Ⅰ 漏桶算法的概念理解
* 到达的数据包(网络层的PDU)被放置在底部具有漏孔的桶中(数据包缓存);
* 漏桶最多可以排队b个字节,漏桶的这个尺寸受限于有效的系统内存。如果数据包到达的时候漏桶已经满了,那么数据包应被丢弃;
* 数据包从漏桶中漏出,以常量速率(r字节/秒)注入网络,因此平滑了突发流量。
在流量整形中还存在另外一个流行的算法:令牌桶算法(Token Bucket)。有时人们将漏桶算法与令牌桶算法错误地混淆在一起。而实际上,这两种算法具有截然不同的特性并且为截然不同的目的而使用。它们之间最主要的差别在于:漏桶算法能够强行限制数据的传输速率,而令牌桶算法能够在限制数据的平均传输速率的同时还允许某种程度的突发传输。
在某些情况下,漏桶算法不能够有效地使用网络资源。因为漏桶的漏出速率是固定的参数,所以,即使网络中不存在资源冲突(没有发生拥塞),漏桶算法也不能使某一个单独的流突发到端口速率。因此,漏桶算法对于存在突发特性的流量来说缺乏效率。而令牌桶算法则能够满足这些具有突发特性的流量。通常,漏桶算法与令牌桶算法可以结合起来为网络流量提供更大的控制。
Ⅱ 如何设计一个支持高并发的高可用服务
服务程序最为关键的设计是并发服务模型,当前有以下几种典型的模型:-单进程服务,使用非阻塞IO使用一个进程服务多个客户,通常与客户通信的套接字设置为非阻塞的,阻塞只发生在select()、poll()、epoll_wait()等系统调用上面。这是一种行之有效的单进程状态机式服务方式,已被广泛采用。缺点是它无法利用SMP(对称多处理器)的优势,除非启动多个进程。此外,它尝试就绪的IO文件描述符后,立即从系统调用返回,这会导致大量的系统调用发生,尤其是在较慢的字节传输时。select()本身的实现也是有局限的:能打开的文件描述符最多不能超过FD_SETSIZE,很容易耗尽;每次从select()返回的描述符组中扫描就绪的描述符需要时间,如果就绪的描述符在末尾时更是如此(epoll特别彻底修复了这个问题)。-多进程服务,使用阻塞IO也称作accept/fork模型,每当有客户连线时产生一个新的进程为之服务。这种方式有时是必要的,比如可以通过操作系统获得良好的内存保护,可以以不同的用户身份运行程序,可以让服务运行在不同的目录下面。但是它的缺点也很明显:进程比较占资源,进程切换开销太大,共享某些信息比较麻烦。Apache1.3就使用了这种模型,MaxClients数很容易就可以达到。-多线程服务,使用阻塞IO也称之accept/pthread_create模型,有新客户来时创建一个服务线程而不是服务进程。这解决了多进程服务的一些问题,比如它占用资源少,信息共享方便。但是麻烦在于线程仍有可能消耗光,线程切换也需要开销。-混合服务方式所谓的混合服务方式,以打破服务方和客户方之间严格的1:1关系。基本做法是:新客户到来时创建新的工作线程,当该工作线程检测到网络IO会有延迟时停止处理过程,返回给Server一个延迟处理状态,同时告诉Server被延迟的文件描述符,延迟超时时间。Server会在合适的时候返回工作线程继续处理。注意这里的工作线程不是通过pthread_create()创建的,而是被包装在专门用于处理延迟工作的函数里。这里还有一个问题,工作线程如何检测网络IO会有延迟?方法有很多,比如设置较短的超时时间调用poll(),或者甚至使用非阻塞IO。如果是套接字,可以设置SO_RCVTIMEO和SO_SNDTIMEO选项,这样更有效率。除了延迟线程,Server还应提供了未完成线程的支持。如有有特别耗费时间的操作,你可以在完成部分工作后停止处理,返回给Server一个未完成状态。这样Server会检查工作队列是否有别的线程,如果有则让它们运行,否则让该工作线程继续处理,这可以防止某些线程挨饿。典型的一个混合服务模型开源实现ServerKitServerkit的这些线程支持功能可简化我们的服务程序设计,效率上应该也是有保证的。2.队列(queue)ServerKit提供的队列是一个单向链表,队列的存取是原子操作,如果只有一个执行单元建议不要用,因为原子操作的开销较大。3.堆(heap)malloc()分配内存有一定的局限,比如在多线程的环境里,需要序列化内存分配操作。ServerKit提供的堆管理函数,可快速分配内存,可有效减少分配内存的序列化操作,堆的大小可动态增长,堆有引用计数,这些特征比较适合多线程环境。目前ServerKit堆的最大局限是分配单元必须是固定大小。4.日志记录日志被保存在队列,有一个专门的线程处理队列中的日志记录:它或者调用syslog()写进系统日志,或者通过UDP直接写到远程机器。后者更有效。5.读写锁GNUlibc也在pthreads库里实现了读写锁,如果定义了__USE_UNIX98就可以使用。不过ServerKit还提供了读写锁互相转换的函数,这使得锁的应用更为弹性。比如拥有读锁的若干个线程对同一个hash表进行检索,其中一个线程检索到了数据,此时需要修改它,一种法是获取写锁,但这会导致释放读锁和获取写锁之间存在时间窗,另一种法是使用ServerKit提供的函数把读锁转换成写锁,无疑这种方式更有效率。除了以上这些功能,ServerKit还提供了数据库连接池的管理(当前只支持MySQL)和序列化(Sequences),如感兴趣可参见相关的API文档。二、ServerKit服务模块编写ServerKit由3部分组成:server程序,负责加载服务模块、解析配置文件、建立数据库连接池;libserver,动态链接库,提供所有功能的库支持,包括server本身也是调用这个库写的;API,编程接口,你编写的服务模块和ServerKit框架进行对话的接口。ServerKit需要libConfuse解析配置文件,所以出了安装ServerKit,还需要安装libConfuse。关于libConfuse可参考。下面我们看一个简单的服务模块FOO:#include#includestaticlongintsleep_ration;staticintFOO_construct(){fprintf(stderr,"FOO_construct\n");return1;}staticintFOO_prestart(cfg_t*configuration){fprintf(stderr,"FOO_prestart\n");return1;}staticvoid*FOO_operator(void*foobar){fprintf(stderr,"FOO_operator\n");for(;;)sleep(sleep_ration);returnNULL;}staticvoidFOO_report(void){fprintf(stderr,"FOO_report\n");}staticcfg_opt_tFOO_config[]={CFG_SIMPLE_INT("sleep_ration",&sleep_ration),CFG_END()};staticchar*FOO_authors[]={"VitoCaputo",NULL};SERVER_MODULE(FOO,0,0,1,"")按以下方法编译:$gcc-c-fPIC-pthread-D_REENTRANT-gFOO.c$gcc-shared-lserver-lconfuse-lpthread-g-e__server_mole_main-oFOO.soFOO.o-e选项指定程序运行入口,这使得你可以直接在命令行敲./FOO.so运行模块。server程序根据环境变量SERVER_PERSONALITY_PATH定位主目录,并查找主目录下的c11n作为配置文件,动态加载的模块需放在主目录下的moles目录。$exportSERVER_PERSONALITY_PATH=`pwd`$mkdirmoles$cpFOO.somoles$vic11nc11n的内容:identity="any_id"FOO{sleep_ration=1;}identity标识server实例,用ps可看到程序名称形如server.identity,本例为server.any_id。执行server启动服务程序。三、ServerKit其他功能缺陷缺乏daemon模式;只能运行在Linuxbox;DBpool只支持MySQL;Heap管理内存的功力有限
Ⅲ 流量整形的流量整形的核心算法
流量整形的核心算法有以下两种,具体采用的技术为GTS(Generic Traffic Shaping),通用流量整形: 漏桶算法(Leaky Bucket)
漏桶算法是网络世界中流量整形(Traffic Shaping)或速率限制(Rate Limiting)时经常使用的一种算法,它的主要目的是控制数据注入到网络的速率,平滑网络上的突发流量。漏桶算法提供了一种机制,通过它,突发流量可以被整形以便为网络提供一个稳定的流量。 令牌桶算法(Token Bucket)
有时人们将漏桶算法与令牌桶算法错误地混淆在一起。而实际上,这两种算法具有截然不同的特性并且为截然不同的目的而使用。它们之间最主要的差别在于:漏桶算法能够强行限制数据的传输速率,而令牌桶算法能够在限制数据的平均传输速率的同时还允许某种程度的突发传输。
在某些情况下,漏桶算法不能够有效地使用网络资源。因为漏桶的漏出速率是固定的参数,所以即使网络中不存在资源冲突(没有发生拥塞),漏桶算法也不能使某一个单独的流突发到端口速率。因此,漏桶算法对于存在突发特性的流量来说缺乏效率。而令牌桶算法则能够满足这些具有突发特性的流量。通常,漏桶算法与令牌桶算法可以结合起来为网络流量提供更大的控制。
Ⅳ mysql 查询后更新 高并发
一种:使用行锁,SELECT `id` FROM `urls` ORDER BY `c_time` LIMIT 1 FOR UPDATE
坏处:进程阻塞
另外一种,使用更新队列(添加一张记录更新的时间队列表,执行更新前,去队列里查询最新的更新时间,所有针对这个id的访问都先把时间插入到时间队列表),队列可使用库,也可以使用缓存(redis等)
Ⅳ mysql数据库怎么解决高并发问题
限流算法目前程序开发过程常用的限流算法有两个:漏桶算法和令牌桶算法。
漏桶算法
漏桶算法的原理比较简单,请求进入到漏桶中,漏桶以一定的速率漏水。当请求过多时,水直接溢出。可以看出,漏桶算法可以强制限制数据的传输速度。如图所示,把请求比作是水滴,水先滴到桶里,通过漏洞并以限定的速度出水,当水来得过猛而出水不够快时就会导致水直接溢出,即拒绝服务。
图片来自网络
漏桶算法和令牌桶算法的选择
两者的主要区别漏桶算法能够强行限制处理数据的速率,不论系统是否空闲。而令牌桶算法能够在限制数据的平均处理速率的同时还允许某种程度的突发流量。如何理解上面的含义呢?漏桶算法,比如系统吞吐量是 120/s,业务请求 130/s,使用漏斗限流 100/s,起到限流的作用,多余的请求将产生等待或者丢弃。对于令牌桶算法,每秒产生 100 个令牌,系统容量 200 个令牌。正常情况下,业务请求 100/s 时,请求能被正常被处理。当有突发流量过来比如 200 个请求时,因为系统容量有 200 个令牌可以同一时刻处理掉这 200 个请求。如果是漏桶算法,则只能处理 100 个请求,其他的请求等待或者被丢弃。
Ⅵ 关于MySQL高并发处理机制是如何实现
限流算法目前程序开发过程常用的限流算法有两个:漏桶算法和令牌桶算法。
漏桶算法
漏桶算法的原理比较简单,请求进入到漏桶中,漏桶以一定的速率漏水。当请求过多时,水直接溢出。可以看出,漏桶算法可以强制限制数据的传输速度。如图所示,把请求比作是水滴,水先滴到桶里,通过漏洞并以限定的速度出水,当水来得过猛而出水不够快时就会导致水直接溢出,即拒绝服务。
图片来自网络
漏桶算法和令牌桶算法的选择
两者的主要区别漏桶算法能够强行限制处理数据的速率,不论系统是否空闲。而令牌桶算法能够在限制数据的平均处理速率的同时还允许某种程度的突发流量。如何理解上面的含义呢?漏桶算法,比如系统吞吐量是 120/s,业务请求 130/s,使用漏斗限流 100/s,起到限流的作用,多余的请求将产生等待或者丢弃。对于令牌桶算法,每秒产生 100 个令牌,系统容量 200 个令牌。正常情况下,业务请求 100/s 时,请求能被正常被处理。当有突发流量过来比如 200 个请求时,因为系统容量有 200 个令牌可以同一时刻处理掉这 200 个请求。如果是漏桶算法,则只能处理 100 个请求,其他的请求等待或者被丢弃。
Ⅶ 如何解决mysql innodb高并发的问题
限流算法目前程序开发过程常用的限流算法有两个:漏桶算法和令牌桶算法。
漏桶算法
漏桶算法的原理比较简单,请求进入到漏桶中,漏桶以一定的速率漏水。当请求过多时,水直接溢出。可以看出,漏桶算法可以强制限制数据的传输速度。如图所示,把请求比作是水滴,水先滴到桶里,通过漏洞并以限定的速度出水,当水来得过猛而出水不够快时就会导致水直接溢出,即拒绝服务。
图片来自网络
漏桶算法和令牌桶算法的选择
两者的主要区别漏桶算法能够强行限制处理数据的速率,不论系统是否空闲。而令牌桶算法能够在限制数据的平均处理速率的同时还允许某种程度的突发流量。如何理解上面的含义呢?漏桶算法,比如系统吞吐量是 120/s,业务请求 130/s,使用漏斗限流 100/s,起到限流的作用,多余的请求将产生等待或者丢弃。对于令牌桶算法,每秒产生 100 个令牌,系统容量 200 个令牌。正常情况下,业务请求 100/s 时,请求能被正常被处理。当有突发流量过来比如 200 个请求时,因为系统容量有 200 个令牌可以同一时刻处理掉这 200 个请求。如果是漏桶算法,则只能处理 100 个请求,其他的请求等待或者被丢弃。
Ⅷ 令牌桶算法的简介
在网络中传输数据时,为了防止网络拥塞,需限制流出网络的流量,使流量以比较均匀的速度向外发送。令牌桶算法就实现了这个功能,可控制发送到网络上数据的数目,并允许突发数据的发送。
令牌桶算法是网络流量整形(Traffic Shaping)和速率限制(Rate Limiting)中最常使用的一种算法。典型情况下,令牌桶算法用来控制发送到网络上的数据的数目,并允许突发数据的发送。
大小固定的令牌桶可自行以恒定的速率源源不断地产生令牌。如果令牌不被消耗,或者被消耗的速度小于产生的速度,令牌就会不断地增多,直到把桶填满。后面再产生的令牌就会从桶中溢出。最后桶中可以保存的最大令牌数永远不会超过桶的大小。
传送到令牌桶的数据包需要消耗令牌。不同大小的数据包,消耗的令牌数量不一样。
令牌桶这种控制机制基于令牌桶中是否存在令牌来指示什么时候可以发送流量。令牌桶中的每一个令牌都代表一个字节。如果令牌桶中存在令牌,则允许发送流量;而如果令牌桶中不存在令牌,则不允许发送流量。因此,如果突发门限被合理地配置并且令牌桶中有足够的令牌,那么流量就可以以峰值速率发送。
令牌桶算法的基本过程如下:
假如用户配置的平均发送速率为r,则每隔1/r秒一个令牌被加入到桶中;
假设桶最多可以存发b个令牌。如果令牌到达时令牌桶已经满了,那么这个令牌会被丢弃;
当一个n个字节的数据包到达时,就从令牌桶中删除n个令牌,并且数据包被发送到网络;
如果令牌桶中少于n个令牌,那么不会删除令牌,并且认为这个数据包在流量限制之外;
算法允许最长b个字节的突发,但从长期运行结果看,数据包的速率被限制成常量r。对于在流量限制外的数据包可以以不同的方式处理:
它们可以被丢弃;
它们可以排放在队列中以便当令牌桶中累积了足够多的令牌时再传输;
它们可以继续发送,但需要做特殊标记,网络过载的时候将这些特殊标记的包丢弃。
注意:令牌桶算法不能与另外一种常见算法“漏桶算法(Leaky Bucket)”相混淆。这两种算法的主要区别在于“漏桶算法”能够强行限制数据的传输速率,而“令牌桶算法”在能够限制数据的平均传输速率外,还允许某种程度的突发传输。在“令牌桶算法”中,只要令牌桶中存在令牌,那么就允许突发地传输数据直到达到用户配置的门限,因此它适合于具有突发特性的流量。
Ⅸ 漏桶算法的漏桶算法和令牌桶算法的区别
漏桶算法与令牌桶算法在表面看起来类似,很容易将两者混淆。但事实上,这两者具有截然不同的特性,且为不同的目的而使用。漏桶算法与令牌桶算法的区别在于:
l 漏桶算法能够强行限制数据的传输速率。
l 令牌桶算法能够在限制数据的平均传输速率的同时还允许某种程度的突发传输。
需要说明的是:在某些情况下,漏桶算法不能够有效地使用网络资源。因为漏桶的漏出速率是固定的,所以即使网络中没有发生拥塞,漏桶算法也不能使某一个单独的数据流达到端口速率。因此,漏桶算法对于存在突发特性的流量来说缺乏效率。而令牌桶算法则能够满足这些具有突发特性的流量。通常,漏桶算法与令牌桶算法结合起来为网络流量提供更高效的控制。
Ⅹ mysql 大流量,高并发问题
限流算法目前程序开发过程常用的限流算法有两个:漏桶算法和令牌桶算法。
漏桶算法
漏桶算法的原理比较简单,请求进入到漏桶中,漏桶以一定的速率漏水。当请求过多时,水直接溢出。可以看出,漏桶算法可以强制限制数据的传输速度。如图所示,把请求比作是水滴,水先滴到桶里,通过漏洞并以限定的速度出水,当水来得过猛而出水不够快时就会导致水直接溢出,即拒绝服务。
图片来自网络
漏桶算法和令牌桶算法的选择
两者的主要区别漏桶算法能够强行限制处理数据的速率,不论系统是否空闲。而令牌桶算法能够在限制数据的平均处理速率的同时还允许某种程度的突发流量。如何理解上面的含义呢?漏桶算法,比如系统吞吐量是 120/s,业务请求 130/s,使用漏斗限流 100/s,起到限流的作用,多余的请求将产生等待或者丢弃。对于令牌桶算法,每秒产生 100 个令牌,系统容量 200 个令牌。正常情况下,业务请求 100/s 时,请求能被正常被处理。当有突发流量过来比如 200 个请求时,因为系统容量有 200 个令牌可以同一时刻处理掉这 200 个请求。如果是漏桶算法,则只能处理 100 个请求,其他的请求等待或者被丢弃。