导航:首页 > 源码编译 > 随机化快速排序算法

随机化快速排序算法

发布时间:2022-07-15 13:22:09

Ⅰ 随机化算法的举例

下面,我们就随机化问题,举一个例子:
一个长度在4..10的字符串中,需要判定是否可以在字符串中删去若干字符,使得改变后字符串符合以下条件之一:
(1)AAAA;(2)AABB;(3)ABAB;(4)ABBA。
例如:长度为6字符串“POPKDK”,若删除其中的“O”,“D”两个字母,则原串变为:“PPKK”,符合条件(2)AABB。
分析:
这道题很容易想到一种算法:运用排列组合:枚举每4个字母,然后逐一判断。算法是可行的,但是如果需要题目中加上一句话:需要判断n个字符串,且n<=100000,那么这样的耗时是不能让人忍受①的,因为在枚举的过程中,是非常浪费时间的。
(①:这里是指信息学中要求算法的普遍运算时间为:1000ms)
所以这道题有可能可以借助于随机化算法,下面我们来算一下在10个字符中取4个字符一共有多少种取法:C(4,10)=210。那么很容易得知,随机化算法如果随机300次,能得到的结果基本上就正确了(概率为1-(209/210)^300,约为0.76),而随机时的时间消耗是O(1),只需要判断没有随机重复即可,判重的时间复杂度也为O(1),并且最多随机300次,这样就可以有效地得到答案,最大运算次数为:O(300n),这是在计算机的承受范围内(1000ms)的。
从这里就能看出,随机化算法是一个很好的概率算法,但是它并不能保证正确,而且它单独使用的情况很少,大部分是与其他的算法:例如贪心、搜索等配合起来运用。 排序问题。快速排序是排序方法中较为便捷的方法之一,但是由于它极不稳定,最好的时候时间复杂度为O(n㏒n),这里的㏒是指以2为底的对数运算。最坏的时候能达到与普通排序方法一样的O(n^2)。
而制约快速排序的有两个:一是数据,越无序的数据,快排的速度越快;二是中间点的枚举。
因为两个制约条件都与随机有着不可分开的关系。
所以,在快速排序中加入随机化算法无疑是十分重要的。
运用在:
(1)数据读入时,随机排放数据位置。
(2)中间点的枚举进行多次随机化后决定。
这样就基本上将快速排序的时间复杂度维持在最好状态。

Ⅱ 快速排序的复杂度怎么算,是多少

这个,我确实一点也不懂,帮你搜索。

1.
快速排序-时空复杂度:
快速排序每次将待排序数组分为两个部分,在理想状况下,每一次都将待排序数组划分成等长两个部分,则需要logn次划分。
而在最坏情况下,即数组已经有序或大致有序的情况下,每次划分只能减少一个元素,快速排序将不幸退化为冒泡排序,所以快速排序时间复杂度下界为O(nlogn),最坏情况为O(n^2)。在实际应用中,快速排序的平均时间复杂度为O(nlogn)。
快速排序在对序列的操作过程中只需花费常数级的空间。空间复杂度S(1)。
但需要注意递归栈上需要花费最少logn最多n的空间。

2.快速排序-随机化算法:
快速排序的实现需要消耗递归栈的空间,而大多数情况下都会通过使用系统递归栈来完成递归求解。在元素数量较大时,对系统栈的频繁存取会影响到排序的效率。
一种常见的办法是设置一个阈值,在每次递归求解中,如果元素总数不足这个阈值,则放弃快速排序,调用一个简单的排序过程完成该子序列的排序。这样的方法减少了对系统递归栈的频繁存取,节省了时间的消费。
一般的经验表明,阈值取一个较小的值,排序算法采用选择、插入等紧凑、简洁的排序。一个可以参考的具体方案:阈值T=10,排序算法用选择排序。
阈值不要太大,否则省下的存取系统栈的时间,将会被简单排序算法较多的时间花费所抵消。
另一个可以参考的方法,是自行建栈模拟递归过程。但实际经验表明,收效明显不如设置阈值。

3.快速排序的最坏情况基于每次划分对主元的选择。基本的快速排序选取第一个元素作为主元。这样在数组已经有序的情况下,每次划分将得到最坏的结果。一种比较常见的优化方法是随机化算法,即随机选取一个元素作为主元。这种情况下虽然最坏情况仍然是O(n^2),但最坏情况不再依赖于输入数据,而是由于随机函数取值不佳。实际上,随机化快速排序得到理论最坏情况的可能性仅为1/(2^n)。所以随机化快速排序可以对于绝大多数输入数据达到O(nlogn)的期望时间复杂度。一位前辈做出了一个精辟的总结:“随机化快速排序可以满足一个人一辈子的人品需求。”
随机化快速排序的唯一缺点在于,一旦输入数据中有很多的相同数据,随机化的效果将直接减弱。对于极限情况,即对于n个相同的数排序,随机化快速排序的时间复杂度将毫无疑问的降低到O(n^2)。解决方法是用一种方法进行扫描,使没有交换的情况下主元保留在原位置。

4.设要排序的数组是A[0]……A[N-1],首先任意选取一个数据(通常选用第一个数据)作为关键数据,然后将所有比它小的数都放到它前面,所有比它大的数都放到它后面,这个过程称为一趟快速排序。一趟快速排序的算法是:
1)设置两个变量I、J,排序开始的时候:I=0,J=N-1;
2)以第一个数组元素作为关键数据,赋值给key,即 key=A[0];
3)从J开始向前搜索,即由后开始向前搜索(J=J-1),找到第一个小于key的值A[J],并与A[I]交换;
4)从I开始向后搜索,即由前开始向后搜索(I=I+1),找到第一个大于key的A[I],与A[J]交换;
5)重复第3、4、5步,直到 I=J; (3,4步是在程序中没找到时候j=j-1,i=i+1。找到并交换的时候i, j指针位置不变。另外当i=j这过程一定正好是i+或j+完成的最后另循环结束)
例如:待排序的数组A的值分别是:(初始关键数据:X=49) 注意关键X永远不变,永远是和X进行比较,无论在什么位子,最后的目的就是把X放在中间,小的放前面大的放后面。
A[0] 、 A[1]、 A[2]、 A[3]、 A[4]、 A[5]、 A[6]:
49 38 65 97 76 13 27
进行第一次交换后: 27 38 65 97 76 13 49
( 按照算法的第三步从后面开始找)
进行第二次交换后: 27 38 49 97 76 13 65
( 按照算法的第四步从前面开始找>X的值,65>49,两者交换,此时:I=3 )
进行第三次交换后: 27 38 13 97 76 49 65
( 按照算法的第五步将又一次执行算法的第三步从后开始找
进行第四次交换后: 27 38 13 49 76 97 65
( 按照算法的第四步从前面开始找大于X的值,97>49,两者交换,此时:I=4,J=6 )
此时再执行第三步的时候就发现I=J,从而结束一趟快速排序,那么经过一趟快速排序之后的结果是:27 38 13 49 76 97 65,即所以大于49的数全部在49的后面,所以小于49的数全部在49的前面。
快速排序就是递归调用此过程——在以49为中点分割这个数据序列,分别对前面一部分和后面一部分进行类似的快速排序,从而完成全部数据序列的快速排序,最

Ⅲ 快速排序算法原理与实现

快速排序的基本思想就是从一个数组中任意挑选一个元素(通常来说会选择最左边的元素)作为中轴元素,将剩下的元素以中轴元素作为比较的标准,将小于等于中轴元素的放到中轴元素的左边,将大于中轴元素的放到中轴元素的右边。

然后以当前中轴元素的位置为界,将左半部分子数组和右半部分子数组看成两个新的数组,重复上述操作,直到子数组的元素个数小于等于1(因为一个元素的数组必定是有序的)。

以下的代码中会常常使用交换数组中两个元素值的Swap方法,其代码如下

publicstaticvoidSwap(int[] A, inti, intj){

inttmp;

tmp = A[i];

A[i] = A[j];

A[j] = tmp;


(3)随机化快速排序算法扩展阅读:

快速排序算法 的基本思想是:将所要进行排序的数分为左右两个部分,其中一部分的所有数据都比另外一 部分的数据小,然后将所分得的两部分数据进行同样的划分,重复执行以上的划分操作,直 到所有要进行排序的数据变为有序为止。

定义两个变量low和high,将low、high分别设置为要进行排序的序列的起始元素和最后一个元素的下标。第一次,low和high的取值分别为0和n-1,接下来的每次取值由划分得到的序列起始元素和最后一个元素的下标来决定。

定义一个变量key,接下来以key的取值为基准将数组A划分为左右两个部分,通 常,key值为要进行排序序列的第一个元素值。第一次的取值为A[0],以后毎次取值由要划 分序列的起始元素决定。

从high所指向的数组元素开始向左扫描,扫描的同时将下标为high的数组元素依次与划分基准值key进行比较操作,直到high不大于low或找到第一个小于基准值key的数组元素,然后将该值赋值给low所指向的数组元素,同时将low右移一个位置。

如果low依然小于high,那么由low所指向的数组元素开始向右扫描,扫描的同时将下标为low的数组元素值依次与划分的基准值key进行比较操作,直到low不小于high或找到第一个大于基准值key的数组元素,然后将该值赋给high所指向的数组元素,同时将high左移一个位置。

重复步骤(3) (4),直到low的植不小于high为止,这时成功划分后得到的左右两部分分别为A[low……pos-1]和A[pos+1……high],其中,pos下标所对应的数组元素的值就是进行划分的基准值key,所以在划分结束时还要将下标为pos的数组元素赋值 为 key。

Ⅳ 随机化的算法

在我们的生活中,人们经常会去掷色子来看结果,投硬币来决定行动,这就牵涉到一个问题:随机。
计算机为我们提供好了随机方法(部分计算器也提供了),那么对于有些具有瑕疵的算法,如果配上随机化算法的话,又是可以得到一样不到的结果。
这种算法看上去是凭着运气做事,其实,随机化算法是有一定的理论基础的,我们可以想象,在[1,10000]这个闭区间里,随机1000次,随机到2这个数的几率是多大,何况1000次的随机在计算机程序中仅仅是一眨眼的功夫。可以看出,随机化算法有着广阔的前景。只是由于随机化算法比较难于掌控,所以并不是很多人都接触过他,但肯定有很多人都听说过。
下面,我们就随机化问题,举一个例子:
一个长度在4..10的字符串中,需要判定是否可以在字符串中删去若干字符,使得改变后字符串符合以下条件之一:
(1)AAAA;(2)AABB;(3)ABAB;(4)ABBA。
例如:长度为6字符串“POPKDK”,若删除其中的“O”,“D”两个字母,则原串变为:“PPKK”,符合条件(2)AABB。
分析:
这道题很容易想到一种算法:运用排列组合:枚举每4个字母,然后逐一判断。算法是可行的,但是如果需要题目中加上一句话:需要判断n个字符串,且n<=100000,那么这样的耗时是不能让人忍受①的,因为在枚举的过程中,是非常浪费时间的。
(①:这里是指信息学中要求算法的普遍运算时间为:1000ms)
所以这道题有可能可以借助于随机化算法,下面我们来算一下在10个组符中取4个字符一共有多少种取法:C(4,10)=210。那么很容易得知,随机化算法如果随机100次,能都到的结果基本上就正确了,而随机时的时间消耗是O(1),只需要判断没有随机重复即可,判重的时间复杂度也为O(1),并且最多随机100次,这样就可以有效地得到答案,最大运算次数为:O(100n),这是在计算机的承受范围内(1000ms)的。
从这里就能看出,随机化算法是一个很好的概率算法,但是它并不能保证正确,而且它单独使用的情况很少,大部分是与其他的算法:例如贪心、搜索等配合起来运用。
再举一个例子:
排序问题。快速排序是排序方法中较为便捷的方法之一,但是由于它极不稳定,最好的时候时间复杂度为O(n㏒n),这里的㏒是指以2为底的对数运算。最坏的时候能达到与普通排序方法一样的O(n^2)。
而制约快速排序的有两个:一是数据,越无序的数据,快排的速度越快;二是中间点的枚举。
因为两个制约条件都与随机有着不可分开的关系。
所以,在快速排序中加入随机化算法无疑是十分重要的。

java编程实现随机数组的快速排序

java编程实现随机数组的快速排序步骤如下:

1、打开Eclipse,新建一个Java工程,在此工程里新建一个Java类;

2、在新建的类中声明一个产生随机数的Random变量,再声明一个10个长度的int型数组;

3、将产生的随机数逐个放入到数组中;

4、利用排序算法对随机数组进行排序。

具体代码如下:

importjava.util.Random;
publicclassDemo{
publicstaticvoidmain(String[]args){
intcount=0;
Randomrandom=newRandom();
inta[]=newint[10];
while(count<10){
a[count]=random.nextInt(1000);//产生0-999的随机数
count++;
}
for(inti=0;i<a.length-1;i++){
intmin=i;
for(intj=i+1;j<a.length;j++){
if(a[j]<a[min]){
min=j;
}
}
if(min!=i){
intb=a[min];
a[min]=a[i];
a[i]=b;
}
}
for(intc=0;c<a.length;c++){
System.out.print(a[c]+"");
}
}
}

Ⅵ 快速排序怎样随机化

procere qsort(l,r:integer);
var i,j,x,t:longint;
begin
i:=l;j:=r;x:=a[random(r-l+1)+l];
repeat
while a[i]<x do inc(i);
while a[j]>x do dec(j);
if i<=j then begin
t:=a[i];
a[i]:=a[j];
a[j]:=t;
inc(i);
dec(j);
end;
until i>j;
if i<r then qsort(i,r);
if j>l then qsort(l,j);
end;

这是我编的快排过程
是随机啊

如果一直是1,n-1的划分(就是最差情况,不二分)就成O(n^2)的算法了
就起不到快排的作用了

Ⅶ 什么是随机快速排序

随机选择快速排序是一种比较常见的优化快速排序的方法,即随机选取一个元素作为主元,而不是像普通快速排序那样选取第一个元素作为主元,这种情况下虽然最坏情况仍然是O(n^2),但最坏情况不再依赖于输入数据,而是由于随机函数取值不佳。
实际上,随机化快速排序得到理论最坏情况的可能性仅为1/(2^n)。所以随机化快速排序可以对于绝大多输入数据达到O(nlogn)的期望时间复杂度。

阅读全文

与随机化快速排序算法相关的资料

热点内容
喷油螺杆制冷压缩机 浏览:577
python员工信息登记表 浏览:375
高中美术pdf 浏览:158
java实现排列 浏览:511
javavector的用法 浏览:980
osi实现加密的三层 浏览:230
大众宝来原厂中控如何安装app 浏览:912
linux内核根文件系统 浏览:241
3d的命令面板不见了 浏览:524
武汉理工大学服务器ip地址 浏览:147
亚马逊云服务器登录 浏览:523
安卓手机如何进行文件处理 浏览:70
mysql执行系统命令 浏览:929
php支持curlhttps 浏览:142
新预算法责任 浏览:443
服务器如何处理5万人同时在线 浏览:249
哈夫曼编码数据压缩 浏览:424
锁定服务器是什么意思 浏览:383
场景检测算法 浏览:616
解压手机软件触屏 浏览:348