird提出一种自适应确定niching参数的方法。
Hendtlass在PSO算法中引入短程力的概念,并基于此提出一种WoSP算法,可以同时确定多个最优点。刘宇提出一种多模态PSO算法,用聚类算法对微粒进行聚类,动态地将种群划分成几个类,并且使用微粒所属类的最优微粒而非整个种群的最好微粒来更新微粒的速度,从而可以同时得到多个近似最优解。Li在PSO算法中引入物种的概念,但是由于其使用的物种间距是固定的,该方法只适用于均匀分布的多模问题;为此,Yuan对该算法进行扩展,采用多尺度搜索方法对物种间距加以自适应的调整。
此外,也有研究者将PSO算法的思想引入其他算法中,如将PSO算法中微粒的运动规则嵌入到进化规划中,用PSO算法中的运动规则来替代演化算法中交叉算子的功能。

⑥ 粒子群算法的参数设置

从上面的例子我们可以看到应用PSO解决优化问题的过程中有两个重要的步骤: 问题解的编码和适应度函数 不需要像遗传算法一样是二进制编码(或者采用针对实数的遗传操作.例如对于问题 f(x) = x1^2 + x2^2+x3^2 求解, 粒子可以直接编码为 (x1, x2, x3), 而适应度函数就是f(x). 接着我们就可以利用前面的过程去寻优.这个寻优过程是一个叠代过程, 中止条件一般为设置为达到最大循环数或者最小错误
PSO中并没有许多需要调节的参数,下面列出了这些参数以及经验设置
粒子数: 一般取 20 – 40. 其实对于大部分的问题10个粒子已经足够可以取得好的结果, 不过对于比较难的问题或者特定类别的问题, 粒子数可以取到100 或 200
粒子的长度: 这是由优化问题决定, 就是问题解的长度
粒子的范围: 由优化问题决定,每一维可以设定不同的范围
Vmax: 最大速度,决定粒子在一个循环中最大的移动距离,通常设定为粒子的范围宽度,例如上面的例子里,粒子 (x1, x2, x3) x1 属于 [-10, 10], 那么 Vmax 的大小就是 20
学习因子: c1 和 c2 通常等于 2. 不过在文献中也有其他的取值. 但是一般 c1 等于 c2 并且范围在0和4之间
中止条件: 最大循环数以及最小错误要求. 例如, 在上面的神经网络训练例子中, 最小错误可以设定为1个错误分类, 最大循环设定为2000, 这个中止条件由具体的问题确定.
全局PSO和局部PSO: 我们介绍了两种版本的粒子群优化算法: 全局版和局部版. 前者速度快不过有时会陷入局部最优. 后者收敛速度慢一点不过很难陷入局部最优. 在实际应用中, 可以先用全局PSO找到大致的结果,再用局部PSO进行搜索. 代码来自2008年数学建模东北赛区B题, #includestdafx.h#include<math.h>#include<time.h>#include<iostream>#include<fstream>usingnamespacestd;intc1=2;//加速因子intc2=2;//加速因子doublew=1;//惯性权重doubleWmax=1;//最大惯性权重doubleWmin=0.6;//最小惯性权重intKmax=110;//迭代次数intGdsCnt;//物资总数intconstDim=10;//粒子维数intconstPNum=50;//粒子个数intGBIndex=0;//最优粒子索引doublea=0.6;//适应度调整因子doubleb=0.5;//适应度调整因子intXup[Dim];//粒子位置上界数组intXdown[Dim]=;//粒子位置下界数组intValue[Dim];//初始急需度数组intVmax[Dim];//最大速度数组classPARTICLE;//申明粒子节点voidCheck(PARTICLE&,int);//约束函数voidInput(ifstream&);//输入变量voidInitial();//初始化相关变量doubleGetFit(PARTICLE&);//计算适应度voidCalculateFit();//计算适应度voidBirdsFly();//粒子飞翔voidRun(ofstream&,int=2000);//运行函数classPARTICLE//微粒类{public:intX[Dim];//微粒的坐标数组intXBest[Dim];//微粒的最好位置数组intV[Dim];//粒子速度数组doubleFit;//微粒适合度doubleFitBest;//微粒最好位置适合度};PARTICLEParr[PNum];//粒子数组intmain()//主函数{ofstreamoutf(out.txt);ifstreaminf(data.txt);//关联输入文件inf>>GdsCnt;//输入物资总数Input(inf);Initial();Run(outf,100);system(pause);return0;}voidCheck(PARTICLE&p,intcount)//参数:p粒子对象,count物资数量{srand((unsigned)time(NULL));intsum=0;for(inti=0;i<Dim;i++){if(p.X>Xup)p.X=Xup;elseif(p.X<Xdown)p.X=Xdown;if(p.V>Vmax)p.V=Vmax;elseif(p.V<0)p.V=0;sum+=p.X;}while(sum>count){p.X[rand()%Dim]--;sum=0;for(inti=0;i<Dim;i++){if(p.X>Xup)p.X=Xup;elseif(p.X<Xdown)p.X=Xdown;if(p.V>Vmax)p.V=Vmax;elseif(p.V<0)p.V=0;sum+=p.X;}}voidInput(ifstream&inf)//以inf为对象输入数据{for(inti=0;i<Dim;i++)inf>>Xup;for(inti=0;i<Dim;i++)inf>>Value;}voidInitial()//初始化数据{GBIndex=0;srand((unsigned)time(NULL));//初始化随机函数发生器for(inti=0;i<Dim;i++)Vmax=(int)((Xup-Xdown)*0.035);for(inti=0;i{for(intj=0;j<Dim;j++){Parr.X[j]=(int)(rand()/(double)RAND_MAX*(Xup[j]-Xdown[j])-Xdown[j]+0.5);Parr.XBest[j]=Parr.X[j];Parr.V[j]=(int)(rand()/(double)RAND_MAX*(Vmax[j]-Vmax[j]/2));}Parr.Fit=GetFit(Parr);Parr.FitBest=Parr.Fit;if(Parr.Fit>Parr[GBIndex].Fit)GBIndex=i;}}doubleGetFit(PARTICLE&p)//计算对象适应度{doublesum=0;for(inti=0;i<Dim;i++)for(intj=1;j<=p.X;j++)sum+=(1-(j-1)*a/(Xup-b))*Value;returnsum;}voidCalculateFit()//计算数组内各粒子的适应度{for(inti=0;i{Parr.Fit=GetFit(Parr);}}voidBirdsFly()//粒子飞行寻找最优解{srand((unsigned)time(NULL));staticintk=10;w=Wmax-k*(Wmax-Wmin)/Kmax;k++;for(inti=0;i{for(intj=0;j<Dim;j++){Parr.V[j]=(int)(w*Parr.V[j]);Parr.V[j]+=(int)(c1*rand()/(double)RAND_MAX*(Parr.XBest[j]-Parr.X[j]);Parr.V[j]+=c2*rand()/(double)RAND_MAX*(Parr[GBIndex].XBest[j]-Parr.X[j]));}}Check(Parr,GdsCnt);for(intj=0;j<Dim;j++){Parr.X[j]+=Parr.V[j];Check(Parr,GdsCnt);}CalculateFit();for(inti=0;i{if(Parr.Fit>=Parr.FitBest){Parr.FitBest=Parr.Fit;for(intj=0;j<Dim;j++)Parr.XBest[j]=Parr.X[j];}}GBIndex=0;for(inti=0;i{if(Parr.FitBest>Parr[GBIndex].FitBest&&i!=GBIndex)GBIndex=i;}}voidRun(ofstream&outf,intnum)//令粒子以规定次数num飞行{for(inti=0;i<num;i++){BirdsFly();outf<<(i+1)<<ends<for(intj=0;j<Dim;j++)outf<outf<<endl;}cout<<Done!<<endl;}

⑦ 粒子群算法属于什么学科

粒子群算法属于计算智能的范畴,如果按照学科分的话当然是计算机学科。
另外粒子群算法是一种进化计算技术(evolutionary computation),1995 年由Eberhart 博士和kennedy 博士提出,源于对鸟群捕食的行为研究 。
——————————————————————————
另外关于计算智能的相关介绍便可以了解
计算智能的主要方法有人工神经网络、遗传算法、遗传程序、演化程序、局部搜索、模拟退火等等。这些方法具有以下共同的要素:自适应的结构、随机产生的或指定的初始状态、适应度的评测函数、修改结构的操作、系统状态存储器、终止计算的条件、指示结果的方法、控制过程的参数。计算智能的这些方法具有自学习、自组织、自适应的特征和简单、通用、鲁棒性强、适于并行处理的优点。在并行搜索、联想记忆、模式识别、知识自动获取等方面得到了广泛的应用。
典型的代表如遗传算法、免疫算法、模拟退火算法、蚁群算法、微粒群算法(也就是粒子群算法,翻译不同罢了),都是一种仿生算法,基于“从大自然中获取智慧”的理念,通过人们对自然界独特规律的认知,提取出适合获取知识的一套计算工具。总的来说,通过自适应学习的特性,这些算法达到了全局优化的目的。

⑧ 粒子群算法和离散粒子群算法有什么不同主要差别体现在哪里

一般就是在跟新粒子位置后,对粒子进行离散点处理。
比如:
你的粒子的离散点是0到9的整数。
那么对每个粒子更新位置后,比如是在(0,1)范围内的随机数。那么就(0,0.1)范围令其值为0;(0.1,0.2)范围令其值为1;............(0.9.1)范围令其值为9。
当然初始位置值也需要这样处理。

⑨ 什么是粒子群算法

粒子群算法介绍(摘自http://blog.sina.com.cn/newtech)
优化问题是工业设计中经常遇到的问题,许多问题最后都可以归结为优化问题. 为了解决各种各样的优化问题,人们提出了许多优化算法,比较着名的有爬山法、遗传算法等.优化问题有两个主要问题:一是要求寻找全局最小点,二是要求有较高的收敛速度. 爬山法精度较高,但是易于陷入局部极小. 遗传算法属于进化算法( Evolutionary Algorithms) 的一种,它通过模仿自然界的选择与遗传的机理来寻找最优解. 遗传算法有三个基本算子:选择、交叉和变异. 但是遗传算法的编程实现比较复杂,首先需要对问题进行编码,找到最优解之后还需要对问题进行解码,另外三个算子的实现也有许多参数,如交叉率和变异率,并且这些参数的选择严重影响解的品质,而目前这些参数的选择大部分是依靠经验.1995 年Eberhart 博士和kennedy 博士提出了一种新的算法;粒子群优化(Partical Swarm Optimization -PSO) 算法 . 这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性.

粒子群优化(Partical Swarm Optimization - PSO) 算法是近年来发展起来的一种新的进化算法( Evolu2tionary Algorithm - EA) .PSO 算法属于进化算法的一种,和遗传算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质. 但是它比遗传算法规则更为简单,它没有遗传算法的“交叉”(Crossover) 和“变异”(Mutation) 操作. 它通过追随当前搜索到的最优值来寻找全局最优 .

粒子群算法

1. 引言

粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),有Eberhart博士和kennedy博士发明。源于对鸟群捕食的行为研究

PSO同遗传算法类似,是一种基于叠代的优化工具。系统初始化为一组随机解,通过叠代搜寻最优值。但是并没有遗传算法用的交叉(crossover)以及变异(mutation)。而是粒子在解空间追随最优的粒子进行搜索。详细的步骤以后的章节介绍

同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应用领域

2. 背景: 人工生命

"人工生命"是来研究具有某些生命基本特征的人工系统. 人工生命包括两方面的内容

1. 研究如何利用计算技术研究生物现象
2. 研究如何利用生物技术研究计算问题

我们现在关注的是第二部分的内容. 现在已经有很多源于生物现象的计算技巧. 例如, 人工神经网络是简化的大脑模型. 遗传算法是模拟基因进化过程的.

现在我们讨论另一种生物系统- 社会系统. 更确切的是, 在由简单个体组成的群落与环境以及个体之间的互动行为. 也可称做"群智能"(swarm intelligence). 这些模拟系统利用局部信息从而可能产生不可预测的群体行为

例如floys 和 boids, 他们都用来模拟鱼群和鸟群的运动规律, 主要用于计算机视觉和计算机辅助设计.

在计算智能(computational intelligence)领域有两种基于群智能的算法. 蚁群算法(ant colony optimization)和粒子群算法(particle swarm optimization). 前者是对蚂蚁群落食物采集过程的模拟. 已经成功运用在很多离散优化问题上.

粒子群优化算法(PSO) 也是起源对简单社会系统的模拟. 最初设想是模拟鸟群觅食的过程. 但后来发现PSO是一种很好的优化工具.

3. 算法介绍

如前所述,PSO模拟鸟群的捕食行为。设想这样一个场景:一群鸟在随机搜索食物。在这个区域里只有一块食物。所有的鸟都不知道食物在那里。但是他们知道当前的位置离食物还有多远。那么找到食物的最优策略是什么呢。最简单有效的就是搜寻目前离食物最近的鸟的周围区域。

PSO从这种模型中得到启示并用于解决优化问题。PSO中,每个优化问题的解都是搜索空间中的一只鸟。我们称之为“粒子”。所有的例子都有一个由被优化的函数决定的适应值(fitness value),每个粒子还有一个速度决定他们飞翔的方向和距离。然后粒子们就追随当前的最优粒子在解空间中搜索

PSO 初始化为一群随机粒子(随机解)。然后通过叠代找到最优解。在每一次叠代中,粒子通过跟踪两个"极值"来更新自己。第一个就是粒子本身所找到的最优解。这个解叫做个体极值pBest. 另一个极值是整个种群目前找到的最优解。这个极值是全局极值gBest。另外也可以不用整个种群而只是用其中一部分最为粒子的邻居,那么在所有邻居中的极值就是局部极值。

在找到这两个最优值时, 粒子根据如下的公式来更新自己的速度和新的位置

v[] = v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[]) (a)
present[] = persent[] + v[] (b)

v[] 是粒子的速度, persent[] 是当前粒子的位置. pbest[] and gbest[] 如前定义 rand () 是介于(0, 1)之间的随机数. c1, c2 是学习因子. 通常 c1 = c2 = 2.

程序的伪代码如下

For each particle
____Initialize particle
END

Do
____For each particle
________Calculate fitness value
________If the fitness value is better than the best fitness value (pBest) in history
____________set current value as the new pBest
____End

____Choose the particle with the best fitness value of all the particles as the gBest
____For each particle
________Calculate particle velocity according equation (a)
________Update particle position according equation (b)
____End
While maximum iterations or minimum error criteria is not attained

在每一维粒子的速度都会被限制在一个最大速度Vmax,如果某一维更新后的速度超过用户设定的Vmax,那么这一维的速度就被限定为Vmax

4. 遗传算法和 PSO 的比较

大多数演化计算技术都是用同样的过程
1. 种群随机初始化
2. 对种群内的每一个个体计算适应值(fitness value).适应值与最优解的距离直接有关
3. 种群根据适应值进行复制
4. 如果终止条件满足的话,就停止,否则转步骤2

从以上步骤,我们可以看到PSO和GA有很多共同之处。两者都随机初始化种群,而且都使用适应值来评价系统,而且都根据适应值来进行一定的随机搜索。两个系统都不是保证一定找到最优解

但是,PSO 没有遗传操作如交叉(crossover)和变异(mutation). 而是根据自己的速度来决定搜索。粒子还有一个重要的特点,就是有记忆。

与遗传算法比较, PSO 的信息共享机制是很不同的. 在遗传算法中,染色体(chromosomes) 互相共享信息,所以整个种群的移动是比较均匀的向最优区域移动. 在PSO中, 只有gBest (or lBest) 给出信息给其他的粒子,这是单向的信息流动. 整个搜索更新过程是跟随当前最优解的过程. 与遗传算法比较, 在大多数的情况下,所有的粒子可能更快的收敛于最优解

5. 人工神经网络 和 PSO

人工神经网络(ANN)是模拟大脑分析过程的简单数学模型,反向转播算法是最流行的神经网络训练算法。进来也有很多研究开始利用演化计算(evolutionary computation)技术来研究人工神经网络的各个方面。

演化计算可以用来研究神经网络的三个方面:网络连接权重,网络结构(网络拓扑结构,传递函数),网络学习算法。

不过大多数这方面的工作都集中在网络连接权重,和网络拓扑结构上。在GA中,网络权重和/或拓扑结构一般编码为染色体(Chromosome),适应函数(fitness function)的选择一般根据研究目的确定。例如在分类问题中,错误分类的比率可以用来作为适应值

演化计算的优势在于可以处理一些传统方法不能处理的例子例如不可导的节点传递函数或者没有梯度信息存在。但是缺点在于:在某些问题上性能并不是特别好。2. 网络权重的编码而且遗传算子的选择有时比较麻烦

最近已经有一些利用PSO来代替反向传播算法来训练神经网络的论文。研究表明PSO 是一种很有潜力的神经网络算法。PSO速度比较快而且可以得到比较好的结果。而且还没有遗传算法碰到的问题

这里用一个简单的例子说明PSO训练神经网络的过程。这个例子使用分类问题的基准函数(Benchmark function)IRIS数据集。(Iris 是一种鸢尾属植物) 在数据记录中,每组数据包含Iris花的四种属性:萼片长度,萼片宽度,花瓣长度,和花瓣宽度,三种不同的花各有50组数据. 这样总共有150组数据或模式。

我们用3层的神经网络来做分类。现在有四个输入和三个输出。所以神经网络的输入层有4个节点,输出层有3个节点我们也可以动态调节隐含层节点的数目,不过这里我们假定隐含层有6个节点。我们也可以训练神经网络中其他的参数。不过这里我们只是来确定网络权重。粒子就表示神经网络的一组权重,应该是4*6+6*3=42个参数。权重的范围设定为[-100,100] (这只是一个例子,在实际情况中可能需要试验调整).在完成编码以后,我们需要确定适应函数。对于分类问题,我们把所有的数据送入神经网络,网络的权重有粒子的参数决定。然后记录所有的错误分类的数目作为那个粒子的适应值。现在我们就利用PSO来训练神经网络来获得尽可能低的错误分类数目。PSO本身并没有很多的参数需要调整。所以在实验中只需要调整隐含层的节点数目和权重的范围以取得较好的分类效果。

6. PSO的参数设置

从上面的例子我们可以看到应用PSO解决优化问题的过程中有两个重要的步骤: 问题解的编码和适应度函数
PSO的一个优势就是采用实数编码, 不需要像遗传算法一样是二进制编码(或者采用针对实数的遗传操作.例如对于问题 f(x) = x1^2 + x2^2+x3^2 求解, 粒子可以直接编码为 (x1, x2, x3), 而适应度函数就是f(x). 接着我们就可以利用前面的过程去寻优.这个寻优过程是一个叠代过程, 中止条件一般为设置为达到最大循环数或者最小错误

PSO中并没有许多需要调节的参数,下面列出了这些参数以及经验设置

粒子数: 一般取 20 – 40. 其实对于大部分的问题10个粒子已经足够可以取得好的结果, 不过对于比较难的问题或者特定类别的问题, 粒子数可以取到100 或 200

粒子的长度: 这是由优化问题决定, 就是问题解的长度

粒子的范围: 由优化问题决定,每一维可是设定不同的范围

Vmax: 最大速度,决定粒子在一个循环中最大的移动距离,通常设定为粒子的范围宽度,例如上面的例子里,粒子 (x1, x2, x3) x1 属于 [-10, 10], 那么 Vmax 的大小就是 20

学习因子: c1 和 c2 通常等于 2. 不过在文献中也有其他的取值. 但是一般 c1 等于 c2 并且范围在0和4之间

中止条件: 最大循环数以及最小错误要求. 例如, 在上面的神经网络训练例子中, 最小错误可以设定为1个错误分类, 最大循环设定为2000, 这个中止条件由具体的问题确定.

全局PSO和局部PSO: 我们介绍了两种版本的粒子群优化算法: 全局版和局部版. 前者速度快不过有时会陷入局部最优. 后者收敛速度慢一点不过很难陷入局部最优. 在实际应用中, 可以先用全局PSO找到大致的结果,再有局部PSO进行搜索.

另外的一个参数是惯性权重, 由Shi 和Eberhart提出, 有兴趣的可以参考他们1998年的论文(题目: A modified particle swarm optimizer)

⑩ 急求:微粒群算法的改进(程序资料)

1 多目标优化
相对传统多目标优化方法, PSO在求解多目标问题上具有很大优势。首先, PSO的高效搜索能力有利于得到多目标意义下的最优解;其次, PSO通过代表整个解集的种群按内在的并行方式同时搜索多个非劣解,因此容易搜索到多个Pareto 最优解; 再则, PSO的通用性使其适合于处理所有类型的目标函数和约束;另外, PSO 很容易与传统方法相结合,进而提出解决特定问题的高效方法。就PSO 本身而言,为了更好地解决多目标优化问题,必须解决全局最优粒子和个体最优粒子的选择问题。对于全局最优粒子的选择,一方面要求算法具有较好的收敛速度,另一方面要求所得解在Pareto边界上具有一定的分散性。对于个体最优粒子的选择,则要求较小的计算复杂性,即仅通过较少的比较次数达到非
劣解的更新。迄今,基于PSO的多目标优化主要有以下几种
思路:
(1)向量法和权重法。文献[ 20 ]利用固定权重法、适应性权重法和向量评价法,首次将PSO 用于解决MO问题。然而对于给定的优化问题,权重法通常很难获得一组合适的权重,而向量评价法往往无法给出MO问题的满意解。
(2)基于Pareto的方法。文献[ 21 ]将Pareto排序机制和PSO相结合来处理多目标优化问题,通过Pareto排序法选择一组精英解,并采用轮盘赌方式从中选择全局最优粒子。尽管轮盘赌选择机制设计的目的是使所有Pareto个体的选择概率相同,但是实际上只有少数个体得到较大的选择概率,因此不利于维持种群的多样性;文献[ 22 ]通过在PSO中引入Pareto竞争机制和微粒知识库来选择全局最优粒子。由于非劣解是将候选个体与从种群中随机选出的比较集进行比较来确定的,因此该算法成功与否就取决于比较集规模参数的设定。如果这个参数太小,该过程从种群中选出的非劣个体可能过少;如果这个参数太大,则可能发生早熟收敛现象。
(3)距离法。文献[ 23 ]根据个体当前解与Pa2reto解之间的距离来分配其适应值,从而选择全局最优粒子。由于距离法需要初始化潜在解,如果初始潜在值太大,不同解的适应值的差别则不明显。这将导致选择压力过小或个体均匀分布,从而导致PSO算法收敛非常缓慢。
(4)邻域法。文献[ 24 ]提出一种基于动态邻域的选择策略,将一个目标定义为优化目标,而将其它所有目标定义为邻域目标,进而提出了选择全局最优粒子的动态邻域策略,但该方法对优化目标的选择以及邻域目标函数的排序较敏感。
(5)多种群法。文献[ 25 ]将种群分为多个子种群,每个子种群单独进行PSO 运算,各个子种群之间通过信息交换来搜索Pareto最优解。但是由于需要增加微粒数目而增加了计算量。
(6)非优势排序法。文献[ 26 ]利用非优势排序的方法选择全局最优粒子。该方法在整个种群中,比较微粒的个体最优粒子与其后代,有利于提供合适的选择压力,同时使用小生境技术提高种群多样性。然而在整个种群中比较所有微粒的个体最优粒子与其后代,其本质不利于种群多样性,容易形成早熟。另外,文献[ 27 ]将博弈理论中的Maximin策略引入PSO来解决多MO问题。利用Maximin策略确定微粒的适应值可以很好地确定Pareto最优解而不需要聚类和小生境技术。
2 约束优化
近年来, PSO算法在约束优化方面也取得了一定进展。基于PSO的约束优化工作主要分为两类: ①罚函数法; ②设计特定的进化操作或约束修正因子。文献[ 28 ]采用罚函数法,利用非固定多段映射罚函数对约束优化问题进行转化,再利用PSO求解转化后的问题,仿真结果显示PSO相对进化策略和遗传算法有优越性,但其罚函数的设计过于复杂,不利于求解;文献[ 29 ]采用可行解保留策略处理约束,即一方面更新存储区时所有粒子仅保留可行的解,另一方面在初始化阶段所有粒子均从可行解空间取值,然而初始可行解空间对于许多问题是很难确定的;文献[ 30 ]提出了具有多层信息共享策略的微粒群原理来处理约束,根据约束矩阵采用多层Pareto排序机制来产生优良粒子,进而用一些优良的粒子来决定其余个体的搜索方向。
3 离散优化对于离散优化而言,解空间是离散点的集合,而非连续区域,因此利用PSO解决离散优化问题就必须修正速度和位置更新公式,或者是对问题进行变形。目前,基于PSO的离散优化工作可分为如下三类:
(1)将速度作为位置变化的概率。文献[ 31 ]首次提出了离散二值PSO。其微粒位置编码采用二进制方式,通过采用Sigmoid函数将速度约束于[ 0, 1 ]区间,来代表微粒位置取1的概率;文献[ 32 ]对文献
[ 31 ]中的方法进行改进,用于解决置换排列问题。其中微粒用置换排列表示,而速度则根据两个粒子的相似度来定义,决定微粒位置变化的概率,同时还引入变异操作防止最优粒子陷入局部极小。
(2)重新定义PSO操作。文献[ 33 ]通过重新定义微粒的位置、速度、以及它们之间的加减乘操作,提出一种新的离散PSO,并用于求解旅行商问题。尽管该算法的效果较差,但是提供了一种解决组合优化问题的新的思路。
(3)直接将连续PSO用于离散情况。文献[ 34 ]利用连续PSO 解决分布式计算机任务分配问题。为了将实数转化为正整数,把实数的符号和小数部
分去掉。结果表明该方法在解的质量和算法速度方面,要优于遗传算法。
4 动态优化
在许多实际工程问题中,优化的环境是不确定的,或者是动态的。因此,优化算法必须具备随环境动态变化而对最优解作出相应调整的能力,或者是算法具有一定的鲁棒性。文献[ 35 ]首次提出利用PSO跟踪动态系统;文献[ 36 ]提出用自适应PSO来自动跟踪动态系统的变化,该方法通过对种群中最好微粒的检测和对微粒重新初始化, 有效增强了PSO对系统变化的跟踪能力;文献[ 37 ]为了处理快速变化的动态环境,在微粒速度更新公式中增加了一项变化项,从而无需检测环境的变化就可以跟踪环境。尽管该方面的研究成果至今较少,但不容质疑这是一项重要的研究内容。

微粒群算法的MATLAB程序实现

初始化粒子群;
DO
For每个粒子
计算其适应度;
If (适应度优于粒子历史最佳值)
用Xi更新历史最佳个体Pi;
End
选取当前粒子群中最佳粒子;
If (当前最佳粒子优于群历史最佳粒子)
用当前群最佳粒子更新Pg;
For每个粒子
按式①更新粒子速度;
按式②更新粒子位置;
End
While最大迭代数未达到或最小误差未达到。

阅读全文

与微粒群算法由哪几部分构成相关的资料

热点内容
喷油螺杆制冷压缩机 浏览:579
python员工信息登记表 浏览:377
高中美术pdf 浏览:161
java实现排列 浏览:513
javavector的用法 浏览:982
osi实现加密的三层 浏览:233
大众宝来原厂中控如何安装app 浏览:916
linux内核根文件系统 浏览:243
3d的命令面板不见了 浏览:526
武汉理工大学服务器ip地址 浏览:149
亚马逊云服务器登录 浏览:525
安卓手机如何进行文件处理 浏览:71
mysql执行系统命令 浏览:930
php支持curlhttps 浏览:143
新预算法责任 浏览:444
服务器如何处理5万人同时在线 浏览:251
哈夫曼编码数据压缩 浏览:426
锁定服务器是什么意思 浏览:385
场景检测算法 浏览:617
解压手机软件触屏 浏览:350