导航:首页 > 源码编译 > 免疫遗传算法计算

免疫遗传算法计算

发布时间:2022-07-09 12:51:18

A. 关于遗传算法的疑惑!请高人指点!非常感谢! 模拟退火遗传算法和免疫遗传算法哪个改进的效果好

这些算法的本质都是随机搜索,带有随机性,对参数依赖程度还是比较强的,所以出现结果时好时坏也是正常的。
至于这些算法的比较,你可以查查相关的论文。特别是首先提出该改进算法的论文,不过要注意,国内的论文的实验结果可信程度还是值得怀疑的。作者往往为了“证明”其算法的优势,只列举那些对算法效果有利的实验结果,不好的结果经常不列出来。所以你看到别人说什么算法好,但你自己用的时候却没发现该算法的优势也是正常的。

B. 遗传算法的运算过程

遗传操作是模拟生物基因遗传的做法。在遗传算法中,通过编码组成初始群体后,遗传操作的任务就是对群体的个体按照它们对环境适应度(适应度评估)施加一定的操作,从而实现优胜劣汰的进化过程。从优化搜索的角度而言,遗传操作可使问题的解,一代又一代地优化,并逼近最优解。
遗传操作包括以下三个基本遗传算子(genetic operator):选择(selection);交叉(crossover);变异(mutation)。这三个遗传算子有如下特点:
个体遗传算子的操作都是在随机扰动情况下进行的。因此,群体中个体向最优解迁移的规则是随机的。需要强调的是,这种随机化操作和传统的随机搜索方法是有区别的。遗传操作进行的高效有向的搜索而不是如一般随机搜索方法所进行的无向搜索。
遗传操作的效果和上述三个遗传算子所取的操作概率,编码方法,群体大小,初始群体以及适应度函数的设定密切相关。 从群体中选择优胜的个体,淘汰劣质个体的操作叫选择。选择算子有时又称为再生算子(reproction operator)。选择的目的是把优化的个体(或解)直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代。选择操作是建立在群体中个体的适应度评估基础上的,目前常用的选择算子有以下几种:适应度比例方法、随机遍历抽样法、局部选择法。
其中轮盘赌选择法 (roulette wheel selection)是最简单也是最常用的选择方法。在该方法中,各个个体的选择概率和其适应度值成比例。设群体大小为n,其中个体i的适应度为,则i 被选择的概率,为遗传算法
显然,概率反映了个体i的适应度在整个群体的个体适应度总和中所占的比例。个体适应度越大。其被选择的概率就越高、反之亦然。计算出群体中各个个体的选择概率后,为了选择交配个体,需要进行多轮选择。每一轮产生一个[0,1]之间均匀随机数,将该随机数作为选择指针来确定被选个体。个体被选后,可随机地组成交配对,以供后面的交叉操作。 在自然界生物进化过程中起核心作用的是生物遗传基因的重组(加上变异)。同样,遗传算法中起核心作用的是遗传操作的交叉算子。所谓交叉是指把两个父代个体的部分结构加以替换重组而生成新个体的操作。通过交叉,遗传算法的搜索能力得以飞跃提高。
交叉算子根据交叉率将种群中的两个个体随机地交换某些基因,能够产生新的基因组合,期望将有益基因组合在一起。根据编码表示方法的不同,可以有以下的算法:
a)实值重组(real valued recombination)
1)离散重组(discrete recombination)
2)中间重组(intermediate recombination)
3)线性重组(linear recombination)
4)扩展线性重组(extended linear recombination)。
b)二进制交叉(binary valued crossover)
1)单点交叉(single-point crossover)
2)多点交叉(multiple-point crossover)
3)均匀交叉(uniform crossover)
4)洗牌交叉(shuffle crossover)
5)缩小代理交叉(crossover with reced surrogate)。
最常用的交叉算子为单点交叉(one-point crossover)。具体操作是:在个体串中随机设定一个交叉点,实行交叉时,该点前或后的两个个体的部分结构进行互换,并生成两个新个体。下面给出了单点交叉的一个例子:
个体A:1 0 0 1 ↑1 1 1 → 1 0 0 1 0 0 0 新个体
个体B:0 0 1 1 ↑0 0 0 → 0 0 1 1 1 1 1 新个体 变异算子的基本内容是对群体中的个体串的某些基因座上的基因值作变动。依据个体编码表示方法的不同,可以有以下的算法:
a)实值变异
b)二进制变异。
一般来说,变异算子操作的基本步骤如下:
a)对群中所有个体以事先设定的变异概率判断是否进行变异
b)对进行变异的个体随机选择变异位进行变异。
遗传算法引入变异的目的有两个:一是使遗传算法具有局部的随机搜索能力。当遗传算法通过交叉算子已接近最优解邻域时,利用变异算子的这种局部随机搜索能力可以加速向最优解收敛。显然,此种情况下的变异概率应取较小值,否则接近最优解的积木块会因变异而遭到破坏。二是使遗传算法可维持群体多样性,以防止出现未成熟收敛现象。此时收敛概率应取较大值。
遗传算法中,交叉算子因其全局搜索能力而作为主要算子,变异算子因其局部搜索能力而作为辅助算子。遗传算法通过交叉和变异这对相互配合又相互竞争的操作而使其具备兼顾全局和局部的均衡搜索能力。所谓相互配合.是指当群体在进化中陷于搜索空间中某个超平面而仅靠交叉不能摆脱时,通过变异操作可有助于这种摆脱。所谓相互竞争,是指当通过交叉已形成所期望的积木块时,变异操作有可能破坏这些积木块。如何有效地配合使用交叉和变异操作,是目前遗传算法的一个重要研究内容。
基本变异算子是指对群体中的个体码串随机挑选一个或多个基因座并对这些基因座的基因值做变动(以变异概率P.做变动),(0,1)二值码串中的基本变异操作如下:
基因位下方标有*号的基因发生变异。
变异率的选取一般受种群大小、染色体长度等因素的影响,通常选取很小的值,一般取0.001-0.1。 当最优个体的适应度达到给定的阈值,或者最优个体的适应度和群体适应度不再上升时,或者迭代次数达到预设的代数时,算法终止。预设的代数一般设置为100-500代。

C. 遗传算法研究进展

遗传算法[56,53]研究的兴起是在20世纪80年代末和90年代初期,但它的历史起源可追溯到20世纪60年代初期。早期的研究大多以对自然遗传系统的计算机模拟为主。早期遗传算法的研究特点是侧重于对一些复杂的操作的研究。虽然其中像自动博弈、生物系统模拟、模式识别和函数优化等给人以深刻的印象,但总的来说这是一个无明确目标的发展时期,缺乏带有指导性的理论和计算工具的开拓。这种现象直到20世纪70年代中期由于Holland和De Jong的创造性研究成果的发表才得到改观。当然,早期的研究成果对于遗传算法的发展仍然有一定的影响,尤其是其中一些有代表性的技术和方法已为当前的遗传算法所吸收和发展。

在遗传算法作为搜索方法用于人工智能系统中之前,已有不少生物学家用计算机来模拟自然遗传系统。尤其是Fraser的模拟研究,他于1962年提出了和现在的遗传算法十分相似的概念和思想。但是,Fraser和其他一些学者并未认识到自然遗传算法可以转化为人工遗传算法。Holland教授及其学生不久就认识到这一转化的重要性,Holland认为比起寻找这种或那种具体的求解问题的方法来说,开拓一种能模拟自然选择遗传机制的带有一般性的理论和方法更有意义。在这一时期,Holland不但发现了基于适应度的人工遗传选择的基本作用,而且还对群体操作等进行了认真的研究。1965年,他首次提出了人工遗传操作的重要性,并把这些应用于自然系统和人工系统中。

1967年,Bagley在他的论文中首次提出了遗传算法(genetic algorithm)这一术语,并讨论了遗传算法在自动博弈中的应用。他所提出的包括选择、交叉和变异的操作已与目前遗传算法中的相应操作十分接近。尤其是他对选择操作做了十分有意义的研究。他认识到,在遗传进化过程的前期和后期,选择概率应合适地变动。为此,他引入了适应度定标(scaling)概念,这是目前遗传算法中常用的技术。同时,他也首次提出了遗传算法自我调整概念,即把交叉和变异的概率融于染色体本身的编码中,从而可实现算法自我调整优化。尽管Bagley没有对此进行计算机模拟实验,但这些思想对于后来遗传算法的发展所起的作用是十分明显的。

在同一时期,Rosenberg也对遗传算法进行了研究,他的研究依然是以模拟生物进化为主,但他在遗传操作方面提出了不少独特的设想。1970年Cavicchio把遗传算法应用于模式识别中。实际上他并未直接涉及到模式识别,而仅用遗传算法设计一组用于识别的检测器。Cavicchio对于遗传操作以及遗传算法的自我调整也做了不少有特色的研究。

Weinberg于1971年发表了题为《活细胞的计算机模拟》的论文。由于他和Rosenberg一样注意于生物遗传的模拟,所以他对遗传算法的贡献有时被忽略。实际上,他提出的多层次或多级遗传算法至今仍给人以深刻的印象。

第一个把遗传算法用于函数优化的是Hollstien。1971年他在论文《计算机控制系统中的人工遗传自适应方法》中阐述了遗传算法用于数字反馈控制的方法。实际上,他主要是讨论了对于二变量函数的优化问题。其中,对于优势基因控制、交叉和变异以及各种编码技术进行了深入的研究。

1975年在遗传算法研究的历史上是十分重要的一年。这一年,Holland出版了他的着名专着《自然系统和人工系统的适配》。该书系统地阐述了遗传算法的基本理论和方法,并提出了对遗传算法的理论研究和发展极为重要的模式理论(schemata theory)。该理论首次确认了结构重组遗传操作对于获得隐并行性的重要性。直到这时才知道遗传操作到底在干什么,为什么又干得那么出色,这对于以后陆续开发出来的遗传操作具有不可估量的指导作用。

同年,De Jong完成了他的重要论文《遗传自适应系统的行为分析》。他在该论文中所做的研究工作可看作是遗传算法发展进程中的一个里程碑,这是因为他把Holland的模式理论与他的计算实验结合起来。尽管De Jong和Hollstien一样主要侧重于函数优化的应用研究,但他将选择、交叉和变异操作进一步完善和系统化,同时又提出了诸如代沟(generation gap)等新的遗传操作技术。可以认为,De Jong的研究工作为遗传算法及其应用打下了坚实的基础,他所得出的许多结论迄今仍具有普遍的指导意义。

进入20世纪80年代,遗传算法迎来了兴盛发展时期,无论是理论研究还是应用研究都成了十分热门的课题。尤其是遗传算法的应用研究显得格外活跃,不但它的应用领域扩大,而且利用遗传算法进行优化和规则学习的能力也显着提高,同时产业应用方面的研究也在摸索之中。此外一些新的理论和方法在应用研究中亦得到了迅速的发展,这些无疑均给遗传算法增添了新的活力。

随着应用领域的扩展,遗传算法的研究出现了几个引人注目的新动向:一是基于遗传算法的机器学习(Genetic Base Machine Learning),这一新的研究课题把遗传算法从历来离散的搜索空间的优化搜索算法扩展到具有独特的规则生成功能的崭新的机器学习算法。这一新的学习机制对于解决人工智能中知识获取和知识优化精炼的瓶颈难题带来了希望。二是遗传算法正日益和神经网络、模糊推理以及混沌理论等其他智能计算方法相互渗透和结合,这对开拓21世纪中新的智能计算技术将具有重要的意义。三是并行处理的遗传算法的研究十分活跃。这一研究不仅对遗传算法本身的发展,而且对于新一代智能计算机体系结构的研究都是十分重要的。四是遗传算法和另一个称为人工生命的崭新研究领域正不断渗透。所谓人工生命即是用计算机模拟自然界丰富多彩的生命现象,其中生物的自适应、进化和免疫等现象是人工生命的重要研究对象,而遗传算法在这方面将会发挥一定的作用。五是遗传算法和进化规划(Evolution Programming,EP)以及进化策略(Evolution Strategy,ES)等进化计算理论日益结合。EP和ES几乎是和遗传算法同时独立发展起来的,同遗传算法一样,它们也是模拟自然界生物进化机制的智能计算方法,既同遗传算法具有相同之处,也有各自的特点。

随着遗传算法研究和应用的不断深入和发展,一系列以遗传算法为主题的国际会议十分活跃。从1985年开始,国际遗传算法会议,即ICGA(International Conference on Genetic Algorithm)每两年举行一次。在欧洲,从1990年开始也每隔一年举办一次类似的会议,即 PPSN(Parallel Problem Solving from Nature)会议。除了遗传算法外,大部分有关ES和EP的学术论文也出现在PPSN中。另外,以遗传算法的理论基础为中心的学术会议有FOGA(Foundation of Genetic Algorithm)。它也是从1990年开始,隔年召开一次。这些国际学术会议论文集中反映了遗传算法近些年来的最新发展和动向。

D. matlab 免疫遗传算法中抗体的促进和抑制策略怎么理解

每代群体每体适应度都必须算吧存向量面每代适应度max()平均值mean()取放向量面进化完毕候画向量行

E. 免疫遗传算法怎么和其他结合在一起

在使用递归操作的时候,经常会遇到递归条件报错:ORA-01436: 用户数据中的 CONNECT BY 循环。特别是在做一些技巧性操作的时候,比如常见的复制和展开行,字符串拆分。这时候经常会使用层次查询CONNECT BY。但是稍加不慎,就会报递归循环错误,为了避免这种错误,有个技巧,那就是增加prior dbms_random.value is not null。
例1:复制与展开行
比如对1 ID,5 times按5次展开5行。那么这很简单,如下:
SQL> WITH t AS
2 (
3 SELECT 1 ID,5 times FROM al
4 )
5 SELECT ID FROM t
6 CONNECT BY LEVEL<=times;

ID
----------
1
1
1
1
1

F. 使用遗传算法和免疫算法的优化结果是否有差别

遗传算法是一种智能计算方法,针对不同的实际问题可以设计不同的计算程序。它主要有复制,交叉,变异三部分完成,是仿照生物进化过程来进行计算方法的设计。 模糊数学是研究现实生活中一类模糊现象的数学。简单地说就是像好与坏怎样精确的描述,将好精确化,用数字来表达。 神经网络是一种仿生计算方法,仿照生物体中信息的传递过程来进行数学计算。 这三种知识都是近40年兴起的新兴学科,主要应用在智能模糊控制上面。这三者可以结合起来应用。如用模糊数学些遗传算法的程序,优化神经网络,最后用神经网络控制飞行器或其他物体

G. 我需要一个基于免疫遗传算法的matlab程序,关于函数寻优的,最好在附有讲解

% 主程序
%遗传算法主程序
%Name:genmain.m
%author:杨幂

clear
clf
%%初始化
popsize=50; %群体大小
chromlength=30; %字符串长度(个体长度)
pc=0.6; %交叉概率
pm=0.1; %变异概率
pop=initpop(popsize,chromlength); %随机产生初始群体
%%开始迭代
for i=1:20 %20为迭代次数
[objvalue]=calobjvalue(pop); %计算目标函数
fitvalue=calfitvalue(objvalue); %计算群体中每个个体的适应度
[newpop]=selection(pop,fitvalue); %复制
[newpop]=crossover(pop,pc); %交叉
[newpop]=mutation(pop,pm); %变异
[bestindivial,bestfit]=best(pop,fitvalue); %求出群体中适应值最大的个体及其适应值
y(i)=max(bestfit);%储存最优个体适应值
n(i)=i;
pop5=bestindivial;%储存最优个体
%解码
x1(i)=decodechrom(pop5,1,chromlength/2)*2/32767;
x2(i)=10+decodechrom(pop5,chromlength/2+1,chromlength/2)*10/32767;
pop=newpop;%将新产生的种群作为当前种群
end
%%绘图
figure(1)%最优点变化趋势图
i=1:20;
plot(y(i),'-r*')
xlabel('迭代次数');
ylabel('最优个体适应值');
title('最优点变化趋势');
legend('最优点');
grid on

figure(2)%最优点分布图
[X1,X2]=meshgrid(0:0.1:2,10:0.1:20);
Z=X1.^2+X2.^2;
mesh(X1,X2,Z);
xlabel('自变量x1'),ylabel('自变量x2'),zlabel('函数值f(x1,x2)');
hold on
plot3(x1,x2,y,'ro','MarkerEdgeColor','r','MarkerFaceColor','r','MarkerSize',5)
title('最优点分布');
legend('最优点');
hold off

[z index]=max(y); %计算最大值及其位置
x5=[x1(index),x2(index)]%计算最大值对应的x值
z

H. 免疫算法的提出

在生命科学领域中,人们已经对遗传(Heredity)与免疫(Immunity)等自然现象进行了广泛深入的研究。六十年代Bagley和Rosenberg等先驱在对这些研究成果进行分析与理解的基础上,借鉴其相关内容和知识,特别是遗传学方面的理论与概念,并将其成功应用于工程科学的某些领域,收到了良好的效果。时至八十年代中期,美国Michigan大学的Hollan教授不仅对以前的学者们提出的遗传概念进行了总结与推广,而且给出了简明清晰的算法描述,并由此形成目前一般意义上的遗传算法(GeneticAlgorithm)GA。由于遗传算法较以往传统的搜索算法具有使用方便、鲁棒性强、便于并行处理等特点,因而广泛应用于组合优化、结构设计、人工智能等领域。另一方面,Farmer和Bersini等人也先后在不同时期、不同程度地涉及到了有关免疫的概念。遗传算法是一种具有生成+检测 (generate and test)的迭代过程的搜索算法。从理论上分析,迭代过程中,在保留上一代最佳个体的前提下,遗传算法是全局收敛的。然而,在对算法的实施过程中不难发现两个主要遗传算子都是在一定发生概率的条件下,随机地、没有指导地迭代搜索,因此它们在为群体中的个体提供了进化机会的同时,也无可避免地产生了退化的可能。在某些情况下,这种退化现象还相当明显。另外,每一个待求的实际问题都会有自身一些基本的、显而易见的特征信息或知识。然而遗传算法的交叉和变异算子却相对固定,在求解问题时,可变的灵活程度较小。这无疑对算法的通用性是有益的,但却忽视了问题的特征信息对求解问题时的辅助作用,特别是在求解一些复杂问题时,这种忽视所带来的损失往往就比较明显了。实践也表明,仅仅使用遗传算法或者以其为代表的进化算法,在模仿人类智能处理事物的能力方面还远远不足,还必须更加深层次地挖掘与利用人类的智能资源。从这一点讲,学习生物智能、开发、进而利用生物智能是进化算法乃至智能计算的一个永恒的话题。所以,研究者力图将生命科学中的免疫概念引入到工程实践领域,借助其中的有关知识与理论并将其与已有的一些智能算法有机地结合起来,以建立新的进化理论与算法,来提高算法的整体性能。基于这一思想,将免疫概念及其理论应用于遗传算法,在保留原算法优良特性的前提下,力图有选择、有目的地利用待求问题中的一些特征信息或知识来抑制其优化过程中出现的退化现象,这种算法称为免疫算法(ImmuneAlgorithm)IA。下面将会给出算法的具体步骤,证明其全局收敛性,提出免疫疫苗的选择策略和免疫算子的构造方法,理论分析和对TSP问题的仿真结果表明免疫算法不仅是有效的而且也是可行的,并较好地解决了遗传算法中的退化问题。

I. 请问什么是遗传算法,并给两个例子

遗传算法(Genetic Algorithm, GA)是近几年发展起来的一种崭新的全局优化算法,它借
用了生物遗传学的观点,通过自然选择、遗传、变异等作用机制,实现各个个体的适应性
的提高。这一点体现了自然界中"物竞天择、适者生存"进化过程。1962年Holland教授首次
提出了GA算法的思想,从而吸引了大批的研究者,迅速推广到优化、搜索、机器学习等方
面,并奠定了坚实的理论基础。 用遗传算法解决问题时,首先要对待解决问题的模型结构
和参数进行编码,一般用字符串表示,这个过程就将问题符号化、离散化了。也有在连续
空间定义的GA(Genetic Algorithm in Continuous Space, GACS),暂不讨论。

一个串行运算的遗传算法(Seguential Genetic Algoritm, SGA)按如下过程进行:

(1) 对待解决问题进行编码;
(2) 随机初始化群体X(0):=(x1, x2, … xn);
(3) 对当前群体X(t)中每个个体xi计算其适应度F(xi),适应度表示了该个体的性能好
坏;
(4) 应用选择算子产生中间代Xr(t);
(5) 对Xr(t)应用其它的算子,产生新一代群体X(t+1),这些算子的目的在于扩展有限
个体的覆盖面,体现全局搜索的思想;
(6) t:=t+1;如果不满足终止条件继续(3)。
GA中最常用的算子有如下几种:
(1) 选择算子(selection/reproction): 选择算子从群体中按某一概率成对选择个
体,某个体xi被选择的概率Pi与其适应度值成正比。最通常的实现方法是轮盘赌(roulett
e wheel)模型。
(2) 交叉算子(Crossover): 交叉算子将被选中的两个个体的基因链按概率pc进行交叉
,生成两个新的个体,交叉位置是随机的。其中Pc是一个系统参数。
(3) 变异算子(Mutation): 变异算子将新个体的基因链的各位按概率pm进行变异,对
二值基因链(0,1编码)来说即是取反。
上述各种算子的实现是多种多样的,而且许多新的算子正在不断地提出,以改进GA的
某些性能。系统参数(个体数n,基因链长度l,交叉概率Pc,变异概率Pm等)对算法的收敛速度
及结果有很大的影响,应视具体问题选取不同的值。
GA的程序设计应考虑到通用性,而且要有较强的适应新的算子的能力。OOP中的类的继
承为我们提供了这一可能。
定义两个基本结构:基因(ALLELE)和个体(INDIVIDUAL),以个体的集合作为群体类TP
opulation的数据成员,而TSGA类则由群体派生出来,定义GA的基本操作。对任一个应用实
例,可以在TSGA类上派生,并定义新的操作。

TPopulation类包含两个重要过程:
FillFitness: 评价函数,对每个个体进行解码(decode)并计算出其适应度值,具体操
作在用户类中实现。
Statistic: 对当前群体进行统计,如求总适应度sumfitness、平均适应度average、最好
个体fmax、最坏个体fmin等。

TSGA类在TPopulation类的基础上派生,以GA的系统参数为构造函数的参数,它有4个
重要的成员函数:
Select: 选择算子,基本的选择策略采用轮盘赌模型(如图2)。轮盘经任意旋转停止
后指针所指向区域被选中,所以fi值大的被选中的概率就大。
Crossover: 交叉算子,以概率Pc在两基因链上的随机位置交换子串。
Mutation: 变异算子,以概率Pm对基因链上每一个基因进行随机干扰(取反)。
Generate: 产生下代,包括了评价、统计、选择、交叉、变异等全部过程,每运行一
次,产生新的一代。

SGA的结构及类定义如下(用C++编写):
[code] typedef char ALLELE; // 基因类型
typedef struct{
ALLELE *chrom;
float fitness; // fitness of Chromosome
}INDIVIDUAL; // 个体定义

class TPopulation{ // 群体类定义
public:
int size; // Size of population: n
int lchrom; // Length of chromosome: l
float sumfitness, average;

INDIVIDUAL *fmin, *fmax;
INDIVIDUAL *pop;

TPopulation(int popsize, int strlength);
~TPopulation();
inline INDIVIDUAL &Indivial(int i){ return pop[i];};
void FillFitness(); // 评价函数
virtual void Statistics(); // 统计函数
};

class TSGA : public TPopulation{ // TSGA类派生于群体类
public:
float pcross; // Probability of Crossover
float pmutation; // Probability of Mutation
int gen; // Counter of generation

TSGA(int size, int strlength, float pm=0.03, float pc=0.6):
TPopulation(size, strlength)
{gen=0; pcross=pc; pmutation=pm; } ;
virtual INDIVIDUAL& Select();
virtual void Crossover(INDIVIDUAL &parent1, INDIVIDUAL &parent2,
INDIVIDUAL &child1, INDIVIDUAL &child2);
&child1, INDIVIDUAL &child2);
virtual ALLELE Mutation(ALLELE alleleval);
virtual void Generate(); // 产生新的一代
};
用户GA类定义如下:
class TSGAfit : public TSGA{
public:
TSGAfit(int size,float pm=0.0333,float pc=0.6)
:TSGA(size,24,pm,pc){};
void print();
}; [/code]

由于GA是一个概率过程,所以每次迭代的情况是不一样的;系统参数不同,迭代情况
也不同。在实验中参数一般选取如下:个体数n=50-200,变异概率Pm=0.03, 交叉概率Pc=
0.6。变异概率太大,会导致不稳定。

参考文献
● Goldberg D E. Genetic Algorithm in Search, Optimization, and machine

Learning. Addison-Wesley, Reading, MA, 1989
● 陈根社、陈新海,"遗传算法的研究与进展",《信息与控制》,Vol.23,
NO.4, 1994, PP215-222
● Vittorio Maniezzo, "Genetic Evolution of the Topology and Weight Distri
bution of the Neural Networks", IEEE, Trans. on Neural Networks, Vol.5, NO
.1, 1994, PP39-53
● Xiaofeng Qi, Francesco Palmieri, "Theoretical Analysis of Evolutionary
Algorithms with an Infinite Population Size in Continuous Space. Part Ⅰ
l Networks, Vol.5, NO.1, 1994, PP102-119
● Xiaofeng Qi, Francesco Palmieri, "Theoretical Analysis of Evolutionary
Algorithms with an Infinite Population Size in Continuous Space. Part Ⅱ
al Networks, Vol.5, NO.1, 1994, PP102-119
● Gunter Rudolph, Convergence Analysis of Canonical Genetic Algorithms, I
EEE, Trans. on Neural Networks, Vol.5, NO.1, 1994, PP96-101
● A E Eiben, E H L Aarts, K M Van Hee. Gloable convergence of genetic alg
orithms: A Markov chain analysis. in Parallel Problem Solving from Nat
ure. H.-P.Schwefel, R.Manner, Eds. Berlin and Heidelberg: Springer, 1991
, PP4-12
● Wirt Atmar, "Notes on the Simulation of Evolution", IEEE, Trans. on Neu
ral Networks, Vol.5, NO.1, 1994, PP130-147
● Anthony V. Sebald, Jennifer Schlenzig, "Minimax Design of Neural Net Co
ntrollers for Highly Uncertain Plants", IEEE, Trans. on Neural Networks, V
ol.5, NO.1, 1994, PP73-81
● 方建安、邵世煌,"采用遗传算法自学习模型控制规则",《自动化理论、技术与应
用》,中国自动化学会 第九届青年学术年会论文集,1993, PP233-238
● 方建安、邵世煌,"采用遗传算法学习的神经网络控制器",《控制与决策》,199
3,8(3), PP208-212
● 苏素珍、土屋喜一,"使用遗传算法的迷宫学习",《机器人》,Vol.16,NO.5,199
4, PP286-289
● M.Srinivas, L.M.Patnaik, "Adaptive Probabilities of Crossover and Mutat
ion", IEEE Trans. on S.M.C, Vol.24, NO.4, 1994 of Crossover and Mutation",
IEEE Trans. on S.M.C, Vol.24, NO.4, 1994
● Daihee Park, Abraham Kandel, Gideon Langholz, "Genetic-Based New Fuzzy
Reasoning Models with Application to Fuzzy Control", IEEE Trans. S. M. C,
Vol.24, NO.1, PP39-47, 1994
● Alen Varsek, Tanja Urbancic, Bodgan Filipic, "Genetic Algorithms in Con
troller Design and Tuning", IEEE Trans. S. M. C, Vol.23, NO.5, PP1330-13
39, 1993

J. 遗传算法求解tsp问题的matlab程序

把下面的(1)-(7)依次存成相应的.m文件,在(7)的m文件下运行就可以了
(1) 适应度函数fit.m
function fitness=fit(len,m,maxlen,minlen)
fitness=len;
for i=1:length(len)
fitness(i,1)=(1-(len(i,1)-minlen)/(maxlen-minlen+0.0001)).^m;
end
(2)个体距离计算函数 mylength.m
function len=myLength(D,p)
[N,NN]=size(D);
len=D(p(1,N),p(1,1));
for i=1:(N-1)
len=len+D(p(1,i),p(1,i+1));
end

end
(3)交叉操作函数 cross.m
function [A,B]=cross(A,B)
L=length(A);
if L<10
W=L;
elseif ((L/10)-floor(L/10))>=rand&&L>10
W=ceil(L/10)+8;
else
W=floor(L/10)+8;
end
p=unidrnd(L-W+1);
fprintf('p=%d ',p);
for i=1:W
x=find(A==B(1,p+i-1));
y=find(B==A(1,p+i-1));
[A(1,p+i-1),B(1,p+i-1)]=exchange(A(1,p+i-1),B(1,p+i-1));
[A(1,x),B(1,y)]=exchange(A(1,x),B(1,y));
end

end
(4)对调函数 exchange.m
function [x,y]=exchange(x,y)
temp=x;
x=y;
y=temp;

end
(5)变异函数 Mutation.m
function a=Mutation(A)
index1=0;index2=0;
nnper=randperm(size(A,2));
index1=nnper(1);
index2=nnper(2);
%fprintf('index1=%d ',index1);
%fprintf('index2=%d ',index2);

temp=0;
temp=A(index1);
A(index1)=A(index2);
A(index2)=temp;
a=A;
end
(6)连点画图函数 plot_route.m
function plot_route(a,R)
scatter(a(:,1),a(:,2),'rx');
hold on;
plot([a(R(1),1),a(R(length(R)),1)],[a(R(1),2),a(R(length(R)),2)]);
hold on;
for i=2:length(R)
x0=a(R(i-1),1);
y0=a(R(i-1),2);
x1=a(R(i),1);
y1=a(R(i),2);
xx=[x0,x1];
yy=[y0,y1];
plot(xx,yy);
hold on;
end

end
(7)主函数
clear;
clc;
%%%%%%%%%%%%%%%输入参数%%%%%%%%
N=50; %%城市的个数
M=100; %%种群的个数
C=100; %%迭代次数
C_old=C;
m=2; %%适应值归一化淘汰加速指数
Pc=0.4; %%交叉概率
Pmutation=0.2; %%变异概率
%%生成城市的坐标
pos=randn(N,2);
%%生成城市之间距离矩阵
D=zeros(N,N);
for i=1:N
for j=i+1:N
dis=(pos(i,1)-pos(j,1)).^2+(pos(i,2)-pos(j,2)).^2;
D(i,j)=dis^(0.5);
D(j,i)=D(i,j);
end
end
%%如果城市之间的距离矩阵已知,可以在下面赋值给D,否则就随机生成

%%生成初始群体
popm=zeros(M,N);
for i=1:M
popm(i,:)=randperm(N);
end
%%随机选择一个种群
R=popm(1,:);

figure(1);
scatter(pos(:,1),pos(:,2),'rx');
axis([-3 3 -3 3]);
figure(2);
plot_route(pos,R); %%画出种群各城市之间的连线
axis([-3 3 -3 3]);
%%初始化种群及其适应函数
fitness=zeros(M,1);
len=zeros(M,1);
for i=1:M
len(i,1)=myLength(D,popm(i,:));
end
maxlen=max(len);
minlen=min(len);
fitness=fit(len,m,maxlen,minlen);
rr=find(len==minlen);
R=popm(rr(1,1),:);
for i=1:N
fprintf('%d ',R(i));
end
fprintf('\n');
fitness=fitness/sum(fitness);

distance_min=zeros(C+1,1); %%各次迭代的最小的种群的距离
while C>=0
fprintf('迭代第%d次\n',C);
%%选择操作
nn=0;
for i=1:size(popm,1)
len_1(i,1)=myLength(D,popm(i,:));
jc=rand*0.3;
for j=1:size(popm,1)
if fitness(j,1)>=jc
nn=nn+1;
popm_sel(nn,:)=popm(j,:);
break;
end
end
end
%%每次选择都保存最优的种群
popm_sel=popm_sel(1:nn,:);
[len_m len_index]=min(len_1);
popm_sel=[popm_sel;popm(len_index,:)];

%%交叉操作
nnper=randperm(nn);
A=popm_sel(nnper(1),:);
B=popm_sel(nnper(2),:);
for i=1:nn*Pc
[A,B]=cross(A,B);
popm_sel(nnper(1),:)=A;
popm_sel(nnper(2),:)=B;
end
%%变异操作
for i=1:nn
pick=rand;
while pick==0
pick=rand;
end
if pick<=Pmutation
popm_sel(i,:)=Mutation(popm_sel(i,:));
end
end
%%求适应度函数
NN=size(popm_sel,1);
len=zeros(NN,1);
for i=1:NN
len(i,1)=myLength(D,popm_sel(i,:));
end
maxlen=max(len);
minlen=min(len);
distance_min(C+1,1)=minlen;
fitness=fit(len,m,maxlen,minlen);
rr=find(len==minlen);
fprintf('minlen=%d\n',minlen);
R=popm_sel(rr(1,1),:);
for i=1:N
fprintf('%d ',R(i));
end
fprintf('\n');
popm=[];
popm=popm_sel;
C=C-1;
%pause(1);
end
figure(3)
plot_route(pos,R);
axis([-3 3 -3 3]);

阅读全文

与免疫遗传算法计算相关的资料

热点内容
喷油螺杆制冷压缩机 浏览:579
python员工信息登记表 浏览:377
高中美术pdf 浏览:161
java实现排列 浏览:513
javavector的用法 浏览:982
osi实现加密的三层 浏览:233
大众宝来原厂中控如何安装app 浏览:916
linux内核根文件系统 浏览:243
3d的命令面板不见了 浏览:526
武汉理工大学服务器ip地址 浏览:149
亚马逊云服务器登录 浏览:525
安卓手机如何进行文件处理 浏览:71
mysql执行系统命令 浏览:930
php支持curlhttps 浏览:143
新预算法责任 浏览:444
服务器如何处理5万人同时在线 浏览:251
哈夫曼编码数据压缩 浏览:426
锁定服务器是什么意思 浏览:385
场景检测算法 浏览:617
解压手机软件触屏 浏览:350