㈠ 理财产品客户分层 如何分层
按资金和风险承受能力综合分层 资金可以设四个等级 1--50万 50--100万 100--300万 300以上 风险能力 一般分为初级 中级 和高级 初级一般是指考钱养老 中级是偶尔做些投资 但都是小本金 高级就是做过期货 股票等的人
㈡ 常用的聚类方法有哪几种
聚类分析的算法可以分为划分法、层次法、基于密度的方法、基于网格的方法、基于模型的方法。
1、划分法,给定一个有N个元组或者纪录的数据集,分裂法将构造K个分组,每一个分组就代表一个聚类,K<N。
2、层次法,这种方法对给定的数据集进行层次似的分解,直到某种条件满足为止。
3、基于密度的方法,基于密度的方法与其它方法的一个根本区别是:它不是基于各种各样的距离的,而是基于密度的。这样就能克服基于距离的算法只能发现“类圆形”的聚类的缺点。
4、图论聚类方法解决的第一步是建立与问题相适应的图,图的节点对应于被分析数据的最小单元,图的边(或弧)对应于最小处理单元数据之间的相似性度量。
5、基于网格的方法,这种方法首先将数据空间划分成为有限个单元的网格结构,所有的处理都是以单个的单元为对象的。
6、基于模型的方法,基于模型的方法给每一个聚类假定一个模型,然后去寻找能够很好的满足这个模型的数据集。
(2)客户分层算法扩展阅读:
在商业上,聚类可以帮助市场分析人员从消费者数据库中区分出不同的消费群体来,并且概括出每一类消费者的消费模式或者说习惯。
它作为数据挖掘中的一个模块,可以作为一个单独的工具以发现数据库中分布的一些深层的信息,并且概括出每一类的特点,或者把注意力放在某一个特定的类上以作进一步的分析;并且,聚类分析也可以作为数据挖掘算法中其他分析算法的一个预处理步骤。
许多聚类算法在小于 200 个数据对象的小数据集合上工作得很好;但是,一个大规模数据库可能包含几百万个对象,在这样的大数据集合样本上进行聚类可能会导致有偏的结果。
许多聚类算法在聚类分析中要求用户输入一定的参数,例如希望产生的簇的数目。聚类结果对于输入参数十分敏感。参数通常很难确定,特别是对于包含高维对象的数据集来说。这样不仅加重了用户的负担,也使得聚类的质量难以控制。
㈢ 区域聚类客户精准营销细分,主要从哪些维度进行划分
总是看到各种维度,维度。这个问题更需要从专业角度分析。可以先分层,再做聚类分析,也可以先聚类再分层,也可以随便根据几个指标做一个因子,再去聚类。如果有地图,详细的坐标,还可以使用GIS方法直接看,叠加后分析。或者决策树、神经网络,都是可以考虑的方法。归根到底还是要根据专业来,统计只是辅助工具。
㈣ 分层聚类算法的介绍
分层聚类法就是对给定数据对象的集合进行层次分解,根据分层分解采用的分解策略,分层聚类法又可以分为凝聚的(agglomerative)和分裂的(divisive)分层聚类。
㈤ 在客户关系管理中,客户分层是以什么变量作为标准的
是这样:总体中赖以进行分层的变量为分层变量,理想的分层变量是调查中要加以测量的变量或与其高度相关的变量。分层的原则是增加层内的同质性和层间的异质性。常见的分层变量有性别、年龄、教育、职业等。
㈥ 分层抽样的算法步骤
分层抽样 1、知识与技能:
(1)正确理解分层抽样的概念;
(2)掌握分层抽样的一般步骤;
(3)区分简单随机抽样、系统抽样和分层抽样,并选择适当正确的方法 进行抽样。
2、过程与方法:通过对现实生活中实际问题进行分层抽样,感知应用数学 知识解决实际问题的方法。
3、情感态度与价值观:通过对统计学知识的研究,感知数学知识中“估计 与“精确”性的矛盾统一,培养学生的辩证唯物主义的世界观与价值观。
4、重点与难点:正确理解分层抽样的定义,灵活应用分层抽样抽取样本, 并恰当的选择三种抽样方法解决现实生活中的抽样问题。
教学设想: 教学设想 【创设情景】 假设某地区有高中生 2400 人,初中生 10900 人,小学生 11000 人,此地 教育部门为了了解本地区中小学的近视情况及其形成原因,要从本地区的 小学生中抽取 1%的学生进行调查,你认为应当怎样抽取样本? 【探究新知 探究新知】 探究新知 一、分层抽样的定义。 一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例, 从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本, 这种抽样的方法叫分层抽样。 说明】 【说明】分层抽样又称类型抽样,应用分层抽样应遵循以下要求:
(1)分层:将相似的个体归人一类,即为一层,分层要求每层的各个个体 互不交叉,即遵循不重复、不遗漏的原则。
(2)分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机 抽样,每层样本数量与每层个体数量的比与这层个体数量与总体容量 的比相等。 二、分层抽样的步骤: (1)分层:按某种特征将总体分成若干部分。
(2)按比例确定每层抽取个体的个数。
(3)各层分别按简单随机抽样的方法抽取。
(4)综合每层抽样,组成样本。
【说明】 (1)分层需遵循不重复、不遗漏的原则。
(2)抽取比例由每层个体占总体的比例确定。
(3)各层抽样按简单随机抽样进行。
探究交流:
(1)分层抽样又称类型抽样,即将相似的个体归入一类(层) ,然后每层抽 取若干个体构成样本,所以分层抽样为保证每个个体等可能入样,必 ( ) 须进行A、每层等可能抽样 B、每层不等可能抽样 C、所有层按同一抽样比等可能抽样
(2)如果采用分层抽样,从个体数为 N 的总体中抽取一个容量为 n 样本,那么每个个体被抽到的可能性为 ( ) A. N 1 B. n 1 C. N n D. N n
点拨: 点拨: (1)保证每个个体等可能入样是简单随机抽样、系统抽样、分层抽 共同的特征,为了保证这一点,分层时用同一抽样比是必不可少 的,故此选 C。
(2)根据每个个体都等可能入样,所以其可能性本容量与总体容量 比,故此题选 C。
知识点 2 简单随机抽样、系统抽样、分层抽样的比较 适 用 类 别 共同点 各自特点 联 系 范 围
(1)抽样过程中每 总体个 简 单 从总体中逐个抽取 个个体被抽到 数较少 随 机 的可能性相等 将总体均分成几部 抽 样 在起始部分 总体个
(2)每次抽出个体 分, 按预先制定的规 样时采用简 数较多 后不再将它放 则在各部分抽取 随机抽样 系 统 回,即不放回 抽 样 总体由 抽样 分层抽样时采 差异明 将总体分成几层, 用简单随机抽 显的几 分 层 分层进行抽取 样或系统抽样 部分组 抽 样 成 【例选精析】 例选精析】
例1、 某高中共有 900 人,其中高一年级 300 人,高二年级 200 人,高三年级 400 人,现采用分层抽样抽取容量为 45 的样本,那么高一、高二、高三各 年级抽取的人数分别为 A.15,5,25 B.15,15,15 C.10,5,30 D15,10,20 分析]因为 300:200:400=3:2:4,于是将 45 分成 3:2:4 的三部分。设 [分析 分析 三部分各抽取的个体数分别为 3x,2x,4x,由 3x+2x+4x=45,得 x=5,故 高一、高二、高三各年级抽取的人数分别为 15,10,20,故选 D。
例 2:一个地区共有 5 个乡镇,人口 3 万人,其中人口比例为 3:2:5:2:3, 从 3 万人中抽取一个 300 人的样本,分析某种疾病的发病率,已知这种疾 病与不同的地理位置及水土有关, 问应采取什么样的方法?并写出具体过 程。
[分析 分析]采用分层抽样的方法。 分析 解:因为疾病与地理位置和水土均有关系,所以不同乡镇的发病情况差异明 显,因而采用分层抽样的方法,具体过程如下:
(1)将 3 万人分为 5 层,其中一个乡镇为一层。
(2)按照样本容量的比例随机抽取各乡镇应抽取的样本。 300×3/15=60 (人) 300×2/15=100 , (人) 300×2/15=40 , (人) 300×2/15=60 , (人) ,因此各乡镇抽取人数分别为 60 人、40 人、100 人、40 人、60 人。 (3)将 300 人组到一起,即得到一个样本。