导航:首页 > 源码编译 > 模版是编译时多态的一个例子

模版是编译时多态的一个例子

发布时间:2022-07-14 03:41:37

⑴ 关于静态模板类实现多态,请仔细讲解,给高分,谢谢

在调用参数的某个方法的中,如Fun(type a)
如果这个参数(a)的类型是基类,那么调用a的方法就是常见的面向对象的多态。a.fun1.

如果Fun(type a)变为一个模板方法,并且参数类型是T
templete<typename T>
Fun(T a)
那么a.fun1 这个时候就会在编译期根据T的类型,调用相应的方法,来实现多态。

⑵ C++模板 多态问题

不需要采纳,给出一些启发,希对你有用,你一直调用getN()函数,但在类声明中没看到getN()函数,你的重载作用看样子是重载的类的操作,而你的参数用的是T &t,只是一个变量引用,类似于 int &n,并没有作用于类,建议参数用Sample<T> &s,然后用*this深度复制,这样,这个模板不仅能用于引用,也能用于指针,记住,T只代表类型,不代表类,在最新的编译器中模板的声明是template<typename T>直接表明了T的身份,只是一个类型,在实例中会替换为int,double等等

⑶ c++标准模板库中什么地方使用了模板多态

C++是一种静态数据类型检查的,支持多重编程范式的通用程序设计语言。它支持过程序程序设计、数据抽象、面向对象程序设计、泛型程序设计等多种程序设计风格。 根据Effective C++第三版第一条款的描述,现在C++由以下四个“子语言”组成: 1、C子语言。C++支持C语言的几乎全部功能,在语法上与C语言仅有极微妙的差别(如括号表达式的左右值性,具体请参考C++标准文献)。 2、面向对象的C++。C++首先作为一门面向对象的语言而闻名,这个特点在这里不再详述。 3、泛型编程语言。C++强大(但容易失控的)模板功能使它能在编译期完成许多工作,从而大大提高运行期效率。 C++语言发展大概可以分为三个阶段:第一阶段从80年代到1995年。这一阶段C++语言基本上是传统类型上的面向对象语言,并且凭借着接近C语言的效率,在工业界使用的开发语言中占据了相当大份额;第二阶段从1995年到2000年,这一阶段由于标准模板库(STL)和后来的Boost等程序库的出现,泛型程序设计在C++中占据了越来越多的比重性。

⑷ 什么叫做多态性 在C++中是如何实现多态的

C++中的多态(虽然多态不是C++所特有的,但是C++中的多态确实是很特殊的)分为静多态和动多态(也就是静态绑定和动态绑定两种现象),静动的区别主要在于这种绑定发生在编译期还是运行期,发生在编译期的是静态绑定,也就是静多态;发生在运行期的则是动态绑定,也就是动多态。

静多态可以通过模板和函数重载来实现(之所说C++中的多态主要还是因为模板这个东西),下面举两个例子:
1)函数模板
template <typename T>
T max(const T& lsh, const T& rhs)
{
return (lsh > rhs) ? lsh : rhs;
}
返回两个任意类型对象的最大值(对象),前提是该类型能够使用>运算符进行比较,并且返回值是bool类型。
使用:
int a = 3; int b = 4;
cout << max(a, b) << endl;
float c = 2.4; float d = 1.2;
cout << max(c, d) << endl;
输出结果为:
4
2.4
这种绑定发生在编译期,这是由于模板的实例化是发生在编译期的,即在编译时编译器发现你调用max(a, b)时就自动生成一个函数
int max(const int& lsh, const int& rhs)
{
return (lsh > rhs) ? lsh : rhs;
}
即将所有的T替换成int;
当你调用max(c, d)时就自动生成一个函数
float max(const float& lsh, const float& rhs)
{
return (lsh > rhs) ? lsh : rhs;
}
之所以说开始的函数定义是函数模板,就是因为他就像个模子似的,你可以用铝作为原料也可以用石膏或者铜。
2)函数重载:
int max (int a, int b)
{
return (a > b) ? a : b;
}
int max (int a, int b, int c)
{
return max(max(a, b), c);
}
两个函数名称一样,参数类型或个数不完全相同,返回值一样(这个不重要)。
使用:
int a = 3, b = 4, c = 5;
cout << max(a, b) << endl;
cout << max(a, b, c) << endl;
输出结果为:
4
5
确定函数的过程也发生在编译器,当你使用max(a, b),编译器发现只有两个参数,那么就调用只有两个参数的函数版本,当使用max(a, b, c)时,编译器则使用有3个参数的版本。
通过上面的两个例子,你还可以使用更为方便的模板函数重载:
template <typename T>
T max(const T& lsh, const T& rhs)
{
return (lsh > rhs) ? lsh : rhs;
}

template <typename T>
T max(const T& a, const T& b, const T& c)
{
return max(max(a, b), c);
}
使用
float a = 3.6, b = 1.2, c = 7.8;
cout << max(a, b, c) << endl;
输出:
7.8
通过参数个数和类型,编译器自动生成和调用对应得函数版本!

动多态则是通过继承、虚函数(virtual)、指针来实现。
class A {
public:
virtual void func() const {
coust << “A::func()” << endl;
}
}

class B : public A {
public:
virtual void func() const {
coust << “B::func()” << endl;
}
}
使用:
A a* = B();
a->func();
输出:
B::func()
编译期是不调用任何函数的,编译器编译到a->func()时只是检查有没有语法问题,经过检查没有。编译器并不知道调用的是A版本的func()还是B版本的func(),由于a是一个指向B对象的指针,所以a只知道它指向的是一个A类型(或者能转换成A类型)的对象。通常集成体系就说明了(由于是公有继承)B是一种A。在运行期,a要调用a所指向对象的func()函数,就对它指向的对象下达调用func()的命令,结果a所指向的是一个B对象,这个对象就调用了自己版本(B版)的func()函数,所以输出时B::func()

总结:
在编译期决定你应该调用哪个函数的行为是静态绑定(static-binding),这种现象就是静多态。
在运行期决定应该调用哪中类型对象的函数的行为是动态绑定(dynamic-binding),这种现象就是动多态!

注:由于这是我花了有限的时间总结的,语言应用能力比较差,还有比如类模板(静多态和动多态组合的情况)都没有说,最近比较忙,请见谅!

如果还不是很懂,我建议你看C++Primer 4th Edition,讲的比较清晰,但是比较零散!

⑸ 什么是多态

多态首先是建立在继承的基础上的,先有继承才能有多态。多态是指不同的子类在继承父类后分别都重写覆盖了父类的方法,即父类同一个方法,在继承的子类中表现出不同的形式。多态成立的另一个条件是在创建子类时候必须使用父类new子类的方式。

多态(Polymorphism)按字面的意思就是“多种状态”。在面向对象语言中,接口的多种不同的实现方式即为多态。引用Charlie Calverts对多态的描述——多态性是允许你将父对象设置成为一个或更多的他的子对象相等的技术,赋值之后,父对象就可以根据当前赋值给它的子对象的特性以不同的方式运作(摘自“Delphi4编程技术内幕”)。

简单的说,就是一句话:允许将子类类型的指针赋值给父类类型的指针。多态性在Object Pascal和C++中都是通过虚函数实现的。

拓展资料:

多态指同一个实体同时具有多种形式。它是面向对象程序设计(OOP)的一个重要特征。如果一个语言只支持类而不支持多态,只能说明它是基于对象的,而不是面向对象的。C++中的多态性具体体现在运行和编译两个方面。运行时多态是动态多态,其具体引用的对象在运行时才能确定。编译时多态是静态多态,在编译时就可以确定对象使用的形式。

多态:同一操作作用于不同的对象,可以有不同的解释,产生不同的执行结果。在运行时,可以通过指向基类的指针,来调用实现派生类中的方法。

C++中,实现多态有以下方法:虚函数,抽象类,覆盖,模板(重载和多态无关)。

OC中的多态:不同对象对同一消息的不同响应.子类可以重写父类的方法。

多态就是允许方法重名 参数或返回值可以是父类型传入或返回。

多态也指生物学中腔肠动物的特殊的生活方式。水螅态与水母态的世代交替现象。

把不同的子类对象都当作父类来看,可以屏蔽不同子类对象之间的差异,写出通用的代码,做出通用的编程,以适应需求的不断变化。

赋值之后,父类型的引用就可以根据当前赋值给它的子对象的特性以不同的方式运作。也就是说,父亲的行为像儿子,而不是儿子的行为像父亲。

使用继承性的结果就是当创建了一个类的家族,在认识这个类的家族时,就是把子类的对象当作基类的对象,这种认识又叫作upcasting(向上转型)。这样认识的重要性在于:我们可以只针对基类写出一段程序,但它可以适应于这个类的家族,因为编译器会自动找出合适的对象来执行操作。这种现象又称为多态性。而实现多态性的手段又叫称动态绑定(dynamic binding)。

简单的说,建立一个父类对象的引用,它所指对象可以是这个父类的对象,也可以是它的子类的对象。java中当子类拥有和父类同样的函数,当通过这个父类对象的引用调用这个函数的时候,调用到的是子类中的函数。

⑹ C++的多态性能应用在什么地方举个例子

C++多态技术
摘要

本文描述了C++中的各种多态性。重点阐述了面向对象的动态多态和基于模板的静态多态,并初步探讨了两种技术的结合使用。

关键词

多态 继承 虚函数 模板 宏 函数重载 泛型编程 泛型模式

导言

多态(polymorphism)一词最初来源于希腊语polumorphos,含义是具有多种形式或形态的情形。在程序设计领域,一个广泛认可的定义是“一种将不同的特殊行为和单个泛化记号相关联的能力”。和纯粹的面向对象程序设计语言不同,C++中的多态有着更广泛的含义。除了常见的通过类继承和虚函数机制生效于运行期的动态多态(dynamic polymorphism)外,模板也允许将不同的特殊行为和单个泛化记号相关联,由于这种关联处理于编译期而非运行期,因此被称为静态多态(static polymorphism)。
事实上,带变量的宏和函数重载机制也允许将不同的特殊行为和单个泛化记号相关联。然而,习惯上我们并不将它们展现出来的行为称为多态(或静态多态)。今天,当我们谈及多态时,如果没有明确所指,默认就是动态多态,而静态多态则是指基于模板的多态。不过,在这篇以C++各种多态技术为主题的文章中,我们首先还是回顾一下C++社群争论已久的另一种“多态”:函数多态(function polymorphism),以及更不常提的“宏多态(macro polymorphism)”。

函数多态

也就是我们常说的函数重载(function overloading)。基于不同的参数列表,同一个函数名字可以指向不同的函数定义:

// overload_poly.cpp

#include <iostream>
#include <string>

// 定义两个重载函数

int my_add(int a, int b)
{
return a + b;
}

int my_add(int a, std::string b)
{
return a + atoi(b.c_str());
}

int main()
{
int i = my_add(1, 2); // 两个整数相加
int s = my_add(1, "2"); // 一个整数和一个字符串相加
std::cout << "i = " << i << "\n";
std::cout << "s = " << s << "\n";
}

根据参数列表的不同(类型、个数或兼而有之),my_add(1, 2)和my_add(1, "2")被分别编译为对my_add(int, int)和my_add(int, std::string)的调用。实现原理在于编译器根据不同的参数列表对同名函数进行名字重整,而后这些同名函数就变成了彼此不同的函数。比方说,也许某个编译器会将my_add()函数名字分别重整为my_add_int_int()和my_add_int_str()。

宏多态

带变量的宏可以实现一种初级形式的静态多态:
// macro_poly.cpp

#include <iostream>
#include <string>

// 定义泛化记号:宏ADD
#define ADD(A, B) (A) + (B);

int main()
{
int i1(1), i2(2);
std::string s1("Hello, "), s2("world!");
int i = ADD(i1, i2); // 两个整数相加
std::string s = ADD(s1, s2); // 两个字符串“相加”
std::cout << "i = " << i << "\n";
std::cout << "s = " << s << "\n";
}
当程序被编译时,表达式ADD(i1, i2)和ADD(s1, s2)分别被替换为两个整数相加和两个字符串相加的具体表达式。整数相加体现为求和,而字符串相加则体现为连接。程序的输出结果符合直觉:
1 + 2 = 3
Hello, + world! = Hello, world!

动态多态

这就是众所周知的的多态。现代面向对象语言对这个概念的定义是一致的。其技术基础在于继承机制和虚函数。例如,我们可以定义一个抽象基类Vehicle和两个派生于Vehicle的具体类Car和Airplane:

// dynamic_poly.h

#include <iostream>

// 公共抽象基类Vehicle
class Vehicle
{
public:
virtual void run() const = 0;
};

// 派生于Vehicle的具体类Car
class Car: public Vehicle
{
public:
virtual void run() const
{
std::cout << "run a car\n";
}
};

// 派生于Vehicle的具体类Airplane
class Airplane: public Vehicle
{
public:
virtual void run() const
{
std::cout << "run a airplane\n";
}
};
客户程序可以通过指向基类Vehicle的指针(或引用)来操纵具体对象。通过指向基类对象的指针(或引用)来调用一个虚函数,会导致对被指向的具体对象之相应成员的调用:

// dynamic_poly_1.cpp

#include <iostream>
#include <vector>
#include "dynamic_poly.h"

// 通过指针run任何vehicle
void run_vehicle(const Vehicle* vehicle)
{
vehicle->run(); // 根据vehicle的具体类型调用对应的run()
}

int main()
{
Car car;
Airplane airplane;
run_vehicle(&car); // 调用Car::run()
run_vehicle(&airplane); // 调用Airplane::run()
}

此例中,关键的多态接口元素为虚函数run()。由于run_vehicle()的参数为指向基类Vehicle的指针,因而无法在编译期决定使用哪一个版本的run()。在运行期,为了分派函数调用,虚函数被调用的那个对象的完整动态类型将被访问。这样一来,对一个Car对象调用run_vehicle(),实际上将调用Car::run(),而对于Airplane对象而言将调用Airplane::run()。
或许动态多态最吸引人之处在于处理异质对象集合的能力:

// dynamic_poly_2.cpp

#include <iostream>
#include <vector>
#include "dynamic_poly.h"

// run异质vehicles集合
void run_vehicles(const std::vector<Vehicle*>& vehicles)
{
for (unsigned int i = 0; i < vehicles.size(); ++i)
{
vehicles[i]->run(); // 根据具体vehicle的类型调用对应的run()
}
}

int main()
{
Car car;
Airplane airplane;
std::vector<Vehicle*> v; // 异质vehicles集合
v.push_back(&car);
v.push_back(&airplane);
run_vehicles(v); // run不同类型的vehicles
}
在run_vehicles()中,vehicles[i]->run()依据正被迭代的元素的类型而调用不同的成员函数。这从一个侧面体现了面向对象编程风格的优雅。

静态多态

如果说动态多态是通过虚函数来表达共同接口的话,那么静态多态则是通过“彼此单独定义但支持共同操作的具体类”来表达共同性,换句话说,必须存在必需的同名成员函数。
我们可以采用静态多态机制重写上一节的例子。这一次,我们不再定义vehicles类层次结构,相反,我们编写彼此无关的具体类Car和Airplane(它们都有一个run()成员函数):

// static_poly.h

#include <iostream>

//具体类Car
class Car
{
public:
void run() const
{
std::cout << "run a car\n";
}
};

//具体类Airplane
class Airplane
{
public:
void run() const
{
std::cout << "run a airplane\n";
}
};

run_vehicle()应用程序被改写如下:

// static_poly_1.cpp

#include <iostream>
#include <vector>
#include "static_poly.h"

// 通过引用而run任何vehicle
template <typename Vehicle>
void run_vehicle(const Vehicle& vehicle)
{
vehicle.run(); // 根据vehicle的具体类型调用对应的run()
}

int main()
{
Car car;
Airplane airplane;
run_vehicle(car); // 调用Car::run()
run_vehicle(airplane); // 调用Airplane::run()
}
现在Vehicle用作模板参数而非公共基类对象(事实上,这里的Vehicle只是一个符合直觉的记号而已,此外别无它意)。经过编译器处理后,我们最终会得到run_vehicle<Car>()和 run_vehicle<Airplane>()两个不同的函数。这和动态多态不同,动态多态凭借虚函数分派机制在运行期只有一个run_vehicle()函数。
我们无法再透明地处理异质对象集合了,因为所有类型都必须在编译期予以决定。不过,为不同的vehicles引入不同的集合只是举手之劳。由于无需再将集合元素局限于指针或引用,我们现在可以从执行性能和类型安全两方面获得好处:

// static_poly_2.cpp

#include <iostream>
#include <vector>
#include "static_poly.h"

// run同质vehicles集合
template <typename Vehicle>
void run_vehicles(const std::vector<Vehicle>& vehicles)
{
for (unsigned int i = 0; i < vehicles.size(); ++i)
{
vehicles[i].run(); // 根据vehicle的具体类型调用相应的run()
}
}

int main()
{
Car car1, car2;
Airplane airplane1, airplane2;

std::vector<Car> vc; // 同质cars集合
vc.push_back(car1);
vc.push_back(car2);
//vc.push_back(airplane1); // 错误:类型不匹配
run_vehicles(vc); // run cars

std::vector<Airplane> vs; // 同质airplanes集合
vs.push_back(airplane1);
vs.push_back(airplane2);
//vs.push_back(car1); // 错误:类型不匹配
run_vehicles(vs); // run airplanes
}

两种多态机制的结合使用

在一些高级C++应用中,我们可能需要结合使用动态多态和静态多态两种机制,以期达到对象操作的优雅、安全和高效。例如,我们既希望一致而优雅地处理vehicles的run问题,又希望“安全而高效”地完成给飞行器(飞机、飞艇等)进行“空中加油”这样的高难度动作。为此,我们首先将上面的vehicles类层次结构改写如下:

// dscombine_poly.h

#include <iostream>
#include <vector>

// 公共抽象基类Vehicle
class Vehicle
{
public:
virtual void run() const = 0;
};

// 派生于Vehicle的具体类Car
class Car: public Vehicle
{
public:
virtual void run() const
{
std::cout << "run a car\n";
}
};

// 派生于Vehicle的具体类Airplane
class Airplane: public Vehicle
{
public:
virtual void run() const
{
std::cout << "run a airplane\n";
}

void add_oil() const
{
std::cout << "add oil to airplane\n";
}
};

// 派生于Vehicle的具体类Airship
class Airship: public Vehicle
{
public:
virtual void run() const
{
std::cout << "run a airship\n";
}

void add_oil() const
{
std::cout << "add oil to airship\n";
}
};

我们理想中的应用程序可以编写如下:

// dscombine_poly.cpp

#include <iostream>
#include <vector>
#include "dscombine_poly.h"

// run异质vehicles集合
void run_vehicles(const std::vector<Vehicle*>& vehicles)
{
for (unsigned int i = 0; i < vehicles.size(); ++i)
{
vehicles[i]->run(); // 根据具体的vehicle类型调用对应的run()
}
}

// 为某种特定的aircrafts同质对象集合进行“空中加油”
template <typename Aircraft>
void add_oil_to_aircrafts_in_the_sky(const std::vector<Aircraft>& aircrafts)
{
for (unsigned int i = 0; i < aircrafts.size(); ++i)
{
aircrafts[i].add_oil();
}
}

int main()
{
Car car1, car2;
Airplane airplane1, airplane2;

Airship airship1, airship2;
std::vector<Vehicle*> v; // 异质vehicles集合
v.push_back(&car1);
v.push_back(&airplane1);
v.push_back(&airship1);
run_vehicles(v); // run不同种类的vehicles

std::vector<Airplane> vp; // 同质airplanes集合
vp.push_back(airplane1);
vp.push_back(airplane2);
add_oil_to_aircrafts_in_the_sky(vp); // 为airplanes进行“空中加油”

std::vector<Airship> vs; // 同质airships集合
vs.push_back(airship1);
vs.push_back(airship2);
add_oil_to_aircrafts_in_the_sky(vs); // 为airships进行“空中加油”
}

我们保留了类层次结构,目的是为了能够利用run_vehicles()一致而优雅地处理异质对象集合vehicles的run问题。同时,利用函数模板add_oil_to_aircrafts_in_the_sky<Aircraft>(),我们仍然可以处理特定种类的vehicles — aircrafts(包括airplanes和airships)的“空中加油”问题。其中,我们避开使用指针,从而在执行性能和类型安全两方面达到了预期目标。

结语

长期以来,C++社群对于多态的内涵和外延一直争论不休。在comp.object这样的网络论坛上,此类话题争论至今仍随处可见。曾经有人将动态多态(dynamic polymorphism)称为inclusion polymorphism,而将静态多态(static polymorphism)称为parametric polymorphism或parameterized polymorphism。

我注意到2003年斯坦福大学公开的一份C++ and Object-Oriented Programming教案中明确提到了函数多态概念:Function overloading is also referred to as function polymorphism as it involves one function having many forms。文后的“参考文献”单元给出了这个网页链接。

可能你是第一次看到宏多态(macro polymorphism)这个术语。不必讶异 — 也许我就是造出这个术语的“第一人”。显然,带变量的宏(或类似于函数的宏或伪函数宏)的替换机制除了免除小型函数的调用开销之外,也表现出了类似的多态性。在我们上面的例子中,字符串相加所表现出来的符合直觉的连接操作,事实上是由底部运算符重载机制(operator overloading)支持的。值得指出的是,C++社群中有人将运算符重载所表现出来的多态称为ad hoc polymorphism。

David Vandevoorde和Nicolai M. Josuttis在他们的着作C++ Templates: The Complete Guide一书中系统地阐述了静态多态和动态多态技术。因为认为“和其他语言机制关系不大”,这本书没有提及“宏多态”(以及“函数多态”)。(需要说明的是,笔者本人是这本书的繁体中文版译者之一,本文正是基于这本书的第14章The Polymorphic Power of Templates编写而成)

动态多态只需要一个多态函数,生成的可执行代码尺寸较小,静态多态必须针对不同的类型产生不同的模板实体,尺寸会大一些,但生成的代码会更快,因为无需通过指针进行间接操作。静态多态比动态多态更加类型安全,因为全部绑定都被检查于编译期。正如前面例子所示,你不可将一个错误的类型的对象插入到从一个模板实例化而来的容器之中。此外,正如你已经看到的那样,动态多态可以优雅地处理异质对象集合,而静态多态可以用来实现安全、高效的同质对象集合操作。

静态多态为C++带来了泛型编程(generic programming)的概念。泛型编程可以认为是“组件功能基于框架整体而设计”的模板编程。STL就是泛型编程的一个典范。STL是一个框架,它提供了大量的算法、容器和迭代器,全部以模板技术实现。从理论上讲,STL的功能当然可以使用动态多态来实现,不过这样一来其性能必将大打折扣。

静态多态还为C++社群带来了泛型模式(generic patterns)的概念。理论上,每一个需要通过虚函数和类继承而支持的设计模式都可以利用基于模板的静态多态技术(甚至可以结合使用动态多态和静态多态两种技术)而实现。正如你看到的那样,Andrei Alexandrescu的天才作品Modern C++ Design: Generic Programming and Design Patterns Applied(Addison-Wesley)和Loki程序库已经走在了我们的前面。

⑺ c++语言,多态是什么意思

  1. 多态(Polymorphism)按字面的意思就是“多种状态”。在面向对象语言中,接口的多种不同的实现方式即为多态。引用Charlie Calverts对多态的描述——多态性是允许你将父对象设置成为和一个或更多的他的子对象相等的技术,赋值之后,父对象就可以根据当前赋值给它的子对象的特性以不同的方式运作(摘自“Delphi4编程技术内幕”)。简单的说,就是一句话:允许将子类类型的指针赋值给父类类型的指针。多态性在Object Pascal和C++中都是通过虚函数(Virtual Function) 实现的。

  2. 多态指同一个实体同时具有多种形式。它是面向对象程序设计(OOP)的一个重要特征。如果一个语言只支持类而不支持多态,只能说明它是基于对象的,而不是面向对象的。C++中的多态性具体体现在运行和编译两个方面。运行时多态是动态多态,其具体引用的对象在运行时才能确定。编译时多态是静态多态,在编译时就可以确定对象使用的形式。

  3. 多态:同一操作作用于不同的对象,可以有不同的解释,产生不同的执行结果。在运行时,可以通过指向基类的指针,来调用实现派生类中的方法。

  4. C++中,实现多态有以下方法:虚函数,抽象类,重载,覆盖,模板。

  5. Oc中的多态:不同对象对同一消息的不同响应.子类可以重写父类的方法

  6. 多态就是允许方法重名 参数或返回值可以是父类型传入或返回。

  7. 把不同的子类对象都当作父类来看,可以屏蔽不同子类对象之间的差异,写出通用的代码,做出通用的编程,以适应需求的不断变化。

  8. 赋值之后,父对象就可以根据当前赋值给它的子对象的特性以不同的方式运作。也就是说,父亲的行为像儿子,而不是儿子的行为像父亲。

  9. 举个例子:从一个基类中派生,响应一个虚命令,产生不同的结果。

  10. 比如从某个基类继承出多个对象,其基类有一个虚方法Tdoit,然后其子类也有这个方法,但行为不同,然后这些子对象中的任何一个可以赋给其基类对象的引用,或者将子对象地址赋给基类指针,这样其基类的对象就可以执行不同的操作了。实际上你是在通过其基类来访问其子对象的,你要做的就是一个赋值操作。

  11. 使用继承性的结果就是可以创建一个类的家族,在认识这个类的家族时,就是把导出类的对象当作基类的对象,这种认识又叫作upcasting。这样认识的重要性在于:我们可以只针对基类写出一段程序,但它可以适应于这个类的家族,因为编译器会自动找出合适的对象来执行操作。这种现象又称为多态性。而实现多态性的手段又叫称动态绑定(dynamic binding)。

  12. 简单的说,建立一个父类的对象,它的内容可以是这个父类的,也可以是它的子类的,当子类拥有和父类同样的函数,当使用这个对象调用这个函数的时候,定义这个对象的类(也就是父类)里的同名函数将被调用,当在父类里的这个函数前加virtual关键字,那么子类的同名函数将被调用。通俗点说就是父类不加virtual关键字,那么子类的同名函数将会被覆盖。

⑻ 请问 c++中 模板是 编译时多态还是运行时多态,或者都不是,求解

是编译时多态。所有的模板都是在编译时产生对应的代码,它没有面向对象中的虚表,无法实现动态多态。

你仔细想一想,模板在应用时都必须指定确定的类型,而运行多态仅需指定一个基类就OK啦。

⑼ C++语言中的多态性是在编译时通过CCCCCC和模板体现的是什么意思

咬文嚼字干嘛,中文写的一些书都是翻译过来的,质量不高。
多态 我都忘了专业术语了,应该包括重载,主要就是个名字mangling(不会翻译)
虚函数:看下深度探索c++对象模型,你就大部分都懂了。
模板那叫参数多态吧:主要也就是个实例化
懂了就懂了,没懂就没懂。没懂精髓,知道这些表述又有啥用。个人理解,勿喷~~

⑽ c++最简单的多态例子,class A.classb

C++中的多态(虽然多态不是C++所特有的,但是C++中的多态确实是很特殊的)分为静多态和动多态(也就是静态绑定和动态绑定两种现象),静动的区别主要在于这种绑定发生在编译期还是运行期,发生在编译期的是静态绑定,也就是静多态;发生在运行期的则是动态绑定,也就是动多态。

静多态可以通过模板和函数重载来实现(之所说C++中的多态主要还是因为模板这个东西),下面举两个例子:
1)函数模板
template <typename T>
T max(const T& lsh, const T& rhs)
{
return (lsh > rhs) ? lsh : rhs;
}
返回两个任意类型对象的最大值(对象),前提是该类型能够使用>运算符进行比较,并且返回值是bool类型。
使用:
int a = 3; int b = 4;
cout << max(a, b) << endl;
float c = 2.4; float d = 1.2;
cout << max(c, d) << endl;
输出结果为:
4
2.4
这种绑定发生在编译期,这是由于模板的实例化是发生在编译期的,即在编译时编译器发现你调用max(a, b)时就自动生成一个函数
int max(const int& lsh, const int& rhs)
{
return (lsh > rhs) ? lsh : rhs;
}
即将所有的T替换成int;
当你调用max(c, d)时就自动生成一个函数
float max(const float& lsh, const float& rhs)
{
return (lsh > rhs) ? lsh : rhs;
}
之所以说开始的函数定义是函数模板,就是因为他就像个模子似的,你可以用铝作为原料也可以用石膏或者铜。
2)函数重载:
int max (int a, int b)
{
return (a > b) ? a : b;
}
int max (int a, int b, int c)
{
return max(max(a, b), c);
}
两个函数名称一样,参数类型或个数不完全相同,返回值一样(这个不重要)。
使用:
int a = 3, b = 4, c = 5;
cout << max(a, b) << endl;
cout << max(a, b, c) << endl;
输出结果为:
4
5
确定函数的过程也发生在编译器,当你使用max(a, b),编译器发现只有两个参数,那么就调用只有两个参数的函数版本,当使用max(a, b, c)时,编译器则使用有3个参数的版本。
通过上面的两个例子,你还可以使用更为方便的模板函数重载:
template <typename T>
T max(const T& lsh, const T& rhs)
{
return (lsh > rhs) ? lsh : rhs;
}

template <typename T>
T max(const T& a, const T& b, const T& c)
{
return max(max(a, b), c);
}
使用
float a = 3.6, b = 1.2, c = 7.8;
cout << max(a, b, c) << endl;
输出:
7.8
通过参数个数和类型,编译器自动生成和调用对应得函数版本!

动多态则是通过继承、虚函数(virtual)、指针来实现。
class A {
public:
virtual void func() const {
coust << “A::func()” << endl;
}
}

class B : public A {
public:
virtual void func() const {
coust << “B::func()” << endl;
}
}
使用:
A a* = B();
a->func();
输出:
B::func()
编译期是不调用任何函数的,编译器编译到a->func()时只是检查有没有语法问题,经过检查没有。编译器并不知道调用的是A版本的func()还是B版本的func(),由于a是一个指向B对象的指针,所以a只知道它指向的是一个A类型(或者能转换成A类型)的对象。通常集成体系就说明了(由于是公有继承)B是一种A。在运行期,a要调用a所指向对象的func()函数,就对它指向的对象下达调用func()的命令,结果a所指向的是一个B对象,这个对象就调用了自己版本(B版)的func()函数,所以输出时B::func()

总结:
在编译期决定你应该调用哪个函数的行为是静态绑定(static-binding),这种现象就是静多态。
在运行期决定应该调用哪中类型对象的函数的行为是动态绑定(dynamic-binding),这种现象就是动多态

阅读全文

与模版是编译时多态的一个例子相关的资料

热点内容
喷油螺杆制冷压缩机 浏览:577
python员工信息登记表 浏览:375
高中美术pdf 浏览:159
java实现排列 浏览:511
javavector的用法 浏览:980
osi实现加密的三层 浏览:230
大众宝来原厂中控如何安装app 浏览:912
linux内核根文件系统 浏览:241
3d的命令面板不见了 浏览:524
武汉理工大学服务器ip地址 浏览:147
亚马逊云服务器登录 浏览:523
安卓手机如何进行文件处理 浏览:70
mysql执行系统命令 浏览:929
php支持curlhttps 浏览:142
新预算法责任 浏览:443
服务器如何处理5万人同时在线 浏览:249
哈夫曼编码数据压缩 浏览:424
锁定服务器是什么意思 浏览:383
场景检测算法 浏览:616
解压手机软件触屏 浏览:348