导航:首页 > 源码编译 > 理查逊外推算法的思想

理查逊外推算法的思想

发布时间:2022-07-10 08:56:34

❶ 外部排序算法基本思想是什么

外部排序的基本思路

假设有一个72KB的文件,其中存储了18K个整数,磁盘中物理块的大小为4KB,将文件分成18组,每组刚好4KB。

首先通过18次内部排序,把18组数据排好序,得到初始的18个归并段R1~R18,每个归并段有1024个整数。

然后对这18个归并段使用4路平衡归并排序:

第1次归并:产生5个归并段

R11 R12 R13 R14 R15

其中

R11是由{R1,R2,R3,R4}中的数据合并而来

R12是由{R5,R6,R7,R8}中的数据合并而来

R13是由{R9,R10,R11,R12}中的数据合并而来

R14是由{R13,R14,R15,R16}中的数据合并而来

R15是由{R17,R18}中的数据合并而来

把这5个归并段的数据写入5个文件:

foo_1.dat foo_2.dat foo_3.dat foo_4.dat foo_5.dat

第2次归并:从第1次归并产生的5个文件中读取数据,合并,产生2个归并段

R21 R22

其中R21是由{R11,R12,R13,R14}中的数据合并而来

其中R22是由{R15}中的数据合并而来

把这2个归并段写入2个文件

bar_1.dat bar_2.dat

第3次归并:从第2次归并产生的2个文件中读取数据,合并,产生1个归并段

R31

R31是由{R21,R22}中的数据合并而来

把这个文件写入1个文件

foo_1.dat

此即为最终排序好的文件。

二 使用败者树加快合并排序

外部排序最耗时间的操作时磁盘读写,对于有m个初始归并段,k路平衡的归并排序,磁盘读写次数为

|logkm|,可见增大k的值可以减少磁盘读写的次数,但增大k的值也会带来负面效应,即进行k路合并

的时候会增加算法复杂度,来看一个例子。

把n个整数分成k组,每组整数都已排序好,现在要把k组数据合并成1组排好序的整数,求算法复杂度

❷ ....`~~!!!`````````理查森定理是什么

·1928年诺贝尔物理学奖——热电子发射定律

1928年诺贝尔物理学奖授予英国伦敦大学的O.W.里查森(SirOwen Willans Richardson,1879——1959),以表彰他对热电子发射现象的工作,特别是发现了以他的名字命名的定律。

20世纪前半叶,物理学在工程技术方面最引人注目的应用之一是在无线电电子学方面。无线电电子学的基础是热电子发射。当时名为热离子学(thermionics)的学科,研究的就是热电子发射。热电子发射定律的发现对无线电电子学的发展有深远影响,因为不论是早期的二极管和三极管,还是后来的X射线管、电子显像管和磁控管、速调管,都离不开发射电子的热阴极。要使这些器件能够高效率、长寿命地工作,关键在于设计合理的电子发射机构。O.W.里查森定律为此指明了道路。这一事例又一次证明了基础研究对科学技术的重要意义。

热离子现象的观测可以溯源到二百多年前,那时人们已经知道,灼热物体附近的空气会失去绝缘性能而导电, 1725年杜菲(Du Fay)就注意到了这一现象,后经托尔(Du Tour,1745年)、瓦森(Watson,1746年)、普列斯特利、卡瓦洛(1785年)不断进行观察,积累了许多这方面的资料。1853年贝克勒尔证明,白热状态下的空气只需几伏电压就可以导电;1881年布朗诺(Blondlot)进一步肯定了上述结论,证明即使电压低到1/1000V,白热状态的空气也不能保持绝缘。后来研究者转向灼热物体对空气导电的影响,致力于追寻这一影响的根源。1873年古利(F.Guthrie)让加热的铁球带电,发现红热的铁球能保留负电,却不能保留正电;白热的铁球既不能保留负电,也不能保留正电。爱斯特(J.Elster)和盖特尔(F.Geitel)在 1882年——1889年进行了一系列实验研究,检测了在不同压强下各种气体中靠近各种热丝的绝缘金属板所聚集的电荷,得到一条结论:在温度低、气压高的状态下,金属板带正电;在温度高、气压低的状态下,金属板带负电。

此时发明家爱迪生正在研究电灯泡。他在灯泡中靠近灯丝的地方装上一块金属片,发现当金属片经电流计同灯丝电源的正极接通时,电流计的指针偏转,显示有电流从灯丝越过空间到达金属片。这就是所谓的爱迪生效应。但在当时爱迪生并没有搞清楚这一电流的本质。

1897年,J.J.汤姆孙通过阴极射线荷质比(e/m)的测量发现了电子。1899年他进一步研究了爱迪生效应中越过空间的电流,用磁偏法测出其荷质比,证实这种电流也是由电子组成。第二年他的学生麦克勒伦(McClellend)指出只要周围气体的压强足够低,从带负电的铂丝放出的电流就几乎完全不受气体性质和压强变化的影响。这些结果引起了汤姆孙另一位年轻学生的极大兴趣,他就是里查森。在导师的鼓励下,他热忱地投身于这项研究中。

里查森从1900年起投身于热离子现象的研究,前后历时十余年。他一方面不屈不挠地从事实验工作;另一方面还下很大功夫进行理论分析。摆在里查森面前的是十分复杂的现象。如果没有理论指导,就只能停留在表面现象,难以探讨事物的本质;如果不掌握精确的数据资料,再好的理论也得不到证实。前人的研究成果固然提供了许多有用的依据,但也充斥着形形色色的说法。例如:有人认为热离子现象是以太行为的某种表现;有人把气体导电现象归因于以太;也有人认为不同的材料有不同的属性,因而发出不同的电荷;还有人认为这是一种化学效应,是由于热体和周围的气体分子相互作用的结果。

21岁的里查森从导师J.J.汤姆孙和同学麦克勒伦的实验结果得到启示,判定只要尽量抽成真空,排除残余气体,然后直接研究饱和电流,就有可能抓住事物的本质。

关于实验工作的艰难,从里查森1928 年诺贝尔领奖词中可窥见一二。他说:“我认识到,要取得进展,最好的办法是避免由于气体在场的复杂性,尽可能搞清楚气体效应排除之后会出现什么情况。本世纪之初解决这个问题不像现在(注:指1928年)这样容易。主要是由于这个现象在技术上的重要性,从那时起抽气工艺已大大地发展了。当中只有靠手摇泵抽气。由于热丝给器壁和其它部分加热会产生无休止的放气,抽气是一件最厌烦的操作。我常常连续几个星期给管中金属丝加热,来保证观察到的电流稳定,并保证这个电流与残余气体无关。”

他的真空管里装有铂丝,铂丝周围是一金属筒作为阳极,电极间加足够强的电场。温度从铂丝的电阻变化可以算出。改变铂丝温度T,测

但是要获得严格的函数关系光靠实验是不够的。里查森坚信热丝周围的电荷主要是从热丝内部由于热运动逸出的自由电子,而不是什么以太效应,这可从J.J.汤姆孙的荷质比实验得到证明。把这些电子看成电子气,就有可能象分子运动论处理理想气体一样推出饱和电流随温度变化的公式.

里查森推导这一公式的基本思想是:在热金属内部充有大量自由运动的电子,当电子到达金属表面时,如果和表面垂直的速度分量所决定的动能大于逸出功W,这个电子就有可能逸出金属表面,而电子的速度分布遵循麦克斯韦-玻耳兹曼分布律。经过计算得出:

式中i是热体发出的饱和电流密度,k是玻耳兹曼常数,A是与材料有关的系数。里查森的实验数据表明,理论与实验符合甚好。

这就是1901年里查森发表的基本内容。

里查森进一步研究热体周围的正离子。他通过大量实验终于搞清楚,正离子的产生非常复杂。有的是电极本身在加热时发出的,有的是杂质引起的,有的确是由于加热电极与周围气体之间的相互作用。

里查森还发现固体样品在第一次加热时总要先发射大量正离子,形成瞬态电流。去掉杂质后,才开始稳定地发射正离子。瞬态电流显然是杂质引起的,稳态电流才是由电极本身材料产生的正离子组成。

为了检验推导公式(28 -1)所依据的基本前提是否正确,里查森提出两条途径。一条途径是如果电子确实是依靠克服了逸出功W的动能从热体逸出,则热体必会由于这个过程而降温。为此里查森于1903年作了计算。1909年韦勒尔特(A.Wehnelt)和琴希(F.Jentzsch)首次实验证实,不过数值与理论不符。1915年里查森和库克(H.L.Cooke)合作,改进实验方法,最终确认了理论的正确。

另一途径是其逆过程。里查森提出,如果电子束是从外部流进导体,则导体应发热,热量既与温度无关,也与驱动电子流的电势差无关。1910年——1911年,里查森和库克的实验对此也作了肯定的证明。

直到1913年,还有人对热电子发射的理论表示怀疑,总认为这不是物理问题,而是化学问题,是由于热体与周围气体产生化学作用的某种二次过程。1913年,里查森用压延性良好的钨代替铂充当热丝,有了更好的真空条件,产生大得多的发射电流。他证明发射出来的电子所具有的质量大大超过可能消耗掉的化学物品的质量总和。于是他以确凿的事实令人信服地作出了判断。

1911年,里查森用热力学方法对热电子发射公式进行了严格推导,在推导中考虑到电子对金属比热不作贡献的事实,得出第二个公式:

i=A′T2exp(-W2/kT) (28- 2)

其中A′、W′是两个有别于A、W的系数,不过它们之间可以互相推算。

两个公式,一个与T1/2有关,一个与T2有关。里查森认为公式(28-2)可取,因为它具有更好的理论基础。两个公式都在误差范围内与实验相符,无法用实验作出判决。

1915年,里查森证明公式(28-2)中的A′是与材料无关的普适常数,于是更显示出公式(28-2)的优越。1923年,杜许曼(S.Dushman)推导出

基本上与实验相符。

后来,量子力学发展了。令人惊奇的是,1911年里查森提出的第二个热电子发射公式竟经受住了量子理论的考验。1927年——1928年,泡利和索末菲把费米-狄拉克量子统计分布用于金属电子运动,推出的热电子发射公式和里查森的公式(28-2)完全一致。

里查森1879年出生在工业器材经销商的家庭里,从小就显露天赋,12岁在中学以优异成绩获奖学金,赢得过多项竞赛,1897年靠奖学金进入剑桥大学三一学院,在J.J.汤姆孙领导的卡文迪什实验室学习。这一年正值J.J.汤姆孙发现电子。1900年里查森大学毕业,由于他对热离子学的积极钻研,学校留他在卡文迪什实验室继续研究。他的工作富于创造性,既认真实验,也注重理论。1901年在剑桥哲学学会上宣读了两篇论文,第一次提出了热离子遵守的规律,受到同行的好评。 1902年里查森被推选为三一学院委员(fellow),1906年,27岁的里查森应邀赴美,到普林斯顿大学任物理学教授,在那里继续开展热离子学的研究。热离子学(thermdionics)这个词就是他在1909年作为论文题目首先提出的。里查森给研究生讲课的讲稿于1914年出版,书名《物质的电子论》,后来成为对电子学和无线电有兴趣的学生学习的主要课本。受他指导的研究生中有K.T.康普顿和A.H.康普顿两兄弟。A.H.康普顿以发现“康普顿效应”获1927年诺贝尔物理学奖。

他的另一位研究生戴维森因发现电子衍射获1937年诺贝尔物理学奖。里查森把英国剑桥大学卡文迪什实验室的作风带到美国,对美国的科学研究和人才培养起到了广泛影响。

里查森1913年回到英国,历任国王学院、伦敦大学物理学教授,英国协会A部主席(1921年),伦敦物理学会主席(1926年——1928年)。1939年受封为爵士。 1914年以后,他除了继续研究热离子学外,还研究光电效应、磁学、化学作用引起的电子发射、电子论、量子论、氢分子光谱、软X射线和氢谱Hα及氘谱Dα的精细结构。他早年(1907年——1909年)就从热电子发射对麦克斯韦分子速度分布律作过实验验征。后于1917年指导中国研究生丁燮林(丁西林)进一步研究这个课题。丁燮林的论文发表于1921年。这是分子束方法尚未提出之前唯一可行的实验验证方法,有一定的理论价值。

在第二次世界大战期间,里查森致力于雷达、声纳、电子检测仪器以及磁控管、速调管等项目的研究。他的科学活动和无线电电子学紧密相联,不断促进无线电电子学的发展。他不愧为热离子学(热阴极电子学)的创始人。

❸ Richardson外推法能够得到高精度近似导数值的原因

Richardson外推法利用了改进的数值公式

理查森外推[法](Richardson extrapolation)是1993年经全国科学技术名词审定委员会审定发布的数学名词。

❹ 遗传算法的中心思想

遗传算法是通过大量备选解的变换、迭代和变异,在解空间中并行动态地进行全局搜索的最优化方法,由于遗传算法具有比较完备的数学模型和理论,在解决很多NP—Hard问题上具有良好的性能。

遗传算法以一种群体中的所有个体为对象,并利用随机化技术指导对一个被编码的参数空间进行高效搜索。其中选择、交叉和变异构成了遗传算法的遗传操作,参数编码、初始群体的设定、适应度函数的设计、遗传操作设计、控制参数设定五个要素组成了遗传算法的核心内容。

(4)理查逊外推算法的思想扩展阅读:

遗传算法注意事项:

用户需要注意遗传算法的优化过程中种群基因的多样性是保障避免陷入局部最优解的重要因素,如果目标函数优化结果过早收敛很可能就是因为种群的多样性不足。

为了保证种群的多样性,其中编码、适应度函数设计尤为重要。

适应度的含义就是字面意思,这个个体是否可以适应环境也即是否满足优化目标指标。因为后续需要根据适应度函数进行自然选择,因此适应度函数和你的目标函数并不需要完全一样。

❺ 遗传算法基本思想是什么

遗传算法的基本思想是基于Darwin进化论和Mendel的遗传学说的。

❻ 算法思想是什么

算法的思想是解决问题

❼ 外推加速思想到底怎么回事

让小球走斜面为的是时间容易测,不是速度或者位移。位移长度就在那儿,用尺子量一下就好了,哪有什么容易不容易?

❽ 数值分析的内容简介

《数值分析(高校教材)》系统地阐述了数值分析的基本知识,介绍了各种数值计算方法,全书共分十三章。第一章介绍数值计算的基本概念和误差分析的知识;第二章介绍非线性方程的数值解法,包括二分法、迭代法、牛顿法和弦截法;第三章介绍函数插值,包括拉格朗日插值和牛顿插值;第四章介绍数值微分及理查森外推法;第五章介绍数值积分,包括梯形法、龙贝格算法和辛普生法;第六章介绍线性方程组的求解,包括高斯消去法、解三对角线方程组的追赶法、LU分解法、雅可比迭代法、赛德尔迭代法及松弛法;第七章介绍非线性方程组的求解,包括雅可比迭代法、赛德尔迭代法、松弛法及牛顿一拉夫森法;第八章介绍样条函数在插值及数值微分中的应用;第九章介绍回归分析方法,包括一元线性回归、多元线性回归及多项式拟合;第十章介绍常微分方程的数值解,包括求解初值问题的欧拉法、四阶龙格一库塔法和求解边值问题的打靶法、有限差分法;第十一章介绍三种典型偏微分方程的数值解法,包括求解抛物型方程的显式差分、隐式差分和克拉克一尼科尔森六点格式及求解双曲型方程、椭圆型方程的有限差分法;第十二章介绍最优化方法,包括单变量函数优化的黄金分割法、插值法、无约束多变量函数优化的单纯形法和有约束优化的BOX复合形法;第十三章介绍Monte Carlo模拟的应用,包括在数值积分、数学建模、高分子科学研究中的应用。

❾ matlab,理乍得森外推法计算函数梯度,程序,求助啊!

1、外推法的MATLAB程序代码如下所示:
function yy = DEWT(f,h,a,b,gama,y0,order,varvec)
%一阶常微分方程的一般表达式的右端函数:f
%积分步长:h
%自变量取值下限:a
%自变量取值上限:b
%外推参数,参考外推公式:gama
%函数初值:y0
%外推阶数:order
%常微分方程的变量组:varvec
format long;
ArrayH = [1;2;4;6;8;12;16;24;32;48;64;96];
N = (b-a)/h;
yy = zeros(N+1,1);
for i = 2:N+1
dh = h;
s = zeros(order,1);
for j=1:order
dh = h/ArrayH(j); %不同的h值
tmpY = DELGKT2_suen(f,dh,a,a+(i-1)*h,y0,varvec); %休恩法
s(j) = tmpY((i-1)*ArrayH(j)+1);
end
tmpS = zeros(order,1);
for j=1:order-1
for k=(j+1):order
tmpS(k) = s(k)+(s(k)-s(k-1))/((ArrayH(k)/ArrayH(j))^gama-1);
end
s(1:(order-j)) = tmpS((j+1):order); %取对角值
end
yy(i) = tmpS(order);
end
format short;

阅读全文

与理查逊外推算法的思想相关的资料

热点内容
喷油螺杆制冷压缩机 浏览:579
python员工信息登记表 浏览:377
高中美术pdf 浏览:161
java实现排列 浏览:513
javavector的用法 浏览:982
osi实现加密的三层 浏览:233
大众宝来原厂中控如何安装app 浏览:916
linux内核根文件系统 浏览:243
3d的命令面板不见了 浏览:526
武汉理工大学服务器ip地址 浏览:149
亚马逊云服务器登录 浏览:525
安卓手机如何进行文件处理 浏览:71
mysql执行系统命令 浏览:930
php支持curlhttps 浏览:143
新预算法责任 浏览:444
服务器如何处理5万人同时在线 浏览:251
哈夫曼编码数据压缩 浏览:426
锁定服务器是什么意思 浏览:385
场景检测算法 浏览:617
解压手机软件触屏 浏览:350