Ⅰ 什么是AI编辑器
ai是人工智能的意思,应该是编写游戏中的ai角色脚本
Ⅱ 编译技术的发展历程
1954年至1957年间,IBM的John Backus带领一个小组开发FORTRAN语言及其编译器,使得上面的担忧不必要了。
但由于当时处理中所涉及到的大多数程序设计语言的翻译并不为人所掌握,所以这个项目的成功也伴随着巨大的辛劳。
几乎与此同时,人们也在开发着第一个编译器,Noam Chomsky开始自然语言结构的研究。使得编译器结构异常简单,甚至还带有了一些自动化。
Chomsky的研究导致了根据语言文法(grammar,结构规则)的难易程度以及识别它们所需的算法来为语言分类。文法有4个层次:0型、1型、2型和3型文法,且其中的每一个都是其前者的专门化。2型(或上下文无关文法context-free grammar)是程序设计语言中最有用的,代表着程序设计语言结构的标准方式。
人们接着又深化了生成有效的目标代码的方法,这就是最初的编译器,它们被一直使用至今。人们通常将其误称为优化技术(optimization technique),但因其从未真正地得到过被优化了的目标代码而仅仅改进了它的有效性,因此实际上应称作代码改进技术(code improvement technique)。
在70年代后期和80年代早期,大量的项目都关注于编译器其他部分的生成自动化,这其中就包括了代码生成。这些尝试并未取得多少成功,这大概是因为操作太复杂而人们又对其不甚了解。
Ⅲ 编译器的发展史
编译器
编译器,是将便于人编写,阅读,维护的高级计算机语言翻译为计算机能识别,运行的低级机器语言的程序。编译器将源程序(Source program)作为输入,翻译产生使用目标语言(Target language)的等价程序。源程序一般为高级语言(High-level language),如Pascal,C++等,而目标语言则是汇编语言或目标机器的目标代码(Object code),有时也称作机器代码(Machine code)。
一个现代编译器的主要工作流程如下:
源程序(source code)→预处理器(preprocessor)→编译器(compiler)→汇编程序(assembler)→目标程序(object code)→连接器(链接器,Linker)→可执行程序(executables)
目录 [隐藏]
1 工作原理
2 编译器种类
3 预处理器(preprocessor)
4 编译器前端(frontend)
5 编译器后端(backend)
6 编译语言与解释语言对比
7 历史
8 参见
工作原理
翻译是从源代码(通常为高级语言)到能直接被计算机或虚拟机执行的目标代码(通常为低级语言或机器言)。然而,也存在从低级语言到高级语言的编译器,这类编译器中用来从由高级语言生成的低级语言代码重新生成高级语言代码的又被叫做反编译器。也有从一种高级语言生成另一种高级语言的编译器,或者生成一种需要进一步处理的的中间代码的编译器(又叫级联)。
典型的编译器输出是由包含入口点的名字和地址以及外部调用(到不在这个目标文件中的函数调用)的机器代码所组成的目标文件。一组目标文件,不必是同一编译器产生,但使用的编译器必需采用同样的输出格式,可以链接在一起并生成可以由用户直接执行的可执行程序。
编译器种类
编译器可以生成用来在与编译器本身所在的计算机和操作系统(平台)相同的环境下运行的目标代码,这种编译器又叫做“本地”编译器。另外,编译器也可以生成用来在其它平台上运行的目标代码,这种编译器又叫做交叉编译器。交叉编译器在生成新的硬件平台时非常有用。“源码到源码编译器”是指用一种高级语言作为输入,输出也是高级语言的编译器。例如: 自动并行化编译器经常采用一种高级语言作为输入,转换其中的代码,并用并行代码注释对它进行注释(如OpenMP)或者用语言构造进行注释(如FORTRAN的DOALL指令)。
预处理器(preprocessor)
作用是通过代入预定义等程序段将源程序补充完整。
编译器前端(frontend)
前端主要负责解析(parse)输入的源程序,由词法分析器和语法分析器协同工作。词法分析器负责把源程序中的‘单词’(Token)找出来,语法分析器把这些分散的单词按预先定义好的语法组装成有意义的表达式,语句 ,函数等等。 例如“a = b + c;”前端词法分析器看到的是“a, =, b , +, c;”,语法分析器按定义的语法,先把他们组装成表达式“b + c”,再组装成“a = b + c”的语句。 前端还负责语义(semantic checking)的检查,例如检测参与运算的变量是否是同一类型的,简单的错误处理。最终的结果常常是一个抽象的语法树(abstract syntax tree,或 AST),这样后端可以在此基础上进一步优化,处理。
编译器后端(backend)
编译器后端主要负责分析,优化中间代码(Intermediate representation)以及生成机器代码(Code Generation)。
一般说来所有的编译器分析,优化,变型都可以分成两大类: 函数内(intraproceral)还是函数之间(interproceral)进行。很明显,函数间的分析,优化更准确,但需要更长的时间来完成。
编译器分析(compiler analysis)的对象是前端生成并传递过来的中间代码,现代的优化型编译器(optimizing compiler)常常用好几种层次的中间代码来表示程序,高层的中间代码(high level IR)接近输入的源程序的格式,与输入语言相关(language dependent),包含更多的全局性的信息,和源程序的结构;中层的中间代码(middle level IR)与输入语言无关,低层的中间代码(Low level IR)与机器语言类似。 不同的分析,优化发生在最适合的那一层中间代码上。
常见的编译分析有函数调用树(call tree),控制流程图(Control flow graph),以及在此基础上的 变量定义-使用,使用-定义链(define-use/use-define or u-d/d-u chain),变量别名分析(alias analysis),指针分析(pointer analysis),数据依赖分析(data dependence analysis)等等。
上述的程序分析结果是编译器优化(compiler optimization)和程序变形(compiler transformation)的前提条件。常见的优化和变新有:函数内嵌(inlining),无用代码删除(Dead code elimination),标准化循环结构(loop normalization),循环体展开(loop unrolling),循环体合并,分裂(loop fusion,loop fission),数组填充(array padding),等等。 优化和变形的目的是减少代码的长度,提高内存(memory),缓存(cache)的使用率,减少读写磁盘,访问网络数据的频率。更高级的优化甚至可以把序列化的代码(serial code)变成并行运算,多线程的代码(parallelized,multi-threaded code)。
机器代码的生成是优化变型后的中间代码转换成机器指令的过程。现代编译器主要采用生成汇编代码(assembly code)的策略,而不直接生成二进制的目标代码(binary object code)。即使在代码生成阶段,高级编译器仍然要做很多分析,优化,变形的工作。例如如何分配寄存器(register allocatioin),如何选择合适的机器指令(instruction selection),如何合并几句代码成一句等等。
编译语言与解释语言对比
许多人将高级程序语言分为两类: 编译型语言 和 解释型语言 。然而,实际上,这些语言中的大多数既可用编译型实现也可用解释型实现,分类实际上反映的是那种语言常见的实现方式。(但是,某些解释型语言,很难用编译型实现。比如那些允许 在线代码更改 的解释型语言。)
历史
上世纪50年代,IBM的John Backus带领一个研究小组对FORTRAN语言及其编译器进行开发。但由于当时人们对编译理论了解不多,开发工作变得既复杂又艰苦。与此同时,Noam Chomsky开始了他对自然语言结构的研究。他的发现最终使得编译器的结构异常简单,甚至还带有了一些自动化。Chomsky的研究导致了根据语言文法的难易程度以及识别它们所需要的算法来对语言分类。正如现在所称的Chomsky架构(Chomsky Hierarchy),它包括了文法的四个层次:0型文法、1型文法、2型文法和3型文法,且其中的每一个都是其前者的特殊情况。2型文法(或上下文无关文法)被证明是程序设计语言中最有用的,而且今天它已代表着程序设计语言结构的标准方式。分析问题(parsing problem,用于上下文无关文法识别的有效算法)的研究是在60年代和70年代,它相当完善的解决了这个问题。现在它已是编译原理中的一个标准部分。
有限状态自动机(Finite Automaton)和正则表达式(Regular Expression)同上下文无关文法紧密相关,它们与Chomsky的3型文法相对应。对它们的研究与Chomsky的研究几乎同时开始,并且引出了表示程序设计语言的单词的符号方式。
人们接着又深化了生成有效目标代码的方法,这就是最初的编译器,它们被一直使用至今。人们通常将其称为优化技术(Optimization Technique),但因其从未真正地得到过被优化了的目标代码而仅仅改进了它的有效性,因此实际上应称作代码改进技术(Code Improvement Technique)。
当分析问题变得好懂起来时,人们就在开发程序上花费了很大的功夫来研究这一部分的编译器自动构造。这些程序最初被称为编译器的编译器(Compiler-compiler),但更确切地应称为分析程序生成器(Parser Generator),这是因为它们仅仅能够自动处理编译的一部分。这些程序中最着名的是Yacc(Yet Another Compiler-compiler),它是由Steve Johnson在1975年为Unix系统编写的。类似的,有限状态自动机的研究也发展了一种称为扫描程序生成器(Scanner Generator)的工具,Lex(与Yacc同时,由Mike Lesk为Unix系统开发)是这其中的佼佼者。
在70年代后期和80年代早期,大量的项目都贯注于编译器其它部分的生成自动化,这其中就包括了代码生成。这些尝试并未取得多少成功,这大概是因为操作太复杂而人们又对其不甚了解。
编译器设计最近的发展包括:首先,编译器包括了更加复杂算法的应用程序它用于推断或简化程序中的信息;这又与更为复杂的程序设计语言的发展结合在一起。其中典型的有用于函数语言编译的Hindley-Milner类型检查的统一算法。其次,编译器已越来越成为基于窗口的交互开发环境(Interactive Development Environment,IDE)的一部分,它包括了编辑器、连接程序、调试程序以及项目管理程序。这样的IDE标准并没有多少,但是对标准的窗口环境进行开发已成为方向。另一方面,尽管近年来在编译原理领域进行了大量的研究,但是基本的编译器设计原理在近20年中都没有多大的改变,它现在正迅速地成为计算机科学课程中的中心环节。
在九十年代,作为GNU项目或其它开放源代码项目的一部分,许多免费编译器和编译器开发工具被开发出来。这些工具可用来编译所有的计算机程序语言。它们中的一些项目被认为是高质量的,而且对现代编译理论感性趣的人可以很容易的得到它们的免费源代码。
大约在1999年,SGI公布了他们的一个工业化的并行化优化编译器Pro64的源代码,后被全世界多个编译器研究小组用来做研究平台,并命名为Open64。Open64的设计结构好,分析优化全面,是编译器高级研究的理想平台。
编译器是一种特殊的程序,它可以把以特定编程语言写成的程序变为机器可以运行的机器码。我们把一个程序写好,这时我们利用的环境是文本编辑器。这时我程序把程序称为源程序。在此以后程序员可以运行相应的编译器,通过指定需要编译的文件的名称就可以把相应的源文件(通过一个复杂的过程)转化为机器码了。
编译器工作方法
首先编译器进行语法分析,也就是要把那些字符串分离出来。然后进行语义分析,就是把各个由语法分析分析出的语法单元的意义搞清楚。最后生成的是目标文件,我们也称为obj文件。再经过链接器的链接就可以生成最后的可执行代码了。有些时候我们需要把多个文件产生的目标文件进行链接,产生最后的代码。我们把一过程称为交叉链接。
Ⅳ 编译器的历史
20世纪50年代,IBM的John Backus带领一个研究小组对FORTRAN语言及其编译器进行开发。但由于当时人们对编译理论了解不多,开发工作变得既复杂又艰苦。与此同时,Noam Chomsky开始了他对自然语言结构的研究。他的发现最终使得编译器的结构异常简单,甚至还带有了一些自动化。Chomsky的研究导致了根据语言文法的难易程度以及识别它们所需要的算法来对语言分类。正如Chomsky架构(Chomsky Hierarchy),它包括了文法的四个层次:0型文法、1型文法、2型文法和3型文法,且其中的每一个都是其前者的特殊情况。2型文法(或上下文无关文法)被证明是程序设计语言中最有用的,而且今天它已代表着程序设计语言结构的标准方式。分析问题(parsing problem,用于上下文无关文法识别的有效算法)的研究是在60年代和70年代,它相当完善的解决了这个问题。它已是编译原理中的一个标准部分。
有限状态自动机(Finite Automation)和正则表达式(Regular Expression)同上下文无关文法紧密相关,它们与Chomsky的3型文法相对应。对它们的研究与Chomsky的研究几乎同时开始,并且引出了表示程序设计语言的单词的符号方式。
人们接着又深化了生成有效目标代码的方法,这就是最初的编译器,它们被一直使用至今。人们通常将其称为优化技术(Optimization Technique),但因其从未真正地得到过被优化了的目标代码而仅仅改进了它的有效性,因此实际上应称作代码改进技术(Code Improvement Technique)。
当分析问题变得好懂起来时,人们就在开发程序上花费了很大的功夫来研究这一部分的编译器自动构造。这些程序最初被称为编译器的编译器(Compiler-compiler),但更确切地应称为分析程序生成器(Parser Generator),这是因为它们仅仅能够自动处理编译的一部分。这些程序中最着名的是Yacc(Yet Another Compiler-compiler),它是由Steve Johnson在1975年为Unix系统编写的。类似的,有限状态自动机的研究也发展了一种称为扫描程序生成器(Scanner Generator)的工具,Lex(与Yacc同时,由Mike Lesk为Unix系统开发)是这其中的佼佼者。
在20世纪70年代后期和80年代早期,大量的项目都贯注于编译器其它部分的生成自动化,这其中就包括了代码生成。这些尝试并未取得多少成功,这大概是因为操作太复杂而人们又对其不甚了解。
编译器设计最近的发展包括:首先,编译器包括了更加复杂算法的应用程序它用于推断或简化程序中的信息;这又与更为复杂的程序设计语言的发展结合在一起。其中典型的有用于函数语言编译的Hindley-Milner类型检查的统一算法。其次,编译器已越来越成为基于窗口的交互开发环境(Interactive Development Environment,IDE)的一部分,它包括了编辑器、连接程序、调试程序以及项目管理程序。这样的IDE标准并没有多少,但是对标准的窗口环境进行开发已成为方向。另一方面,尽管在编译原理领域进行了大量的研究,但是基本的编译器设计原理在近20年中都没有多大的改变,它正迅速地成为计算机科学课程中的中心环节。
在20世纪90年代,作为GNU项目或其它开放源代码项目标一部分,许多免费编译器和编译器开发工具被开发出来。这些工具可用来编译所有的计算机程序语言。它们中的一些项目被认为是高质量的,而且对现代编译理论感兴趣的人可以很容易的得到它们的免费源代码。
大约在1999年,SGI公布了他们的一个工业化的并行化优化编译器Pro64的源代码,后被全世界多个编译器研究小组用来做研究平台,并命名为Open64。Open64的设计结构好,分析优化全面,是编译器高级研究的理想平台。
编译器相关专业术语: 1. compiler编译器;编译程序 2. on-line compiler 连线编译器 3. precompiler 预编译器 4. serial compiler 串行编译器 5. system-specific compiler 特殊系统编译器 6. Information Presentation Facility Compiler 信息展示设施编译器 7. Compiler Monitor System 编译器监视系统
Ⅳ 有关于AI编辑器的问题
AI要用触发器加载才可以的
你没有设置吧
如果你想改成对战的AI的话
要用你做好的AI文件代替原来的AI啊
其实直接改就行
Ⅵ 魔兽编辑器的AI编辑器怎么用
在AI 编辑器中你可以创造人工智能来指挥部队的发展和进攻战略。
通用
名称 - 命名你的AI。
种族 - 选择你所要创建AI的种族。自定义种族选项允许综合使用自定义单位,技能和升级科技。记得要输入自定义数据。
选项
设置玩家名字 - 激活此项以设置游戏中玩家的名字为所输入的AI名字。
对战 - 为标准对战游戏使用混战AI。混战AI趋向于与同盟玩家共同进攻和防御。
目标英雄 - 激活此项后,AI将在战斗中以更高的优先权攻击英雄。
修理建筑 - 激活此项以使工人在需要的时候自动修理建筑。
英雄逃跑 - 激活此项后,英雄在受重伤或无法攻击时将会试图逃离战场。
单位逃跑 - 激活此项后,非英雄单位在受重伤或无法攻击时将会试图逃离战场。
组队逃跑 - 激活此项后,攻击组在失去优势时将会试图撤离战场。
决不仁慈 - 激活此项后,AI会寻找敌人显得脆弱或劣势的机会发动进攻。这种进攻符合敌人-主攻进攻优先权。
受伤忽略 - 激活此项后,在集结进攻力量的时候,忽略生命值低于50%的单位
去除受伤者 -激活此项后,会周期性的把受伤的单位送回家(或者送到生命之泉)回复生命。
拾取物品 - 激活此项后,英雄会拾取他们碰到的任何有用的物品。
慢速采矿 - 激活此项后,一个工人一次只允许采集一个单位的金子或者木材,而不是通常的采集数量。这给AI的经济发展带来了巨大的障碍。
允许基地变换 -这个选项允许AI潜在的选择一个新的地点来作为采矿和部队撤退的基地。
聪明的炮火 - 激活此项后,炮火单位会在可能的情况下冲上前用攻城模式攻击敌人的基地。
自定义数据
输入 - 输入由对象编辑器输出的包含你的AI的自定义数据。
输出 - 输出自定义数据以检测对象编辑器中他人的自定义AI数据。
清除 - 从你的AI中清除所有自定义数据。
环境 - 环境可以在此配置,其形式与开关编辑器相似,但专用且仅用于AI编辑器。在此创建的环境可以通过AI编辑器使用。
在创建AI环境时一种有帮助的概念是AI首领,分为两种类型,进攻和防御。首领是无形的单位,扮演领导AI的角色。进攻AI首领停留在基本建筑处(城镇大厅等),等待一轮攻击的组建。一旦组建完毕,攻击AI首领领导攻击组进攻当前优先攻击目标,然后返回基地。防御首领停留在基地和首个金矿之间,除非基地遭到进攻。防御首领然后会领导防御力量进攻入侵者。
英雄
英雄使用 - 选择你想让AI训练的英雄。可用英雄基于你在一般标签中所选择的种族。
训练顺序 - 修改AI将运作的训练顺序。训练顺序与与英雄使用一项中所选的英雄相符。
技能选择 - 修改AI英雄将要学习技能的顺序。
建筑
基础建筑 - 选择哪个单位会被用来建造AI的基本建筑。在此可用的选项与在一般标签中所选的种族相符。
采矿建筑 - 选择哪个单位会被用来建造AI的采矿建筑。着通常只被不死族使用,但其他有废弃金矿技能的单位也可在此选择。
建筑优先 - AI的建造,研究和升级顺序在此指定。当一个单位死亡,它会被AI所代替,除非AI资源不足或是某种状况阻止了它。在此建造优先权共有五项:
建造 - 将会建造,研究和升级什么。
全部 - 记录同类型建筑的优先权数。没有括号的数字表示所有AI的总和。在括号内的数字只表示指定城镇内的总和。
食物 - 记录食物数量以及食物上限。当一种优先使食物使用超过了食物上限,该优先权为红色。
城镇 - 指定建筑顺序执行的处所。
环境 - 如果没有遇到在此指定的环境,AI将会跳过该建造优先权而进行下一项。环境可以在一般标签下创建,或者自行创建为该优先权专用。
采钱工人 - 选择哪个单位被AI用做采矿单位。该此可用的选项符合一般标签中所选择的种族。
伐木工人 - 选择哪个单位被AI用做伐木单位。该此可用的选项符合一般标签中所选择的种族。
采集优先权 - AI的采集顺序在此指定。采集优先权有以下四项:
采集 - 你想让工人收集的资源。
工人 - 共享同一优先权的工人数量。
城镇 - 工人在哪采集。
环境 - 如果没有遇到在此指定的环境,AI将会跳过该采集优先权而进行下一项。环境可以在一般标签下创建,或者自行创建为该优先权专用。
攻击
攻击组 - AI的攻击组在此创建与列出。
当前组 - 攻击组在此得到定义。每个攻击组有3项条目。
单位类型 - 单位的类型。可用单位取决于一般标签中所选择的种族。
数量 - 匹配特定所选单位类型的单位数量。
环境 - 如果没有遇到在此指定的环境,当前组将不会包含此条目。环境可以在一般标签下创建,或者自行创建为该优先权专用。
攻击轮次 - 你的攻击轮次顺序在此指定。每个攻击组有3项条目。
# - 轮次数,这可以由整数对比环境中参考。
攻击组 - 被分配到该轮次的攻击组名称。
延迟 - 下一攻击轮次开始前间隔的时间。
最小力量 - 一次进攻轮次所必要的最少单位数。
初始化延迟 - 第一轮进攻所需要的时间。
重复轮次 - 从上一轮结束后,还会重复多少轮。
目标优先权 - 各轮进攻的目标。这里有两个项目。
目标 - 选择AI的进攻目标。列表中越高的目标就有越早的优先权。
环境 - 如果没有遇到在此指定的环境,AI将会跳过该目标而进行下一项。环境可以在一般标签下创建,或者自行创建为该优先权专用。
测试设置
此标签是专用来为AI测试混战地图的。对于自定义地图,输入一个输出的AI文件到你的输入管理器并使用测试地图命令。
游戏速度 - 修改测试AI时所使用的游戏速度。
游戏选项 - 取消战争迷雾,允许显示全图。取消胜利/失败条件以避免不必要的中断。
地图文件 - 设置所要测试AI的地图。
玩家 - 在此进行单个玩家设置。每个玩家都有以下选项: :
控制 - 选择玩家栏的控制者。
种族 - 选择控制者的游戏种族。
队伍 - 选择控制者所在组。
颜色 - 选择控制者的组颜色。
障碍 - 选择对控制者的障碍。
AI - 如果电脑被选为控制者,可在此选择AI。
AI难度 - 如果电脑被选为控制者,可选择AI难度。AI难度可参考你的AI环境。
AI脚本 - 如果电脑被选为控制者且AI选择了自定义,一个导入的AI将使用该玩家栏。
Ⅶ 难道编译器AI到帮人类善做主张的跳过写的代码不执行自作聪明的优化
从代码上看,连续对同一个内存单元赋值,连续执行四次,和只执行最后一次没有区别,如果编译器优化能过滤掉这种没有效率的代码,你应该感谢编译器的开发人员作出的这种提高程序执行效率的努力。
况且一般编辑器都都会提供是否优化代码和优化等级的选项,供开发者选择。
Ⅷ 请问,编译软件最早是由谁发明出来的
Grave of Grace
后记
Grace Hopper是个非常amazing的人 (常被称为Amazing Grace),崇拜她的人相当多。虽然她的事迹很多,但是还有很多有类似事迹的人并没有像她这样受到众人的崇拜。由其中一点我们可以看出来:从1947年开始 (二战结束后第二年),她获得了第一个荣誉博士学位 (宾州大学),从那以后,她先后被40多所大学授予荣誉博士学位,其中包括芝加哥大学、华盛顿大学、马里兰大学等知名学府。各种妇女社会团体和学术组织都曾授予Grace各种称号和奖励。1991年,布什总统在白宫授予她的“美国国家技术奖” (National Medal of Technology) 是其中的最高奖项,她也是至今惟一获此殊荣的美国女性。她的名言有很多,她自己最喜欢的,也是她最喜欢对所谓的“年轻人”说的 (在她年老时,她所谓的年轻人就是“年龄不到我的一半的人就叫做年轻人”),这句话是:
“A ship in port is safe, but that is not what ships are built for.”
语录
下面Grace的语录中有几句比较有意思的话。
From then on, when anything went wrong with a computer, we said it had bugs in it.
The most dangerous phrase in the language is, “We’ve always done it this way.”
Humans are allergic to change. They love to say, “We’ve always done it this way.” I try to fight that. That’s why I have a clock on my wall that runs counter-clockwise.
Leadership is a two-way street, loyalty up and loyalty down. Respect for one’s superiors; care for one’s crew.
One accurate measurement is worth a thousand expert opinions.
Someday, on the corporate balance sheet, there will be an entry which reads, “Information”; For in most cases, the information is more valuable than the hardware which processes it.
We’re flooding people with information. We need to feed it through a processor. A human must turn information into intelligence or knowledge. We’ve tended to forget that no computer will ever ask a new question.
To me programming is more than an important practical art. It is also a gigantic undertaking in the foundations of knowledge.
They told me computers could only do arithmetic.
In pioneer days they used oxen for heavy pulling, and when one ox couldn’t budge a log, they didn’t try to grow a larger ox. We shouldn’t be trying for bigger computers, but for more systems of computers.
Life was simple before World War II. After that, we had systems.
We went overboard on management and forgot about leadership. It might help if we ran the MBAs out of Washington.
At any given moment, there is always a line representing what your boss will believe. If you step over it, you will not get your budget. Go as close to that line as you can.
I seem to do a lot of retiring.
I handed my passport to the immigration officer, and he looked at it and looked at me and said, “What are you?”
参考
维基网络:
http://en.wikipedia.org/wiki/Grace_Hopper
国立中央大学数学系:
http://li.math.ncu.e.tw/bcc16/pool/3.06.shtml
耶鲁大学计算机系:
http://cs-www.cs.yale.e/homes/tap/Files/hopper-story.html
计算机先驱:
http://202.207.0.245:9001/jisuanjifazhanshi/xianqu/18.htm
This entry was posted in网络3Cand taggedcompiler,debug,Grace Murray Hopper,传记,发明,编译器,起源. Bookmark thepermalink.Post a commentor leave a trackback:Trackback URL.
Ⅸ 编译原理的发展历程
在20世纪40年代,由于冯·诺伊曼在存储-程序计算机方面的先锋作用,编写一串代码或程序已成必要,这样计算机就可以执行所需的计算。开始时,这些程序都是用机器语言 (machine language )编写的。机器语言就是表示机器实际操作的数字代码,例如:
C7 06 0000 0002 表示在IBM PC 上使用的Intel 8x86处理器将数字2移至地址0 0 0 0 (16进制)的指令。
但编写这样的代码是十分费时和乏味的,这种代码形式很快就被汇编语言(assembly language )代替了。在汇编语言中,都是以符号形式给出指令和存储地址的。例如,汇编语言指令 MOV X,2 就与前面的机器指令等价(假设符号存储地址X是0 0 0 0 )。汇编程序(assembler )将汇编语言的符号代码和存储地址翻译成与机器语言相对应的数字代码。
汇编语言大大提高了编程的速度和准确度,人们至今仍在使用着它,在编码需要极快的速度和极高的简洁程度时尤为如此。但是,汇编语言也有许多缺点:编写起来也不容易,阅读和理解很难;而且汇编语言的编写严格依赖于特定的机器,所以为一台计算机编写的代码在应用于另一台计算机时必须完全重写。
发展编程技术的下一个重要步骤就是以一个更类似于数学定义或自然语言的简洁形式来编写程序的操作,它应与任何机器都无关,而且也可由一个程序翻译为可执行的代码。例如,前面的汇编语言代码可以写成一个简洁的与机器无关的形式 x = 2。
在1954年至1957年期间,IBM的John Backus带领的一个研究小组对FORTRAN语言及其编译器的开发,使得上面的担忧不必要了。但是,由于当时处理中所涉及到的大多数程序设计语言的翻译并不为人所掌握,所以这个项目的成功也伴随着巨大的辛劳。几乎与此同时,人们也在开发着第一个编译器, Noam Chomsky开始了他的自然语言结构的研究。他的发现最终使得编译器结构异常简单,甚至还带有了一些自动化。Chomsky的研究导致了根据语言文法(grammar ,指定其结构的规则)的难易程度以及识别它们所需的算法来为语言分类。正如现在所称的-与乔姆斯基分类结构(Chomsky hierarchy )一样-包括了文法的4个层次:0型、1型、2型和3型文法,且其中的每一个都是其前者的专门化。2型(或上下文无关文法(context-free grammar ))被证明是程序设计语言中最有用的,而且今天它已代表着程序设计语言结构的标准方式。
分析问题( parsing problem ,用于限定上下文无关语言的识别的有效算法)的研究是在20世纪60年代和70年代,它相当完善地解决了这一问题, 现在它已是编译理论的一个标准部分。它们与乔姆斯基的3型文法相对应。对它们的研究与乔姆斯基的研究几乎同时开始,并且引出了表示程序设计语言的单词(或称为记号)的符号方式。
人们接着又深化了生成有效的目标代码的方法,这就是最初的编译器,它们被一直使用至今。人们通常将其误称为优化技术(optimization technique ),但因其从未真正地得到过被优化了的目标代码而仅仅改进了它的有效性,因此实际上应称作代码改进技术(code improvement technique )。
这些程序最初被称为编译程序-编译器,但更确切地应称为分析程序生成器 (parser generator ),这是因为它们仅仅能够自动处理编译的一部分。这些程序中最着名的是 Yacc (yet another compiler- compiler),它是由Steve Johnson在1975年为Unix系统编写的。
类似地,有穷自动机的研究也发展了另一种称为扫描程序生成器 (scanner generator )的工具,Lex (与Yacc同时,由Mike Lesk为Unix系统开发的)是这其中的佼佼者。在20世纪70年代后期和80年代早期,大量的项目都关注于编译器其他部分的生成自动化,这其中就包括代码生成。这些尝试并未取得多少成功,这大概是因为操作太复杂而人们又对其不甚了解。
编译器设计最近的发展包括:首先,编译器包括了更为复杂的算法的应用程序,它用于推断或简化程序中的信息;这又与更为复杂的程序设计语言(可允许此类分析)的发展结合在一起。其中典型的有用于函数语言编译的Hindle y - Milner类型检查的统一算法。
其次,编译器已越来越成为基于窗口的交互开发环境(interactive development environment,IDE )的一部 分,它包括了编辑器、链接程序、调试程序以及项目管理程序。这样的IDE的标准并没有多少, 但是已沿着这一方向对标准的窗口环境进行开发了。