导航:首页 > 源码编译 > 内部排序算法性能分析

内部排序算法性能分析

发布时间:2022-07-14 07:26:49

㈠ 内部排序算法的性能分析

fgh

㈡ 常用的数据排序算法有哪些,各有什么特点举例结合一种排序算法并应用数组进行数据排序。

排序简介
排序是数据处理中经常使用的一种重要运算,在计算机及其应用系统中,花费在排序上的时间在系统运行时间中占有很大比重;并且排序本身对推动算法分析的发展也起很大作用。目前已有上百种排序方法,但尚未有一个最理想的尽如人意的方法,本章介绍常用的如下排序方法,并对它们进行分析和比较。

1、插入排序(直接插入排序、折半插入排序、希尔排序);
2、交换排序(起泡排序、快速排序);
3、选择排序(直接选择排序、堆排序);
4、归并排序;
5、基数排序;

学习重点
1、掌握排序的基本概念和各种排序方法的特点,并能加以灵活应用;
2、掌握插入排序(直接插入排序、折半插入排序、希尔排序)、交换排序(起泡排序、快速排序)、选择排序(直接选择排序、堆排序)、二路归并排序的方法及其性能分析方法;
3、了解基数排序方法及其性能分析方法。

排序(sort)或分类

所谓排序,就是要整理文件中的记录,使之按关键字递增(或递减)次序排列起来。其确切定义如下:
输入:n个记录R1,R2,…,Rn,其相应的关键字分别为K1,K2,…,Kn。
输出:Ril,Ri2,…,Rin,使得Ki1≤Ki2≤…≤Kin。(或Ki1≥Ki2≥…≥Kin)。

1.被排序对象--文件
被排序的对象--文件由一组记录组成。
记录则由若干个数据项(或域)组成。其中有一项可用来标识一个记录,称为关键字项。该数据项的值称为关键字(Key)。
注意:
在不易产生混淆时,将关键字项简称为关键字。

2.排序运算的依据--关键字
用来作排序运算依据的关键字,可以是数字类型,也可以是字符类型。
关键字的选取应根据问题的要求而定。
【例】在高考成绩统计中将每个考生作为一个记录。每条记录包含准考证号、姓名、各科的分数和总分数等项内容。若要惟一地标识一个考生的记录,则必须用"准考证号"作为关键字。若要按照考生的总分数排名次,则需用"总分数"作为关键字。

排序的稳定性

当待排序记录的关键字均不相同时,排序结果是惟一的,否则排序结果不唯一。
在待排序的文件中,若存在多个关键字相同的记录,经过排序后这些具有相同关键字的记录之间的相对次序保持不变,该排序方法是稳定的;若具有相同关键字的记录之间的相对次序发生变化,则称这种排序方法是不稳定的。
注意:
排序算法的稳定性是针对所有输入实例而言的。即在所有可能的输入实例中,只要有一个实例使得算法不满足稳定性要求,则该排序算法就是不稳定的。

排序方法的分类

1.按是否涉及数据的内、外存交换分
在排序过程中,若整个文件都是放在内存中处理,排序时不涉及数据的内、外存交换,则称之为内部排序(简称内排序);反之,若排序过程中要进行数据的内、外存交换,则称之为外部排序。
注意:
① 内排序适用于记录个数不很多的小文件
② 外排序则适用于记录个数太多,不能一次将其全部记录放人内存的大文件。

2.按策略划分内部排序方法
可以分为五类:插入排序、选择排序、交换排序、归并排序和分配排序。

排序算法分析

1.排序算法的基本操作
大多数排序算法都有两个基本的操作:
(1) 比较两个关键字的大小;
(2) 改变指向记录的指针或移动记录本身。
注意:
第(2)种基本操作的实现依赖于待排序记录的存储方式。

2.待排文件的常用存储方式
(1) 以顺序表(或直接用向量)作为存储结构
排序过程:对记录本身进行物理重排(即通过关键字之间的比较判定,将记录移到合适的位置)

(2) 以链表作为存储结构
排序过程:无须移动记录,仅需修改指针。通常将这类排序称为链表(或链式)排序;

(3) 用顺序的方式存储待排序的记录,但同时建立一个辅助表(如包括关键字和指向记录位置的指针组成的索引表)
排序过程:只需对辅助表的表目进行物理重排(即只移动辅助表的表目,而不移动记录本身)。适用于难于在链表上实现,仍需避免排序过程中移动记录的排序方法。

3.排序算法性能评价
(1) 评价排序算法好坏的标准
评价排序算法好坏的标准主要有两条:
① 执行时间和所需的辅助空间
② 算法本身的复杂程度

(2) 排序算法的空间复杂度
若排序算法所需的辅助空间并不依赖于问题的规模n,即辅助空间是O(1),则称之为就地排序(In-PlaceSou)。
非就地排序一般要求的辅助空间为O(n)。

(3) 排序算法的时间开销
大多数排序算法的时间开销主要是关键字之间的比较和记录的移动。有的排序算法其执行时间不仅依赖于问题的规模,还取决于输入实例中数据的状态。

文件的顺序存储结构表示

#define n l00 //假设的文件长度,即待排序的记录数目
typedef int KeyType; //假设的关键字类型
typedef struct{ //记录类型
KeyType key; //关键字项
InfoType otherinfo;//其它数据项,类型InfoType依赖于具体应用而定义
}RecType;
typedef RecType SeqList[n+1];//SeqList为顺序表类型,表中第0个单元一般用作哨兵
注意:
若关键字类型没有比较算符,则可事先定义宏或函数来表示比较运算。
【例】关键字为字符串时,可定义宏"#define LT(a,b)(Stromp((a),(b))<0)"。那么算法中"a<b"可用"LT(a,b)"取代。若使用C++,则定义重载的算符"<"更为方便。

按平均时间将排序分为四类:

(1)平方阶(O(n2))排序
一般称为简单排序,例如直接插入、直接选择和冒泡排序;

(2)线性对数阶(O(nlgn))排序
如快速、堆和归并排序;

(3)O(n1+£)阶排序
£是介于0和1之间的常数,即0<£<1,如希尔排序;

(4)线性阶(O(n))排序
如桶、箱和基数排序。

各种排序方法比较

简单排序中直接插入最好,快速排序最快,当文件为正序时,直接插入和冒泡均最佳。

影响排序效果的因素

因为不同的排序方法适应不同的应用环境和要求,所以选择合适的排序方法应综合考虑下列因素:
①待排序的记录数目n;
②记录的大小(规模);
③关键字的结构及其初始状态;
④对稳定性的要求;
⑤语言工具的条件;
⑥存储结构;
⑦时间和辅助空间复杂度等。

不同条件下,排序方法的选择

(1)若n较小(如n≤50),可采用直接插入或直接选择排序。
当记录规模较小时,直接插入排序较好;否则因为直接选择移动的记录数少于直接插人,应选直接选择排序为宜。
(2)若文件初始状态基本有序(指正序),则应选用直接插人、冒泡或随机的快速排序为宜;
(3)若n较大,则应采用时间复杂度为O(nlgn)的排序方法:快速排序、堆排序或归并排序。
快速排序是目前基于比较的内部排序中被认为是最好的方法,当待排序的关键字是随机分布时,快速排序的平均时间最短;
堆排序所需的辅助空间少于快速排序,并且不会出现快速排序可能出现的最坏情况。这两种排序都是不稳定的。
若要求排序稳定,则可选用归并排序。但本章介绍的从单个记录起进行两两归并的 排序算法并不值得提倡,通常可以将它和直接插入排序结合在一起使用。先利用直接插入排序求得较长的有序子文件,然后再两两归并之。因为直接插入排序是稳定的,所以改进后的归并排序仍是稳定的。

4)在基于比较的排序方法中,每次比较两个关键字的大小之后,仅仅出现两种可能的转移,因此可以用一棵二叉树来描述比较判定过程。
当文件的n个关键字随机分布时,任何借助于"比较"的排序算法,至少需要O(nlgn)的时间。
箱排序和基数排序只需一步就会引起m种可能的转移,即把一个记录装入m个箱子之一,因此在一般情况下,箱排序和基数排序可能在O(n)时间内完成对n个记录的排序。但是,箱排序和基数排序只适用于像字符串和整数这类有明显结构特征的关键字,而当关键字的取值范围属于某个无穷集合(例如实数型关键字)时,无法使用箱排序和基数排序,这时只有借助于"比较"的方法来排序。
若n很大,记录的关键字位数较少且可以分解时,采用基数排序较好。虽然桶排序对关键字的结构无要求,但它也只有在关键字是随机分布时才能使平均时间达到线性阶,否则为平方阶。同时要注意,箱、桶、基数这三种分配排序均假定了关键字若为数字时,则其值均是非负的,否则将其映射到箱(桶)号时,又要增加相应的时间。
(5)有的语言(如Fortran,Cobol或Basic等)没有提供指针及递归,导致实现归并、快速(它们用递归实现较简单)和基数(使用了指针)等排序算法变得复杂。此时可考虑用其它排序。
(6)本章给出的排序算法,输人数据均是存储在一个向量中。当记录的规模较大时,为避免耗费大量的时间去移动记录,可以用链表作为存储结构。譬如插入排序、归并排序、基数排序都易于在链表上实现,使之减少记录的移动次数。但有的排序方法,如快速排序和堆排序,在链表上却难于实现,在这种情况下,可以提取关键字建立索引表,然后对索引表进行排序。然而更为简单的方法是:引人一个整型向量t作为辅助表,排序前令t[i]=i(0≤i<n),若排序算法中要求交换R[i]和R[j],则只需交换t[i]和t[j]即可;排序结束后,向量t就指示了记录之间的顺序关系:
R[t[0]].key≤R[t[1]].key≤…≤R[t[n-1]].key
若要求最终结果是:
R[0].key≤R[1].key≤…≤R[n-1].key
则可以在排序结束后,再按辅助表所规定的次序重排各记录,完成这种重排的时间是O(n)。

㈢ 内部排序算法的性能分析

起泡排序O(N^2)
直接排序O(N^2)
简单选择排序O(N^2)
快速排序O(Nlog2N)
堆排序O(Nlog2N)

㈣ 内部排序算法的性能分析

没时间帮你写程序需说个思路就闪人了 你先把3种排序的书上的例子抄下来 写成3个函数, 每个函数里面开头和结尾取一次系统时间 最后相减得出开销时间 在打印出来

㈤ 几种常见的排序算法的实现与性能分析(数据结构)的报告

可参考 :
http://blog.csdn.net/stubbornpotatoes/article/details/7513509

http://hi..com/shismbwb/item/404c94898cfd2855850fab24

㈥ 急求排序算法性能分析程序

排序算法全集【附C++代码】

排序算法是一种基本并且常用的算法。由于实际工作中处理的数量巨大,所以排序算法对算法本身的速度要求很高。而一般我们所谓的算法的性能主要是指算法的复杂度,一般用O方法来表示。在后面我将给出详细的说明。

对于排序的算法我想先做一点简单的介绍,也是给这篇文章理一个提纲。
我将按照算法的复杂度,从简单到难来分析算法。
第一部分是简单排序算法,后面你将看到他们的共同点是算法复杂度为O(N*N)(因为没有使用word,所以无法打出上标和下标)。
第二部分是高级排序算法,复杂度为O(Log2(N))。这里我们只介绍一种算法。另外还有几种算法因为涉及树与堆的概念,所以这里不于讨论。
第三部分类似动脑筋。这里的两种算法并不是最好的(甚至有最慢的),但是算法本身比较奇特,值得参考(编程的角度)。同时也可以让我们从另外的角度来认识这个问题。
第四部分是我送给大家的一个餐后的甜点——一个基于模板的通用快速排序。由于是模板函数可以对任何数据类型排序(抱歉,里面使用了一些论坛专家的呢称)。

现在,让我们开始吧:

一、简单排序算法
由于程序比较简单,所以没有加什么注释。所有的程序都给出了完整的运行代码,并在我的VC环境
下运行通过。因为没有涉及MFC和WINDOWS的内容,所以在BORLAND C++的平台上应该也不会有什么
问题的。在代码的后面给出了运行过程示意,希望对理解有帮助。

1.冒泡法:
这是最原始,也是众所周知的最慢的算法了。他的名字的由来因为它的工作看来象是冒泡:
#include <iostream.h>

void BubbleSort(int* pData,int Count)
{
int iTemp;
for(int i=1;i<Count;i++)
{
for(int j=Count-1;j>=i;j--)
{
if(pData[j]<pData[j-1])
{
iTemp = pData[j-1];
pData[j-1] = pData[j];
pData[j] = iTemp;
}
}
}
}

void main()
{
int data[] = {10,9,8,7,6,5,4};
BubbleSort(data,7);
for (int i=0;i<7;i++)
cout<<data<<” ”;
cout<<”\n”;
}
倒序(最糟情况)
第一轮:10,9,8,7->10,9,7,8->10,7,9,8->7,10,9,8(交换3次)
第二轮:7,10,9,8->7,10,8,9->7,8,10,9(交换2次)
第一轮:7,8,10,9->7,8,9,10(交换1次)
循环次数:6次
交换次数:6次

其他:
第一轮:8,10,7,9->8,10,7,9->8,7,10,9->7,8,10,9(交换2次)
第二轮:7,8,10,9->7,8,10,9->7,8,10,9(交换0次)
第一轮:7,8,10,9->7,8,9,10(交换1次)
循环次数:6次
交换次数:3次

上面我们给出了程序段,现在我们分析它:这里,影响我们算法性能的主要部分是循环和交换,
显然,次数越多,性能就越差。从上面的程序我们可以看出循环的次数是固定的,为1+2+...+n-1。
写成公式就是1/2*(n-1)*n。
现在注意,我们给出O方法的定义:

若存在一常量K和起点n0,使当n>=n0时,有f(n)<=K*g(n),则f(n) = O(g(n))。(呵呵,不要说没
学好数学呀,对于编程数学是非常重要的!!!)

现在我们来看1/2*(n-1)*n,当K=1/2,n0=1,g(n)=n*n时,1/2*(n-1)*n<=1/2*n*n=K*g(n)。所以f(n)
=O(g(n))=O(n*n)。所以我们程序循环的复杂度为O(n*n)。
再看交换。从程序后面所跟的表可以看到,两种情况的循环相同,交换不同。其实交换本身同数据源的
有序程度有极大的关系,当数据处于倒序的情况时,交换次数同循环一样(每次循环判断都会交换),
复杂度为O(n*n)。当数据为正序,将不会有交换。复杂度为O(0)。乱序时处于中间状态。正是由于这样的
原因,我们通常都是通过循环次数来对比算法。

2.交换法:
交换法的程序最清晰简单,每次用当前的元素一一的同其后的元素比较并交换。
#include <iostream.h>
void ExchangeSort(int* pData,int Count)
{
int iTemp;
for(int i=0;i<Count-1;i++)
{
for(int j=i+1;j<Count;j++)
{
if(pData[j]<pData)
{
iTemp = pData;
pData = pData[j];
pData[j] = iTemp;
}
}
}
}

void main()
{
int data[] = {10,9,8,7,6,5,4};
ExchangeSort(data,7);
for (int i=0;i<7;i++)
cout<<data<<” ”;
cout<<”\n”;
}
倒序(最糟情况)
第一轮:10,9,8,7->9,10,8,7->8,10,9,7->7,10,9,8(交换3次)
第二轮:7,10,9,8->7,9,10,8->7,8,10,9(交换2次)
第一轮:7,8,10,9->7,8,9,10(交换1次)
循环次数:6次
交换次数:6次

其他:
第一轮:8,10,7,9->8,10,7,9->7,10,8,9->7,10,8,9(交换1次)
第二轮:7,10,8,9->7,8,10,9->7,8,10,9(交换1次)
第一轮:7,8,10,9->7,8,9,10(交换1次)
循环次数:6次
交换次数:3次

从运行的表格来看,交换几乎和冒泡一样糟。事实确实如此。循环次数和冒泡一样
也是1/2*(n-1)*n,所以算法的复杂度仍然是O(n*n)。由于我们无法给出所有的情况,所以
只能直接告诉大家他们在交换上面也是一样的糟糕(在某些情况下稍好,在某些情况下稍差)。

3.选择法:
现在我们终于可以看到一点希望:选择法,这种方法提高了一点性能(某些情况下)
这种方法类似我们人为的排序习惯:从数据中选择最小的同第一个值交换,在从省下的部分中
选择最小的与第二个交换,这样往复下去。
#include <iostream.h>
void SelectSort(int* pData,int Count)
{
int iTemp;
int iPos;
for(int i=0;i<Count-1;i++)
{
iTemp = pData;
iPos = i;
for(int j=i+1;j<Count;j++)
{
if(pData[j]<iTemp)
{
iTemp = pData[j];
iPos = j;
}
}
pData[iPos] = pData;
pData = iTemp;
}
}

void main()
{
int data[] = {10,9,8,7,6,5,4};
SelectSort(data,7);
for (int i=0;i<7;i++)
cout<<data<<” ”;
cout<<”\n”;
}
倒序(最糟情况)
第一轮:10,9,8,7->(iTemp=9)10,9,8,7->(iTemp=8)10,9,8,7->(iTemp=7)7,9,8,10(交换1次)
第二轮:7,9,8,10->7,9,8,10(iTemp=8)->(iTemp=8)7,8,9,10(交换1次)
第一轮:7,8,9,10->(iTemp=9)7,8,9,10(交换0次)
循环次数:6次
交换次数:2次

其他:
第一轮:8,10,7,9->(iTemp=8)8,10,7,9->(iTemp=7)8,10,7,9->(iTemp=7)7,10,8,9(交换1次)
第二轮:7,10,8,9->(iTemp=8)7,10,8,9->(iTemp=8)7,8,10,9(交换1次)
第一轮:7,8,10,9->(iTemp=9)7,8,9,10(交换1次)
循环次数:6次
交换次数:3次
遗憾的是算法需要的循环次数依然是1/2*(n-1)*n。所以算法复杂度为O(n*n)。
我们来看他的交换。由于每次外层循环只产生一次交换(只有一个最小值)。所以f(n)<=n
所以我们有f(n)=O(n)。所以,在数据较乱的时候,可以减少一定的交换次数。

4.插入法:
插入法较为复杂,它的基本工作原理是抽出牌,在前面的牌中寻找相应的位置插入,然后继续下一张
#include <iostream.h>
void InsertSort(int* pData,int Count)
{
int iTemp;
int iPos;
for(int i=1;i<Count;i++)
{
iTemp = pData;
iPos = i-1;
while((iPos>=0) && (iTemp<pData[iPos]))
{
pData[iPos+1] = pData[iPos];
iPos--;
}
pData[iPos+1] = iTemp;
}
}

void main()
{
int data[] = {10,9,8,7,6,5,4};
InsertSort(data,7);
for (int i=0;i<7;i++)
cout<<data<<” ”;
cout<<”\n”;
}

倒序(最糟情况)
第一轮:10,9,8,7->9,10,8,7(交换1次)(循环1次)
第二轮:9,10,8,7->8,9,10,7(交换1次)(循环2次)
第一轮:8,9,10,7->7,8,9,10(交换1次)(循环3次)
循环次数:6次
交换次数:3次

其他:
第一轮:8,10,7,9->8,10,7,9(交换0次)(循环1次)
第二轮:8,10,7,9->7,8,10,9(交换1次)(循环2次)
第一轮:7,8,10,9->7,8,9,10(交换1次)(循环1次)
循环次数:4次
交换次数:2次

上面结尾的行为分析事实上造成了一种假象,让我们认为这种算法是简单算法中最好的,其实不是,
因为其循环次数虽然并不固定,我们仍可以使用O方法。从上面的结果可以看出,循环的次数f(n)<=
1/2*n*(n-1)<=1/2*n*n。所以其复杂度仍为O(n*n)(这里说明一下,其实如果不是为了展示这些简单
排序的不同,交换次数仍然可以这样推导)。现在看交换,从外观上看,交换次数是O(n)(推导类似
选择法),但我们每次要进行与内层循环相同次数的‘=’操作。正常的一次交换我们需要三次‘=’
而这里显然多了一些,所以我们浪费了时间。

最终,我个人认为,在简单排序算法中,选择法是最好的。

二、高级排序算法:
高级排序算法中我们将只介绍这一种,同时也是目前我所知道(我看过的资料中)的最快的。
它的工作看起来仍然象一个二叉树。首先我们选择一个中间值middle程序中我们使用数组中间值,然后
把比它小的放在左边,大的放在右边(具体的实现是从两边找,找到一对后交换)。然后对两边分别使
用这个过程(最容易的方法——递归)。

1.快速排序:
#include <iostream.h>

void run(int* pData,int left,int right)
{
int i,j;
int middle,iTemp;
i = left;
j = right;
middle = pData[(left+right)/2]; //求中间值
do{
while((pData<middle) && (i<right))//从左扫描大于中值的数
i++;
while((pData[j]>middle) && (j>left))//从右扫描大于中值的数
j--;
if(i<=j)//找到了一对值
{
//交换
iTemp = pData;
pData = pData[j];
pData[j] = iTemp;
i++;
j--;
}
}while(i<=j);//如果两边扫描的下标交错,就停止(完成一次)

//当左边部分有值(left<j),递归左半边
if(left<j)
run(pData,left,j);
//当右边部分有值(right>i),递归右半边
if(right>i)
run(pData,i,right);
}

void QuickSort(int* pData,int Count)
{
run(pData,0,Count-1);
}

void main()
{
int data[] = {10,9,8,7,6,5,4};
QuickSort(data,7);
for (int i=0;i<7;i++)
cout<<data<<” ”;
cout<<”\n”;
}

这里我没有给出行为的分析,因为这个很简单,我们直接来分析算法:首先我们考虑最理想的情况
1.数组的大小是2的幂,这样分下去始终可以被2整除。假设为2的k次方,即k=log2(n)。
2.每次我们选择的值刚好是中间值,这样,数组才可以被等分。
第一层递归,循环n次,第二层循环2*(n/2)......
所以共有n+2(n/2)+4(n/4)+...+n*(n/n) = n+n+n+...+n=k*n=log2(n)*n
所以算法复杂度为O(log2(n)*n)
其他的情况只会比这种情况差,最差的情况是每次选择到的middle都是最小值或最大值,那么他将变
成交换法(由于使用了递归,情况更糟)。但是你认为这种情况发生的几率有多大??呵呵,你完全
不必担心这个问题。实践证明,大多数的情况,快速排序总是最好的。
如果你担心这个问题,你可以使用堆排序,这是一种稳定的O(log2(n)*n)算法,但是通常情况下速度要慢
于快速排序(因为要重组堆)。

三、其他排序
1.双向冒泡:
通常的冒泡是单向的,而这里是双向的,也就是说还要进行反向的工作。
代码看起来复杂,仔细理一下就明白了,是一个来回震荡的方式。
写这段代码的作者认为这样可以在冒泡的基础上减少一些交换(我不这么认为,也许我错了)。
反正我认为这是一段有趣的代码,值得一看。
#include <iostream.h>
void Bubble2Sort(int* pData,int Count)
{
int iTemp;
int left = 1;
int right =Count -1;
int t;
do
{
//正向的部分
for(int i=right;i>=left;i--)
{
if(pData<pData[i-1])
{
iTemp = pData;
pData = pData[i-1];
pData[i-1] = iTemp;
t = i;
}
}
left = t+1;

//反向的部分
for(i=left;i<right+1;i++)
{
if(pData<pData[i-1])
{
iTemp = pData;
pData = pData[i-1];
pData[i-1] = iTemp;
t = i;
}
}
right = t-1;
}while(left<=right);
}

void main()
{
int data[] = {10,9,8,7,6,5,4};
Bubble2Sort(data,7);
for (int i=0;i<7;i++)
cout<<data<<” ”;
cout<<”\n”;
}

2.SHELL排序
这个排序非常复杂,看了程序就知道了。
首先需要一个递减的步长,这里我们使用的是9、5、3、1(最后的步长必须是1)。
工作原理是首先对相隔9-1个元素的所有内容排序,然后再使用同样的方法对相隔5-1个元素的排序
以次类推。
#include <iostream.h>
void ShellSort(int* pData,int Count)
{
int step[4];
step[0] = 9;
step[1] = 5;
step[2] = 3;
step[3] = 1;

int iTemp;
int k,s,w;
for(int i=0;i<4;i++)
{
k = step;
s = -k;
for(int j=k;j<Count;j++)
{
iTemp = pData[j];
w = j-k;//求上step个元素的下标
if(s ==0)
{
s = -k;
s++;
pData[s] = iTemp;
}
while((iTemp<pData[w]) && (w>=0) && (w<=Count))
{
pData[w+k] = pData[w];
w = w-k;
}
pData[w+k] = iTemp;
}
}
}

void main()
{
int data[] = {10,9,8,7,6,5,4,3,2,1,-10,-1};
ShellSort(data,12);
for (int i=0;i<12;i++)
cout<<data<<” ”;
cout<<”\n”;
}
呵呵,程序看起来有些头疼。不过也不是很难,把s==0的块去掉就轻松多了,这里是避免使用0
步长造成程序异常而写的代码。这个代码我认为很值得一看。
这个算法的得名是因为其发明者的名字D.L.SHELL。依照参考资料上的说法:“由于复杂的数学原因
避免使用2的幂次步长,它能降低算法效率。”另外算法的复杂度为n的1.2次幂。同样因为非常复杂并
“超出本书讨论范围”的原因(我也不知道过程),我们只有结果了。

四、基于模板的通用排序:
这个程序我想就没有分析的必要了,大家看一下就可以了。不明白可以在论坛上问。
MyData.h文件
///////////////////////////////////////////////////////
class CMyData
{
public:
CMyData(int Index,char* strData);
CMyData();
virtual ~CMyData();

int m_iIndex;
int GetDataSize(){ return m_iDataSize; };
const char* GetData(){ return m_strDatamember; };
//这里重载了操作符:
CMyData& operator =(CMyData &SrcData);
bool operator <(CMyData& data );
bool operator >(CMyData& data );

private:
char* m_strDatamember;
int m_iDataSize;
};
////////////////////////////////////////////////////////

MyData.cpp文件
////////////////////////////////////////////////////////
CMyData::CMyData():
m_iIndex(0),
m_iDataSize(0),
m_strDatamember(NULL)
{
}

CMyData::~CMyData()
{
if(m_strDatamember != NULL)
delete[] m_strDatamember;
m_strDatamember = NULL;
}

CMyData::CMyData(int Index,char* strData):
m_iIndex(Index),
m_iDataSize(0),
m_strDatamember(NULL)
{
m_iDataSize = strlen(strData);
m_strDatamember = new char[m_iDataSize+1];
strcpy(m_strDatamember,strData);
}

CMyData& CMyData::operator =(CMyData &SrcData)
{
m_iIndex = SrcData.m_iIndex;
m_iDataSize = SrcData.GetDataSize();
m_strDatamember = new char[m_iDataSize+1];
strcpy(m_strDatamember,SrcData.GetData());
return *this;
}

bool CMyData::operator <(CMyData& data )
{
return m_iIndex<data.m_iIndex;
}

bool CMyData::operator >(CMyData& data )
{
return m_iIndex>data.m_iIndex;
}
///////////////////////////////////////////////////////////

//////////////////////////////////////////////////////////
//主程序部分
#include <iostream.h>
#include ”MyData.h”

template <class T>
void run(T* pData,int left,int right)
{
int i,j;
T middle,iTemp;
i = left;
j = right;
//下面的比较都调用我们重载的操作符函数
middle = pData[(left+right)/2]; //求中间值
do{
while((pData<middle) && (i<right))//从左扫描大于中值的数
i++;
while((pData[j]>middle) && (j>left))//从右扫描大于中值的数
j--;
if(i<=j)//找到了一对值
{
//交换
iTemp = pData;
pData = pData[j];
pData[j] = iTemp;
i++;
j--;
}
}while(i<=j);//如果两边扫描的下标交错,就停止(完成一次)

//当左边部分有值(left<j),递归左半边
if(left<j)
run(pData,left,j);
//当右边部分有值(right>i),递归右半边
if(right>i)
run(pData,i,right);
}

template <class T>
void QuickSort(T* pData,int Count)
{
run(pData,0,Count-1);
}

void main()
{
CMyData data[] = {
CMyData(8,”xulion”),
CMyData(7,”sanzoo”),
CMyData(6,”wangjun”),
CMyData(5,”VCKBASE”),
CMyData(4,”jacky2000”),
CMyData(3,”cwally”),
CMyData(2,”VCUSER”),
CMyData(1,”isdong”)
};
QuickSort(data,8);
for (int i=0;i<8;i++)
cout<<data.m_iIndex<<” ”<<data.GetData()<<”\n”;
cout<<”\n”;

㈦ 求助期末数据结构课设,

什么时候截止?
我有《内排序算法分析》的C++代码和分析报告,分析九个内排序算法的,当时大一写的。你要的话,我去取。最好宽限几天,这几天比较忙。呵呵,其实吧,这东西还是在参考别人的基础上自己写好 ^_^
如果着急的话,我给你个C++的停车场的程序。这个问题简单一点,代码比较少,虽然可以实现全部功能,但代码量可能达不到要求。。。
给个邮箱,我把工程文件全发给你,如果你需要的话。

㈧ 用java的知识解答内部排序算法的性能分析

第一题:
import java.math.* ;
import java.util.* ;

class TieZi{
private String name ;
private int num ;

public TieZi(String name,int num){
this.setName(name) ;
this.setNum(num) ;
}

public void setName(String name){
this.name = name ;
}

public String getName(){
return this.name ;
}

public void setNum(int num){
this.num = num ;
}

public int getNum(){
return this.num ;
}
}

public class TestOne{
private TieZi[] tz ;

public TestOne(int max){
this.tz = new TieZi[max] ;
for (int i = 0; i<max; i++){
this.tz[i] = new TieZi("跟贴_" + (i+1),this.getRandomNum()) ;
System.out.println (tz[i].getNum()) ;
}
this.getTop10(this.tz) ;

}

public int getRandomNum(){//产生100个0-99的随机数
return ((int)(Math.random()*100)) ;
}

public void getTop10(TieZi[] tz){//进行冒泡排序并且输出
TieZi temp2 = null ;
int num[] = new int[10] ;
for (int j = 0; j<tz.length; j++){
for (int i = 0; i<tz.length; i++){
if(tz[j].getNum() > tz[i].getNum()){
temp2 = tz[j] ;
tz[j] = tz[i] ;
tz[i] = temp2 ;
}
}
}
for (int i = 0; i<10; i++){
System.out.println ("贴子名: " + tz[i].getName() + "\t跟贴数: " + tz[i].getNum()) ;
}

}

public static void main(String[] args){
new TestOne(100) ;
}
}
第二题:
import java.math.* ;
import java.util.* ;

class User{
private String name ;
private double mark ;

public User(String name,double mark){
this.setName(name) ;
this.setMark(mark) ;
}

public void setName(String name){
this.name = name ;
}

public String getName(){
return this.name ;
}

public void setMark(double mark){
this.mark = mark ;
}

public double getMark(){
return this.mark ;
}
}

public class TestTwo{
private User[] tz ;

public TestTwo(int max){
this.tz = new User[max] ;
for (int i = 0; i<max; i++){
this.tz[i] = new User("用户名_" + (i+1),this.getRandomNum()) ;
System.out.println (tz[i].getMark()) ;
}
this.getTop10(this.tz) ;

}

public int getRandomNum(){//产生100个0-499的随机数
return ((int)(Math.random()*500)) ;
}

public void getTop10(User[] tz){//进行冒泡排序并且输出
User temp2 = null ;
int num[] = new int[3] ;
double jiangLi = 1.2 ;
for (int j = 0; j<tz.length; j++){
for (int i = 0; i<tz.length; i++){
if(tz[j].getMark() > tz[i].getMark()){
temp2 = tz[j] ;
tz[j] = tz[i] ;
tz[i] = temp2 ;
}
}
}
for (int i = 0; i<3; i++){
if(i == 1)
jiangLi = 1.15 ;
if(i == 2)
jiangLi = 1.1 ;
System.out.println ("用户名: " + tz[i].getName() + "\t分数: " + tz[i].getMark()*jiangLi) ;
}

}

public static void main(String[] args){
new TestTwo(100) ;
}

楼主看看吧。用的都是基础知识。选我啊

㈨ 用c语言完成:1.哈夫曼编码/译码器2.内部排序算法的性能分析

我把网上的程序修改了一下,并整合了,你看看
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#define M 50
#define MAX 100000;

typedef struct
{
int weight;//结点权值
int parent,lchild,rchild;
}HTNODE,*HUFFMANTREE;

typedef char** HUFFMANCODE;//动态分配数组存储哈夫曼编码表

typedef struct
{
int key; /*关键字*/
}RecordNode; /*排序节点的类型*/

typedef struct
{
RecordNode *record;
int n; /*排序对象的大小*/
}SortObject; //待排序序列

HUFFMANTREE huffmantree(int n,int weight[])//构建哈夫曼树
{
int m1,m2,k;
int i,j,x1,x2;
HUFFMANTREE ht;
ht=(HUFFMANTREE)malloc((2*n)*sizeof(HTNODE));
for(i=1;i<(2*n);i++)//初始化哈夫曼树中各结点的数据,没初始值的赋值为0
{
ht[i].parent=ht[i].lchild=ht[i].rchild=0;
if(i<=n)
ht[i].weight=weight[i];
else
ht[i].weight=0;
}
for(i=1;i<n;i++)//每一重循环从森林中选择最小的两棵树组建成一颗新树
{
m1=m2=MAX;
x1=x2=0;
for(j=1;j<(n+i);j++)
{
if((ht[j].weight<m1)&&(ht[j].parent==0))
{
m2=m1;
x2=x1;
m1=ht[j].weight;
x1=j;
}
else if((ht[j].weight<m2)&&(ht[j].parent==0))
{
m2=ht[j].weight;
x2=j;
}
}
k=n+i;
ht[x1].parent=ht[x2].parent=k;
ht[k].weight=m1+m2;
ht[k].lchild=x1;
ht[k].rchild=x2;
}
return ht;
}

void huffmancoding(int n,HUFFMANCODE hc,HUFFMANTREE ht,char str[])
{
int i,start,child,father;
char *cd;
hc=(HUFFMANCODE)malloc((n+1)*sizeof(char*));//分配n个字符编码的头指针
cd=(char*)malloc(n*sizeof(char));//分配求编码的工作空间
cd[n-1]='\0';//编码结束符
for(i=1;i<=n;++i)//逐个字符求哈夫曼编码
{
start=n-1;
for(child=i,father=ht[i].parent;father!=0;child=father,father=ht[father].parent)/*从叶子结点到根结点求逆向编码*/
if(ht[father].lchild==child)
cd[--start]='0';
else
cd[--start]='1';
hc[i]=(char*)malloc((n-start)*sizeof(char));//为i个字符编码分配空间
strcpy(hc[i],&cd[start]);//从cd复制哈夫曼编码串到hc
}
free(cd);//释放工作空间
for(i=1;i<=n;++i)
{
printf("\n%c的编码:",str[i]);
printf("%s\n",hc[i]);
}
}

void huffman()
{
int i,j,k,m,n;
char str[50];
int weight[50];
HUFFMANCODE hc=NULL;
HUFFMANTREE ht;
fflush(stdin);

printf("\n请输入字符(一次性连续输入所求的字符):");/*如:abcjhjg不要输成ab cj hig,即字符间不加空格*/
gets(str);
for(j=0;j<50;j++)
{
if(str[j]=='\0')
break;
}
n=j;
for(j=n;j>0;j--)
str[j]=str[j-1];
str[n+1]='\0';
for(k=0;k<n;k++)
{
printf("\n请输入%c的权值:",str[k+1]);
scanf("%d",&weight[k]);
}
for(k=n;k>0;k--)
weight[k]=weight[k-1];
weight[0]=0;

ht=huffmantree(n,weight);
huffmancoding(n,hc,ht,str);

}

void InsertSort(SortObject *p,unsigned long *compare,unsigned long *exchange)
{
int i,j,k;
RecordNode temp;
SortObject *pvector;
fflush(stdin);
if((pvector=(SortObject *)malloc(sizeof(SortObject)))==NULL)
{
printf("OverFollow!");
getchar();
exit(1);
}
k=pvector->n;
pvector->record=(RecordNode *)malloc(sizeof(RecordNode)*k);
for(i=0;i<p->n;i++)/* 复制数组*/
pvector->record[i]=p->record[i];
pvector->n=p->n;
*compare=0;
*exchange=0;
for(i=1;i<pvector->n;i++)
{
temp=pvector->record[i];
(*exchange)++;
j=i-1;
while((temp.key<pvector->record[j].key)&&(j>=0))
{
(*compare)++;
(*exchange)++;
pvector->record[j+1]=pvector->record[j];
j--;
}
if(j!=(i-1))
{
pvector->record[j+1]=temp;
(*exchange)++;
}
}
free(pvector);
}

void SelectSort(SortObject *p,unsigned long *compare,unsigned long *exchange)
{
int i,j,k;
RecordNode temp;
SortObject *pvector;
if((pvector=(SortObject *)malloc(sizeof(SortObject)))==NULL)
{
printf("OverFollow!");
getchar();
exit(1);
}
k=pvector->n;
pvector->record=(RecordNode *)malloc(sizeof(RecordNode)*k);
for(i=0;i<p->n;i++)/*复制数组*/
pvector->record[i]=p->record[i];
pvector->n=p->n;
*compare=0;
*exchange=0;
for(i=0;i<pvector->n-1;i++)
{
k=i;
for(j=i+1;j<pvector->n;j++)
{
(*compare)++;
if(pvector->record[j].key<pvector->record[k].key)
k=j;
}
if(k!=i)
{
temp=pvector->record[i];
pvector->record[i]=pvector->record[k];
pvector->record[k]=temp;
( *exchange)+=3;
}
}
free(pvector);
}

void BubbleSort(SortObject *p,unsigned long *compare,unsigned long *exchange)
{
int i,j,noswap,k;
RecordNode temp;
SortObject *pvector;
if((pvector=(SortObject *)malloc(sizeof(SortObject)))==NULL)
{
printf("OverFollow!");
getchar();
exit(1);
}
k=pvector->n;
pvector->record=(RecordNode *)malloc(sizeof(RecordNode)*k);
for(i=0;i<p->n;i++)/* 复制数组*/
pvector->record[i]=p->record[i];
pvector->n=p->n;
*compare=0;
*exchange=0;
for(i=0;i<pvector->n-1;i++)
{
noswap=1;
for(j=0;j<pvector->n-i-1;j++)
{
(*compare)++;
if(pvector->record[j+1].key<pvector->record[j].key)
{
temp=pvector->record[j];
pvector->record[j]=pvector->record[j+1];
pvector->record[j+1]=temp;
(*exchange)+=3;
noswap=0;
}
}
if(noswap) break;
}
free(pvector);
}

void ShellSort(SortObject *p,int d,unsigned long *compare,unsigned long *exchange)
{
int i,j,increment,k;
RecordNode temp;
SortObject *pvector;
if((pvector=(SortObject*)malloc(sizeof(SortObject)))==NULL)
{
printf("OverFollow!");
getchar();
exit(1);
}
k=pvector->n;
pvector->record=(RecordNode *)malloc(sizeof(RecordNode)*k);
for(i=0;i<p->n;i++)/* 复制数组*/
pvector->record[i]=p->record[i];
pvector->n=p->n;
*compare=0;
*exchange=0;
for(increment=d;increment>0;increment/=2)
{
for(i=increment;i<pvector->n;i++)
{
temp=pvector->record[i];
(*exchange)++;
j=i-increment;
while(j>=0&&temp.key<pvector->record[j].key)
{
(*compare)++;
pvector->record[j+increment]=pvector->record[j];
(*exchange)++;
j-=increment;
}
pvector->record[j+increment]=temp;
(*exchange)++;
}
}
free(pvector);
}

void QuickSort(SortObject *pvector,int left,int right,unsigned long *compare,unsigned long *exchange)
{
int i,j;
RecordNode temp;
if(left>=right)
return;
i=left;
j=right;
temp=pvector->record[i];
(*exchange)++;
while(i!=j)
{
while((pvector->record[j].key>=temp.key)&&(j>i))
{
(*compare)++;
j--;
}
if(i<j)
{
pvector->record[i++]=pvector->record[j];
(*exchange)++;
}
while((pvector->record[i].key<=temp.key)&&(j>i))
{
(*compare)++;
i++;
}
if(i<j)
{
pvector->record[j--]=pvector->record[i];
(*exchange)++;
}
}
pvector->record[i]=temp;
(*exchange)++;
QuickSort(pvector,left,i-1,compare,exchange);
QuickSort(pvector,i+1,right,compare,exchange);
}

void SortMethod(void)
{
int i,j,k,l;
unsigned long num[5][10]={0};
unsigned long sum[10]={0};
SortObject *pvector;
fflush(stdin);
printf("请输入待排序的随机数个数:\n");
scanf("%d",&k);
pvector=(SortObject *)malloc(sizeof(SortObject));
for(j=0;j<5;j++)
{
pvector->record=(RecordNode *)malloc(sizeof(RecordNode)*k);
for(i=0;i<k;i++)
pvector->record[i].key=rand();
pvector->n=k;
InsertSort(pvector,&num[j][0],&num[j][1]);
SelectSort(pvector,&num[j][2],&num[j][3]);
BubbleSort(pvector,&num[j][4],&num[j][5]);
ShellSort(pvector,4,&num[j][6],&num[j][7]);
QuickSort(pvector,0,k-1,&num[j][8],&num[j][9]);
}
printf("\n排序比较如下");
for(j=0;j<5;j++)
{
printf("\n\n对%d个数进行排序,结果为:\n",k);
printf("1.插入排序:比较-->%-7ld次 移动-->%-7ld次\n",num[j][0],num[j][1]);
printf("2.选择排序:比较-->%-7ld次 移动-->%-7ld次\n",num[j][2],num[j][3]);
printf("3.冒泡排序:比较-->%-7ld次 移动-->%-7ld次\n",num[j][4],num[j][5]);
printf("4.希尔排序:比较-->%-7ld次 移动-->%-7ld次\n",num[j][6],num[j][7]);
printf("5.快速排序:比较-->%-7ld次 移动-->%-7ld次\n",num[j][8],num[j][9]);
if(j!=5)
printf("按回车继续\n");
getchar();
}
for(j=0;j<5;j++)
{
sum[0]=sum[0]+num[j][0];
sum[1]=sum[1]+num[j][1];
sum[2]=sum[2]+num[j][2];
sum[3]=sum[3]+num[j][3];
sum[4]=sum[4]+num[j][4];
sum[5]=sum[5]+num[j][5];
sum[6]=sum[6]+num[j][6];
sum[7]=sum[7]+num[j][7];
sum[8]=sum[8]+num[j][8];
sum[9]=sum[9]+num[j][9];
}
printf("\n\n对%d个随机数进行5次排序,平均比较次数和平均移动次数为:\n",k);
printf("1.插入排序:平均比较-->%-7ld次 平均移动-->%-7ld次\n",sum[0]/5,sum[1]/5);
printf("2.选择排序:平均比较-->%-7ld次 平均移动-->%-7ld次\n",sum[2]/5,sum[3]/5);
printf("3.冒泡排序:平均比较-->%-7ld次 平均移动-->%-7ld次\n",sum[4]/5,sum[5]/5);
printf("4.希尔排序:平均比较-->%-7ld次 平均移动-->%-7ld次\n",sum[6]/5,sum[7]/5);
printf("5.快速排序:平均比较-->%-7ld次 平均移动-->%-7ld次\n",sum[8]/5,sum[9]/5);
free(pvector);
}

void sort()
{
int i;
while(1)
{
SortMethod();
printf("\n是否继续?\n1.继续\n2.返回菜单\n");
scanf("%d",&i);
if(i==2)break;
fflush(stdin);
getchar();
}
}

void huff()
{
int i;
while(1)
{
huffman();
printf("\n是否继续?\n1.继续\n2.返回菜单\n");
scanf("%d",&i);
if(i==2)break;
fflush(stdin);
getchar();
}
}

main()
{
int i,j,k;
while(1)
{
printf("请选择要运行的功能:\n");
printf("1.哈夫曼编码译码器\n");
printf("2.内部排序性能分析\n");
printf("3.退出该程序\n\n");
printf("你的选择为:");
scanf("%d",&i);
switch(i)
{
case 1:huff();break;
case 2:sort();break;
case 3:exit(0);
default:break;
}
fflush(stdin);
getchar();
system("cls");
}
}

㈩ 1. 排序算法性能分析(95分) 编程实现希尔、快速、堆排序、归并排序算法,并计算每种排序算法的比较、交

貌似有点难

阅读全文

与内部排序算法性能分析相关的资料

热点内容
喷油螺杆制冷压缩机 浏览:577
python员工信息登记表 浏览:375
高中美术pdf 浏览:159
java实现排列 浏览:511
javavector的用法 浏览:980
osi实现加密的三层 浏览:230
大众宝来原厂中控如何安装app 浏览:912
linux内核根文件系统 浏览:241
3d的命令面板不见了 浏览:524
武汉理工大学服务器ip地址 浏览:147
亚马逊云服务器登录 浏览:523
安卓手机如何进行文件处理 浏览:70
mysql执行系统命令 浏览:929
php支持curlhttps 浏览:142
新预算法责任 浏览:443
服务器如何处理5万人同时在线 浏览:249
哈夫曼编码数据压缩 浏览:424
锁定服务器是什么意思 浏览:383
场景检测算法 浏览:616
解压手机软件触屏 浏览:348