Ⅰ 棋盘覆盖算法
import java.util.*;
public class TestChessBoard {
public static void main(String[] args) {
int tr=0,tc=0,dr=1,dc=2,size=8;
ChessBoard.chessBoard(tr,tc,dr,dc,size);
ChessBoard.display();
}
}
class ChessBoard {
public static int tile = 0;
public static int[][] board= new int[10][10];
public static void chessBoard (int tr,int tc,int dr,int dc,int size) {
if(size == 1) return;
int t = tile++ , s = size/2;
if(dr<tr+s && dc<tc+s){
chessBoard(tr,tc,dr,dc,s);
}else {
board[tr+s-1][tc+s-1] = t;
chessBoard(tr,tc,tr+s-1,tc+s-1,s);
}
if(dr<tr+s && dc>=tc+s){
chessBoard(tr,tc+s,dr,dc,s);
}else {
board[tr+s-1][tc+s] = t;
chessBoard(tr,tc+s,tr+s-1,tc+s,s);
}
if(dr>=tr+s && dc<tc+s) {
chessBoard(tr+s,tc,dr,dc,s);
}else {
board[tr+s][tc+s-1] = t;
chessBoard(tr+s,tc,tr+s,tc+s-1,s);
}
if(dr>=tr+s && dc>=tc+s) {
chessBoard(tr+s,tc+s,dr,dc,s);
}else {
board[tr+s][tc+s] = t;
chessBoard(tr+s,tc+s,tr+s,tc+s,s);
}
}
public static void display() {
for(int i=0;i<8;i++){
for(int j=0;j<8;j++) {
System.out.print(" "+board[i][j]);
}
System.out.println();
}
}
}
Ⅱ 棋盘覆盖问题算法,pree pascal,帮一下//
type arr1=array[1..65] of integer;
arr2=array[1..65] of arr1;
var board:arr2; tile:integer; size,dr,dc:integer;
procere chessboard(tr,tc:integer; dr,dc:integer; var size:integer);
var t,s:integer;
begin
if (size=1) then exit;
t:=tile; inc(tile);
s:=size div 2;
if (dr<tr+s)and(dc<tc+s) then chessboard(tr,tc,dr,dc,s) else begin
board[tr+s-1,tc+s-1]:=t;
chessboard(tr,tc,tr+s-1,tc+s-1,s);
end;
if (dr<tr+s) and (dc>=tc+s) then chessboard(tr,tc+s,dr,dc,s)
else begin board[tr+s-1][tc+s]:=t;
chessboard(tr,tc+s,tr+s-1,tc+s,s); end;
if (dr>=tr+s) and (dc<tc+s) then chessboard(tr+s,tc+s,dr,dc,s) else begin
board[tr+s][tc+s]:=t; chessboard(tr+s,tc,tr+s,tc+s-1,s); end;
if (dr>=tr+s) and (dc>=tc+s) then chessboard(tr+s,tc+s,dr,dc,s)
else begin board[tr+s][tc+s]:=t; chessboard(tr+s,tc+s,tr+s,tc+s,s); end;
end;
procere prt1(n:integer);
var I,j:integer;
begin
for I:=1 to n do begin
for j:=1 to n do write(board[i,j]:3);
writeln;
end;
end;
begin
writeln('input size(4/8/16/64):');
readln(size); writeln('input the position of special block(x,y):');
readln(dr,dc); board[dr][dc]:=-1;
tile:=1; chessboard(1,1,dr,dc,size); prt1(size);
end.
Ⅲ 棋盘覆盖问题的算法分析
设T(k)是算法ChessBoard覆盖一个2^k×2^k棋盘所需时间,从算法的划分
策略可知,T(k)满足如下递推式:
T(k) = 1 当k=0时
T(k) = 4T(k-1) 当k>0时
解此递推式可得T(k)=O(4^k)。
Ⅳ 求NOIP2007普及组初赛试题(棋盘覆盖问题)的程序解析,比如程序的思路以及每步的作用
声明:本文使用的代码和例子的来源:《计算机算法设计与分析》(王晓东编着,电子工业出版社)。我对代码做了少许修改,使可以在tc的图形模式下看到题目的结果。
题目:在一个(2^k)*(2^k)个方格组成的棋盘上,有一个特殊方格与其他方格不同,称为特殊方格,称这样的棋盘为一个特殊棋盘。现在要求对棋盘的其余部分用L型方块填满(注:L型方块由3个单元格组成。即围棋中比较忌讳的愚形三角,方向随意),切任何两个L型方块不能重叠覆盖。L型方块的形态如下:
■■*■■***■*■
■******■*■■*■■
题目的解法使用分治法,即子问题和整体问题具有相同的形式。我们对棋盘做一个分割,切割一次后的棋盘如图1所示,我们可以看到棋盘被切成4个一样大小的子棋盘,特殊方块必定位于四个子棋盘中的一个。假设如图1所示,特殊方格位于右上角,我们把一个L型方块(灰色填充)放到图中位置。这样对于每个子棋盘又各有一个“特殊方块”,我们对每个子棋盘继续这样分割,知道子棋盘的大小为1为止。
用到的L型方块需要(4^k-1)/3 个,算法的时间是O(4^k),是渐进最优解法。
Ⅳ 计算机分治法
一、基本概念
在计算机科学中,分治法是一种很重要的算法。字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变换)……
任何一个可以用计算机求解的问题所需的计算时间都与其规模有关。问题的规模越小,越容易直接求解,解题所需的计算时间也越少。例如,对于n个元素的排序问题,当n=1时,不需任何计算。n=2时,只要作一次比较即可排好序。n=3时只要作3次比较即可,…。而当n较大时,问题就不那么容易处理了。要想直接解决一个规模较大的问题,有时是相当困难的。
二、基本思想及策略
分治法的设计思想是:将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。
分治策略是:对于一个规模为n的问题,若该问题可以容易地解决(比如说规模n较小)则直接解决,否则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。这种算法设计策略叫做分治法。
如果原问题可分割成k个子问题,1<k≤n,且这些子问题都可解并可利用这些子问题的解求出原问题的解,那么这种分治法就是可行的。由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。这自然导致递归过程的产生。分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。
三、分治法适用的情况
分治法所能解决的问题一般具有以下几个特征:
1) 该问题的规模缩小到一定的程度就可以容易地解决
2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。
3) 利用该问题分解出的子问题的解可以合并为该问题的解;
4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。
第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;
第二条特征是应用分治法的前提它也是大多数问题可以满足的,此特征反映了递归思想的应用;、
第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑用贪心法或动态规划法。
第四条特征涉及到分治法的效率,如果各子问题是不独立的则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好。
四、分治法的基本步骤
分治法在每一层递归上都有三个步骤:
step1 分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;
step2 解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题
step3 合并:将各个子问题的解合并为原问题的解。
它的一般的算法设计模式如下:
Divide-and-Conquer(P)
1. if |P|≤n0
2. then return(ADHOC(P))
3. 将P分解为较小的子问题 P1 ,P2 ,…,Pk
4. for i←1 to k
5. do yi ← Divide-and-Conquer(Pi) △ 递归解决Pi
6. T ← MERGE(y1,y2,…,yk) △ 合并子问题
7. return(T)
其中|P|表示问题P的规模;n0为一阈值,表示当问题P的规模不超过n0时,问题已容易直接解出,不必再继续分解。ADHOC(P)是该分治法中的基本子算法,用于直接解小规模的问题P。因此,当P的规模不超过n0时直接用算法ADHOC(P)求解。算法MERGE(y1,y2,…,yk)是该分治法中的合并子算法,用于将P的子问题P1 ,P2 ,…,Pk的相应的解y1,y2,…,yk合并为P的解。
五、分治法的复杂性分析
一个分治法将规模为n的问题分成k个规模为n/m的子问题去解。设分解阀值n0=1,且adhoc解规模为1的问题耗费1个单位时间。再设将原问题分解为k个子问题以及用merge将k个子问题的解合并为原问题的解需用f(n)个单位时间。用T(n)表示该分治法解规模为|P|=n的问题所需的计算时间,则有:
T(n)= k T(n/m)+f(n)
通过迭代法求得方程的解:
递归方程及其解只给出n等于m的方幂时T(n)的值,但是如果认为T(n)足够平滑,那么由n等于m的方幂时T(n)的值可以估计T(n)的增长速度。通常假定T(n)是单调上升的,从而当mi≤n<mi+1时,T(mi)≤T(n)<T(mi+1)。
六、可使用分治法求解的一些经典问题
(1)二分搜索
(2)大整数乘法
(3)Strassen矩阵乘法
(4)棋盘覆盖
(5)合并排序
(6)快速排序
(7)线性时间选择
(8)最接近点对问题
(9)循环赛日程表
(10)汉诺塔
七、依据分治法设计程序时的思维过程
实际上就是类似于数学归纳法,找到解决本问题的求解方程公式,然后根据方程公式设计递归程序。
1、一定是先找到最小问题规模时的求解方法
2、然后考虑随着问题规模增大时的求解方法
3、找到求解的递归函数式后(各种规模或因子),设计递归程序即可。
Ⅵ 棋盘覆盖问题的算法实现
下面讨论棋盘覆盖问题中数据结构的设计。
(1)棋盘:可以用一个二维数组board[size][size]表示一个棋盘,其中,size=2^k。为了在递归处理的过程中使用同一个棋盘,将数组board设为全局变量;
(2)子棋盘:整个棋盘用二维数组board[size][size]表示,其中的子棋盘由棋盘左上角的下标tr、tc和棋盘大小s表示;
(3)特殊方格:用board[dr][dc]表示特殊方格,dr和dc是该特殊方格在二维数组board中的下标;
(4) L型骨牌:一个2^k×2^k的棋盘中有一个特殊方格,所以,用到L型骨牌的个数为(4^k-1)/3,将所有L型骨牌从1开始连续编号,用一个全局变量t表示。
设全局变量t已初始化为0,分治法求解棋盘覆盖问题的算法用C++语言描述如下:
void ChessBoard(int tr, int tc, int dr, int dc, int size)
{
int s, t1; //t1表示本次覆盖所用L型骨牌的编号
if (size == 1) return; //棋盘只有一个方格且是特殊方格
t1 = ++t; // L型骨牌编号
s = size/2; // 划分棋盘
if (dr < tr + s && dc < tc + s) //特殊方格在左上角子棋盘中
ChessBoard(tr, tc, dr, dc, s); //递归处理子棋盘
else{ //用 t1号L型骨牌覆盖右下角,再递归处理子棋盘
board[tr + s - 1][tc + s - 1] = t1;
ChessBoard(tr, tc, tr+s-1, tc+s-1, s);
}
if (dr < tr + s && dc >= tc + s) //特殊方格在右上角子棋盘中
ChessBoard(tr, tc+s, dr, dc, s); //递归处理子棋盘
else { //用 t1号L型骨牌覆盖左下角,再递归处理子棋盘
board[tr + s - 1][tc + s] = t1;
ChessBoard(tr, tc+s, tr+s-1, tc+s, s);
}
if (dr >= tr + s && dc < tc + s) //特殊方格在左下角子棋盘中
ChessBoard(tr+s, tc, dr, dc, s); //递归处理子棋盘
else { //用 t1号L型骨牌覆盖右上角,再递归处理子棋盘
board[tr + s][tc + s - 1] = t1;
ChessBoard(tr+s, tc, tr+s, tc+s-1, s);
}
if (dr >= tr + s && dc >= tc + s) //特殊方格在右下角子棋盘中
ChessBoard(tr+s, tc+s, dr, dc, s); //递归处理子棋盘
else { //用 t1号L型骨牌覆盖左上角,再递归处理子棋盘
board[tr + s][tc + s] = t1;
ChessBoard(tr+s, tc+s, tr+s, tc+s, s);
}
}