① 压电陶瓷在汽车领域应用
浅谈压电陶瓷在汽车中的应用杨群保 当你在点燃煤气灶或热水器时,就有一种压电陶瓷已悄悄地为你服 务了一次。生产厂家在这类压电点火 装置内,藏着一块压电陶瓷,当用户按下点火装置的 弹簧时,传动装置就把压力施加在压电陶瓷上,使它 产生很高的电压,进而将电能引向燃气的出口放电, 于是,燃气就被电火花点燃了。压电陶瓷的这种功能就叫做压电效应。反之 施加电压,则产生机械应力,称为逆压电效应。 刹车片在汽车低速度行驶过程中接触转子会产生振动,有时表现为刺耳 的噪音。这种噪音不会影响刹车的性能,但却会导致不必要的替换刹车片和 加装用于消除噪音的垫片、消音材料和其他部件。若在汽车的制动器活塞里 安装一种简单的压电陶瓷致动器,向内部制动杉块的支撑板施加“抖动”频率, 有效抑制产生尖利噪音的振动,从而能在温度湿度变化和刹车系统正常磨损 的情况下发挥作用。 由于不需要安装探测器或逻辑系统以确定适当的控制频 率,这种装置在结构上要简单得多,需要的元件也比较少。 压电陶瓷也可用作汽车的压电陶瓷爆震传感器、超声波传感器、加速度 传感器等类别。压电陶瓷爆震传感器由压电陶瓷振子、金属片、密封垫、金 属外壳等构成。压电振子产生的电荷与发动机气缸发生的振动成正比,所产 生的电压经屏蔽线进入电控单元,由此检测出 7kHz 左右振动所产生的电压, 电控单元根据这一电压的大小判断爆震强度,及时修正或响应推迟点火提前 消除爆震,使发动机在接近爆震、热效率最高、燃料消耗量最少的点火时刻 工作,实现无爆震工作状态,保证发动机以最大可能的功率与经济指标运转。 超声波传感器用作汽车倒车防撞报警器装置,也 被称为超声波倒车雷达或倒车声纳系统,尤其适用于 加长型装载汽车、载重大货车、矿山汽车等大型车辆。 超声波传感器通常由铝合金外壳、压电陶瓷换能器、 吸声材料、引线电极所构成,具有水平方向特性宽, 而垂直方向受到限制的方向性,原理上利用锆钛酸铅 PZT 压电陶瓷在电能与机械能之间相互转换的正、逆压电效应,既在压电陶 瓷加一电信号,便产生机械振动而发射超声波,当超声波在空气传播途中碰 到障碍物立即被反射回来,作用于它的陶瓷时,则会有电信号输出,通过数 据处理时间差测距,计算显示车与障碍物的距离及危险相撞时报警,可准确 无误地探测汽车尾部及驾车者视角盲区的微小障碍物,实用性相当强。为获 得高的发射效率和接受灵敏度,发射接收全并在一起的超声波传感器是目前 市场上的主流产品,具有很高的发射效率、接收灵敏度及尖锐的指向性。超 声波有一定的探测角度和范围,可覆盖汽车后部整个区域。用于汽车电控悬 架系统直接计测车身底盘与路面距离的超声波传感器正在研制之中。超声波 传感器还被用于空气流量计,检测发动机进气量大小。 压电陶瓷加速度计传感器可用于汽车安全 气囊系统,利用碰撞惯性形成的惯性力会在压电 陶瓷体内产生剪切力作用,由此发生与加速度成 正比的电荷及电压,高精度高可靠。将两枚压电 陶瓷片通过内部的共同电极串联粘结起来,形成 二级结构,安装在运动方向上并形成悬臂梁,并 在外围电路厚度集成制作在一个外壳内,检测汽 车瞬间的低速或高速碰撞强度,转换成电信号输 出,满足诊断控制多种算法要求,确保碰撞强度大时,安全气囊准确及时开 启,提高汽车安全性能。
② 调高控制面板里的鼠标速度,还是调高鼠标DPi好
当然是调DPI好。鼠标的DPI是每英寸点数,也就是鼠标每移动一英寸指针在屏幕上移动的点数。比如400DPI的鼠标,他在移动一英寸的时候,屏幕上的指针可以移动400个点。这个是鼠标精准定位的点。
系统控制面板的鼠标速度是以插值算法计算的,比如当控制面板把速度调快(标准的是最中间的档位,就是6/11),那么鼠标移动实际只有1个点的距离,系统插值计算为两个点距离,就是跳过一个点移动,这样就移动更快,但是损失了精准的定位,调得越快定位越差(一倍是1个点当2个点,二倍就2个当4个,以此内推)。当速度调慢,把鼠标真实移动两个点移动的距离,只当成一个点距离,这样移动就变慢了。
你可以理解成这样,鼠标DPI移动是真实的定位,比如你要移动800个点的距离,DPI是真实定位了这800点的每个点。控制面板鼠标速度调快一倍,那么它只定位了400个点,它是跳着两个点当1个点移动的。反过来,控制面板调慢了,虽然你屏幕上的每一个点都能精准定位,但是却牺牲了你鼠标的定位。
即使你通过共同调节鼠标和控制面板速度,搭配出来同样的速度,在真实定位反应上都会有损失的。但是我们一般很多时候,并不需要鼠标精确的定位每个点,但是像有些游戏或作图之类的应用,对定位要求很高,这就需要对定位能力要求很高的鼠标了(很多鼠标本身芯片定位能力就差,或是芯片自身就是插值算法的)。
③ 易语言ecdh算法怎么用
易语言画线算法:用鼠标穿透。
四个画板作为1234象限,然后自己定义个X,Y变量,取一个范围内的X,Y值画点。最后用画线连点,个人推荐画板宽度300,4个画板就是600的大小,只取函数在-3,3的位置的点,这样就能画出小数点后两位的点。
支持库:
易语言支持库实际上是DLL文件。通过使用其它编程语言为易语言开发支持库,易语言系统的功能可以得到无限扩展。
这种支持库是易语言专用的,其它编程语言也可以使用,但需要经过复杂的调用。支持库文件扩展名有fne、fnr、fnl、npk四种。fne制作好的DLL文件,例如系统核心支持库、应用接口支持库。该类支持库一般由用户使用C++或Delphi制作,具体可以看易语言支持库开发手册。
④ 压力传感器在电脑触摸屏上的应用和原理
压力传感器是工业实践中最为常用的一种传感器,而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也称为压电传感器。
我们知道,晶体是各向异性的,非晶体是各向同性的。某些晶体介质,当沿着一定方向受到机械力作用发生变形时,就产生了极化效应;当机械力撤掉之后,又会重新回到不带电的状态,也就是受到压力的时候,某些晶体可能产生出电的效应,这就是所谓的极化效应。科学家就是根据这个效应研制出了压力传感器。
压电传感器中主要使用的压电材料包括有石英、酒石酸钾钠和磷酸二氢胺。其中石英(二氧化硅)是一种天然晶体,压电效应就是在这种晶体中发现的,在一定的温度范围之内,压电性质一直存在,但温度超过这个范围之后,压电性质完全消失(这个高温就是所谓的“居里点”)。由于随着应力的变化电场变化微小(也就说压电系数比较低),所以石英逐渐被其他的压电晶体所替代。而酒石酸钾钠具有很大的压电灵敏度和压电系数,但是它只能在室温和湿度比较低的环境下才能够应用。磷酸二氢胺属于人造晶体,能够承受高温和相当高的湿度,所以已经得到了广泛的应用。
在现在压电效应也应用在多晶体上,比如现在的压电陶瓷,包括钛酸钡压电陶瓷、PZT、铌酸盐系压电陶瓷、铌镁酸铅压电陶瓷等等。
压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。
压电传感器主要应用在加速度、压力和力等的测量中。压电式加速度传感器是一种常用的加速度计。它具有结构简单、体积小、重量轻、使用寿命长等优异的特点。压电式加速度传感器在飞机、汽车、船舶、桥梁和建筑的振动和冲击测量中已经得到了广泛的应用,特别是航空和宇航领域中更有它的特殊地位。压电式传感器也可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。
压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广泛。
除了压电传感器之外,还有利用压阻效应制造出来的压阻传感器,利用应变效应的应变式传感器等,这些不同的压力传感器利用不同的效应和不同的材料,在不同的场合能够发挥它们独特的用途。
==================================================================================================
触摸屏原理
随着多媒体信息查询的与日俱增,人们越来越多地谈到触摸屏,因为触摸屏不仅适用于中国多媒体信息查询的国情,而且触摸屏具有坚固耐用、反应速度快、节省空间、易于交流等许多优点。利用这种技术,我们用户只要用手指轻轻地碰计算机显示屏上的图符或文字就能实现对主机操作,从而使人机交互更为直截了当,这种技术大大方便了那些不懂电脑操作的用户。 ??
触摸屏作为一种最新的电脑输入设备,它是目前最简单、方便、自然的一种人机交互方式。它赋予了多媒体以崭新的面貌,是极富吸引力的全新多媒体交互设备。触摸屏在我国的应用范围非常广阔,主要是公共信息的查询;如电信局、税务局、银行、电力等部门的业务查询;城市街头的信息查询;此外应用于领导办公、工业控制、军事指挥、电子游戏、点歌点菜、多媒体教学、房地产预售等。将来,触摸屏还要走入家庭。
随着使用电脑作为信息来源的与日俱增,触摸屏以其易于使用、坚固耐用、反应速度快、节省空间等优点,使得系统设计师们越来越多的感到使用触摸屏的确具有具有相当大的优越性。触摸屏出现在中国市场上至今只有短短的几年时间,这个新的多媒体设备还没有为许多人接触和了解,包括一些正打算使用触摸屏的系统设计师,还都把触摸屏当作可有可无的设备,从发达国家触摸屏的普及历程和我国多媒体信息业正处在的阶段来看,这种观念还具有一定的普遍性。事实上,触摸屏是一个使多媒体信息或控制改头换面的设备,它赋予多媒体系统以崭新的面貌,是极富吸引力的全新多媒体交互设备。发达国家的系统设计师们和我国率先使用触摸屏的系统设计师们已经清楚的知道,触摸屏对于各种应用领域的电脑已经不再是可有可无的东西,而是必不可少的设备。它极大的简化了计算机的使用,即使是对计算机一无所知的人,也照样能够信手拈来,使计算机展现出更大的魅力。解决了公共信息市场上计算机所无法解决的问题。
随着城市向信息化方向发展和电脑网络在国民生活中的渗透,信息查询都已用触摸屏实现--显示内容可触摸的形式出现。为了帮助大家对触摸屏有一个大概的了解,笔者就在这里提供一些有关触摸屏的相关知识,希望这些内容能对大家有所用处。
一、触摸屏的工作原理 ??
为了操作上的方便,人们用触摸屏来代替鼠标或键盘。工作时,我们必须首先用手指或其它物体触摸安装在显示器前端的触摸屏,然后系统根据手指触摸的图标或菜单位置来定位选择信息输入。触摸屏由触摸检测部件和触摸屏控制器组成;触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,接受后送触摸屏控制器;而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU,它同时能接收CPU发来的命令并加以执行。
二、触摸屏的主要类型 ??
按照触摸屏的工作原理和传输信息的介质,我们把触摸屏分为四种,它们分别为电阻式、电容感应式、红外线式以及表面声波式。每一类触摸屏都有其各自的优缺点,要了解那种触摸屏适用于那种场合,关键就在于要懂得每一类触摸屏技术的工作原理和特点。下面对上述的各种类型的触摸屏进行简要介绍一下:
1、 电阻式触摸屏 (电阻式触摸屏工作原理图)
这种触摸屏利用压力感应进行控制。电阻触摸屏的主要部分是一块与显示器表面非常配合的电阻薄膜屏,这是一种多层的复合薄膜,它以一层玻璃或硬塑料平板作为基层,表面涂有一层透明氧化金属(透明的导电电阻)导电层,上面再盖有一层外表面硬化处理、光滑防擦的塑料层、它的内表面也涂有一层涂层、在他们之间有许多细小的(小于1/1000英寸)的透明隔离点把两层导电层隔开绝缘。 当手指触摸屏幕时,两层导电层在触摸点位置就有了接触,电阻发生变化,在X和Y两个方向上产生信号,然后送触摸屏控制器。控制器侦测到这一接触并计算出(X,Y)的位置,再根据模拟鼠标的方式运作。这就是电阻技术触摸屏的最基本的原理。 电阻类触摸屏的关键在于材料科技,常用的透明导电涂层材料有: ??
A、ITO,氧化铟,弱导电体,特性是当厚度降到1800个埃(埃=10-10米)以下时会突然变得透明,透光率为80%,再薄下去透光率反而下降,到300埃厚度时又上升到80%。ITO是所有电阻技术触摸屏及电容技术触摸屏都用到的主要材料,实际上电阻和电容技术触摸屏的工作面就是ITO涂层。 ??
B、镍金涂层,五线电阻触摸屏的外层导电层使用的是延展性好的镍金涂层材料,外导电层由于频繁触摸,使用延展性好的镍金材料目的是为了延长使用寿命,但是工艺成本较为高昂。镍金导电层虽然延展性好,但是只能作透明导体,不适合作为电阻触摸屏的工作面,因为它导电率高,而且金属不易做到厚度非常均匀,不宜作电压分布层,只能作为探层。
1.1四线电阻屏
四线电阻模拟量技术的两层透明金属层工作时每层均增加5V恒定电压:一个竖直方向,一个水平方向。总共需四根电缆。 特点:高分辨率,高速传输反应。 表面硬度处理,减少擦伤、刮伤及防化学处理。 具有光面及雾面处理。 一次校正,稳定性高,永不漂移。
1.2五线电阻屏
五线电阻技术触摸屏的基层把两个方向的电压场通过精密电阻网络都加在玻璃的导电工作面上,我们可以简单的理解为两个方向的电压场分时工作加在同一工作面上,而外层镍金导电层只仅仅用来当作纯导体,有触摸后分时检测内层ITO接触点X轴和Y轴电压值的方法测得触摸点的位置。五线电阻触摸屏内层ITO需四条引线,外层只作导体仅仅一条,触摸屏得引出线共有5条。 特点:分辨率高,高速传输反应。 表面硬度高,减少擦伤、刮伤及防化学处理。 同点接触3000万次尚可使用。 导电玻璃为基材的介质。 一次校正,稳定性高,永不漂移。 五线电阻触摸屏有高价位和对环境要求高的缺点
1. 3电阻屏的局限
不管是四线电阻触摸屏还是五线电阻触摸屏,它们都是一种对外界完全隔离的工作环境,不怕灰尘和水汽,它可以用任何物体来触摸,可以用来写字画画,比较适合工业控制领域及办公室内有限人的使用。电阻触摸屏共同的缺点是因为复合薄膜的外层采用塑胶材料,不知道的人太用力或使用锐器触摸可能划伤整个触摸屏而导致报废。不过,在限度之内,划伤只会伤及外导电层,外导电层的划伤对于五线电阻触摸屏来说没有关系,而对四线电阻触摸屏来说是致命的。
2、 电容式触摸屏
2.1电容技术触摸屏 ??
是利用人体的电流感应进行工作的。电容式触摸屏是是一块四层复合玻璃屏,玻璃屏的内表面和夹层各涂有一层ITO,最外层是一薄层矽土玻璃保护层,夹层ITO涂层作为工作面,四个角上引出四个电极,内层ITO为屏蔽层以保证良好的工作环境。 当手指触摸在金属层上时,由于人体电场,用户和触摸屏表面形成以一个耦合电容,对于高频电流来说,电容是直接导体,于是手指从接触点吸走一个很小的电流。这个电流分从触摸屏的四角上的电极中流出,并且流经这四个电极的电流与手指到四角的距离成正比,控制器通过对这四个电流比例的精确计算,得出触摸点的位置。
2.2电容触摸屏的缺陷
电容触摸屏的透光率和清晰度优于四线电阻屏,当然还不能和表面声波屏和五线电阻屏相比。电容屏反光严重,而且,电容技术的四层复合触摸屏对各波长光的透光率不均匀,存在色彩失真的问题,由于光线在各层间的反射,还造成图像字符的模糊。 电容屏在原理上把人体当作一个电容器元件的一个电极使用,当有导体靠近与夹层ITO工作面之间耦合出足够量容值的电容时,流走的电流就足够引起电容屏的误动作。我们知道,电容值虽然与极间距离成反比,却与相对面积成正比,并且还与介质的的绝缘系数有关。因此,当较大面积的手掌或手持的导体物靠近电容屏而不是触摸时就能引起电容屏的误动作,在潮湿的天气,这种情况尤为严重,手扶住显示器、手掌靠近显示器7厘米以内或身体靠近显示器15厘米以内就能引起电容屏的误动作。 电容屏的另一个缺点用戴手套的手或手持不导电的物体触摸时没有反应,这是因为增加了更为绝缘的介质。 电容屏更主要的缺点是漂移:当环境温度、湿度改变时,环境电场发生改变时,都会引起电容屏的漂移,造成不准确。例如:开机后显示器温度上升会造成漂移:用户触摸屏幕的同时另一只手或身体一侧靠近显示器会漂移;电容触摸屏附近较大的物体搬移后回漂移,你触摸时如果有人围过来观看也会引起漂移;电容屏的漂移原因属于技术上的先天不足,环境电势面(包括用户的身体)虽然与电容触摸屏离得较远,却比手指头面积大的多,他们直接影响了触摸位置的测定。此外,理论上许多应该线性的关系实际上却是非线性,如:体重不同或者手指湿润程度不同的人吸走的总电流量是不同的,而总电流量的变化和四个分电流量的变化是非线性的关系,电容触摸屏采用的这种四个角的自定义极坐标系还没有坐标上的原点,漂移后控制器不能察觉和恢复,而且,4个A/D完成后,由四个分流量的值到触摸点在直角坐标系上的X、Y坐标值的计算过程复杂。由于没有原点,电容屏的漂移是累积的,在工作现场也经常需要校准。 电容触摸屏最外面的矽土保护玻璃防刮擦性很好,但是怕指甲或硬物的敲击,敲出一个小洞就会伤及夹层ITO,不管是伤及夹层ITO还是安装运输过程中伤及内表面ITO层,电容屏就不能正常工作了。
3、红外线式触摸屏 (红外线式触摸屏工作原理图)
红外触摸屏是利用X、Y方向上密布的红外线矩阵来检测并定位用户的触摸。红外触摸屏在显示器的前面安装一个电路板外框,电路板在屏幕四边排布红外发射管和红外接收管,一一对应形成横竖交叉的红外线矩阵。用户在触摸屏幕时,手指就会挡住经过该位置的横竖两条红外线,因而可以判断出触摸点在屏幕的位置。任何触摸物体都可改变触点上的红外线而实现触摸屏操作。 早期观念上,红外触摸屏存在分辨率低、触摸方式受限制和易受环境干扰而误动作等技术上的局限,因而一度淡出过市场。此后第二代红外屏部分解决了抗光干扰的问题,第三代和第四代在提升分辨率和稳定性能上亦有所改进,但都没有在关键指标或综合性能上有质的飞跃。但是,了解触摸屏技术的人都知道,红外触摸屏不受电流、电压和静电干扰,适宜恶劣的环境条件,红外线技术是触摸屏产品最终的发展趋势。采用声学和其它材料学技术的触屏都有其难以逾越的屏障,如单一传感器的受损、老化,触摸界面怕受污染、破坏性使用,维护繁杂等等问题。红外线触摸屏只要真正实现了高稳定性能和高分辨率,必将替代其它技术产品而成为触摸屏市场主流。 过去的红外触摸屏的分辨率由框架中的红外对管数目决定,因此分辨率较低,市场上主要国内产品为32x32、40X32,另外还有说红外屏对光照环境因素比较敏感,在光照变化较大时会误判甚至死机。这些正是国外非红外触摸屏的国内代理商销售宣传的红外屏的弱点。而最新的技术第五代红外屏的分辨率取决于红外对管数目、扫描频率以及差值算法,分辨率已经达到了1000X720,至于说红外屏在光照条件下不稳定,从第二代红外触摸屏开始,就已经较好的克服了抗光干扰这个弱点。 第五代红外线触摸屏是全新一代的智能技术产品,它实现了1000*720高分辨率、多层次自调节和自恢复的硬件适应能力和高度智能化的判别识别,可长时间在各种恶劣环境下任意使用。并且可针对用户定制扩充功能,如网络控制、声感应、人体接近感应、用户软件加密保护、红外数据传输等。 原来媒体宣传的红外触摸屏另外一个主要缺点是抗暴性差,其实红外屏完全可以选用任何客户认为满意的防暴玻璃而不会增加太多的成本和影响使用性能,这是其他的触摸屏所无法效仿的。
4、表面声波触摸屏 (表面声波触摸屏工作原理图)?
4.1 表面声波
表面声波,超声波的一种,在介质(例如玻璃或金属等刚性材料)表面浅层传播的机械能量波。通过楔形三角基座(根据表面波的波长严格设计),可以做到定向、小角度的表面声波能量发射。表面声波性能稳定、易于分析,并且在横波传递过程中具有非常尖锐的频率特性,近年来在无损探伤、造影和退波器方向上应用发展很快,表面声波相关的理论研究、半导体材料、声导材料、检测技术等技术都已经相当成熟。 表面声波触摸屏的触摸屏部分可以是一块平面、球面或是柱面的玻璃平板,安装在CRT、LED、LCD或是等离子显示器屏幕的前面。玻璃屏的左上角和右下角各固定了竖直和水平方向的超声波发射换能器,右上角则固定了两个相应的超声波接收换能器。玻璃屏的四个周边则刻有45°角由疏到密间隔非常精密的反射条纹。
4.2 表面声波触摸屏工作原理
以右下角的X-轴发射换能器为例: 发射换能器把控制器通过触摸屏电缆送来的电信号转化为声波能量向左方表面传递,然后由玻璃板下边的一组精密反射条纹把声波能量反射成向上的均匀面传递,声波能量经过屏体表面,再由上边的反射条纹聚成向右的线传播给X-轴的接收换能器,接收换能器将返回的表面声波能量变为电信号。 当发射换能器发射一个窄脉冲后,声波能量历经不同途径到达接收换能器,走最右边的最早到达,走最左边的最晚到达,早到达的和晚到达的这些声波能量叠加成一个较宽的波形信号,不难看出,接收信号集合了所有在X轴方向历经长短不同路径回归的声波能量,它们在Y轴走过的路程是相同的,但在X轴上,最远的比最近的多走了两倍X轴最大距离。因此这个波形信号的时间轴反映各原始波形叠加前的位置,也就是X轴坐标。 发射信号与接收信号波形 在没有触摸的时候,接收信号的波形与参照波形完全一样。当手指或其它能够吸收或阻挡声波能量的物体触摸屏幕时,X轴途经手指部位向上走的声波能量被部分吸收,反应在接收波形上即某一时刻位置上波形有一个衰减缺口。 接收波形对应手指挡住部位信号衰减了一个缺口,计算缺口位置即得触摸坐标 控制器分析到接收信号的衰减并由缺口的位置判定X坐标。之后Y轴同样的过程判定出触摸点的Y坐标。除了一般触摸屏都能响应的X、Y坐标外,表面声波触摸屏还响应第三轴Z轴坐标,也就是能感知用户触摸压力大小值。其原理是由接收信号衰减处的衰减量计算得到。三轴一旦确定,控制器就把它们传给主机。
4.3表面声波触摸屏特点
清晰度较高,透光率好。高度耐久,抗刮伤性良好(相对于电阻、电容等有表面度膜)。反应灵敏。不受温度、湿度等环境因素影响,分辨率高,寿命长(维护良好情况下5000万次);透光率高(92%),能保持清晰透亮的图像质量;没有漂移,只需安装时一次校正;有第三轴(即压力轴)响应,目前在公共场所使用较多。 表面声波屏需要经常维护,因为灰尘,油污甚至饮料的液体沾污在屏的表面,都会阻塞触摸屏表面的导波槽,使波不能正常发射,或使波形改变而控制器无法正常识别,从而影响触摸屏的正常使用,用户需严格注意环境卫生。必须经常擦抹屏的表面以保持屏面的光洁,并定期作一次全面彻底擦除。 ?
触摸屏原理
表面声波屏
声波屏的三个角分别粘贴着X,Y方向的发射和接收声波的换能器(换能器:由特殊陶瓷材料制成的,分为发射换能器和接收换能器。是把控制器通过触摸屏电缆送来的电信号转化为声波能和由反射条纹汇聚成的表面声波能变为电信号。),四个边刻着反射表面超声波的反射条纹。当手指或软性物体触摸屏幕,部分声波能量被吸收,于是改变了接收信号,经过控制器的处理得到触摸的X,Y坐标。
四线电阻屏
四线电阻屏在表面保护涂层和基层之间覆着两层透明电导层ITO(ITO:氧化铟,弱导电体,特性是当厚度降到1800个埃(埃=10-10米)以下时会突然变得透明,再薄下去透光率反而下降,到300埃厚度时透光率又上升。是所有电阻屏及电容屏的主要材料。),两层分别对应X,Y轴,它门之间用细微透明绝缘颗粒绝缘,当触摸时产生的压力使两导电层接通,由于电阻值的变化而得到触摸的X,Y坐标。
五线电阻屏
五线电阻屏的基层之上覆有把X,Y两方向的电压场加在同一层的透明电导层ITO,最外层镍金导电层(镍金导电层:五线电阻触摸屏的外层导电层使用的是延展性好的镍金涂层材料,外导电层由于频繁触摸,使用延展性好的镍金材料目的是为了延长使用寿命。)只用来作纯导体,当触摸时,用分时检测接触点X轴和Y轴电压值的方法测得触摸点的位置。内层ITO需四条引线,外层一条,共5根引线。
电容屏
电容屏表面涂有透明电导层ITO,电压连接到四角,微小直流电散部在屏表面,形成均匀之电场,用手触屏时,人体作为耦合电容一极,电流从屏四角汇集形成耦合电容另一极,通过控制器计算电流传到碰触位置的相对距离得到触摸的坐标 。
红外屏
红外触摸屏是利用X、Y方向上密布的红外线矩阵来检测并定位用户的触摸。红外触摸屏在显示器的前面安装一个电路板外框,电路板在屏幕四边排布红外发射管和红外接收管,一一对应形成横竖交叉的红外线矩阵。用户在触摸屏幕时,手指就会挡住经过该位置的横竖两条红外线,因而可以判断出触摸点在屏幕的位置。任何触摸物体都可改变触点上的红外线而实现触摸屏操作。
参考资料:网上资料
⑤ 我在做一个基于单片机的鼠标,鼠标移动的算法上想请教,怎么才能让它任意角度的走现在我只能直着横竖的
MicroSoft 公司标准:
MICROSOFT FORMAT
字节 字符(B i t)
7 6 5 4 3 2 1 0
BYTE1 1 1 L R Y7 Y6 X7 X6
BYTE2 0 0 X5 X4 X3 X2 X1 X0
BYTE3 0 0 Y5 Y4 Y3 Y2 Y1 Y0
注释:
L = 左键状态
R = 右键状态 1 = 按下 0 = 释放
X0-X7 = X 距离
Y0-Y7 = Y 距离 X7或Y7为±符号位
串口特性:波特率 = 1200 Baud,8 位数据,无校验位,2 停止位。
⑥ 压电式超声波换能器原理是什么
超声换能器是将电能转化为机械振动并放大振幅的部件,主要包括超声换能器,超声波变幅杆和超声波焊头。超声波塑料焊接机上的超声换能器的工作原理,就是利用压电陶瓷材料的逆压电效应产生振动工作的。
将一压电晶体置于外电场中,在电场的作用下,引起晶体内部正负电荷重心的移动,这一极化位移又导致晶体发生形变,这就叫做逆压电效应。
(6)压电陶瓷鼠标板算法扩展阅读:
超声波换能器的应用十分广泛,它按应用的行业分为工业、农业、交通运输、生活、医疗及军事等。按实现的功能分为超声波加工、超声波清洗、超声波探测、检测、监测、遥测、遥控等;按工作环境分为液体、气体、生物体等;按性质分为功率超声波、检测超声波、超声波成像等。
超声波清洗的机理是利用超声波在清洗液中传播时的空化、辐射压、声流等物理效应, 对清洗件上的污物产生的机械起剥落作用, 同时能促进清洗液与污物发生化学反应, 达到清洗物件的目的。超声波清洗机所用的频率根据清洗物的大小和目的可选用10~500 kHz, 一般多为20~50 kHz。
⑦ C#任意两点鼠标S形轨迹移动,S形有可能是斜着的,求大神给段代码或者给个公式算法,万分感谢。
算法比较简单:S行轨迹,依靠两点无法获取的,,,,
第一,获取起点坐标;
第二,获取终点坐标,可以依靠鼠标的点击和起来产生事件;
第三,随机产生第三点S3,
第四,起点和S3以起点到S3距离为直径画顺时针半圆弧度l
第五,s3到终点以此同样为直径画逆时针半圆弧,就是八卦的S且方向随机;
⑧ 鼠标的dpi值是越高越好吗
从正常理论上来说,鼠标的dpi值是越高越好。
但是有些厂商,为了标高dpi,采用插值的办法来提高鼠标dpi值,这样的提高并不是真提高了,好比数码相机上的数码变焦,只是算法上提高,不是硬件本身提高性能,这样反而插值越狠鼠标越容易漂。
⑨ 光电鼠标需要鼠标垫吗
给你一个原理的答案把,这样你也比较有说服力
光电鼠标的工作原理
光电鼠标就现在来说可以分老式光电鼠标、二极管光学鼠标和激光鼠标三种。。。
其中第二种可以参阅http://arch.pconline.com.cn/pcha ... 10304/149662_3.html
老式:这种鼠标必须工作在特殊的印有细微格栅的光电鼠标板上,之所以需要鼠标板,就是因为它是使用的镜面反射定位,只有高反射率的反射垫才能满足这种需要(据我的使用经验,这种光电鼠标的光很可能是红外线,不过我不敢确定)。这种鼠标在当时有着比机械鼠标高的精确度,但是过高的成本和复杂的使用方式限制了它的范围。在当时使用这种鼠标的人多是一些绘图专业之类的人员。
二极管:现在,翻过一只发红光的光学鼠标,您都可以看到一个小凹坑,里面有一个小棱镜和一个透镜。工作时,从棱镜中会发出一束很强的红色光线照射到桌面上,然后通过桌面不同颜色或凹凸点的运动和反射,来判断鼠标的运动。具体说呢,就是将光电鼠标底部表面反射回的一部分光线,经过一组光学透镜,传输到一个光感应器件(微成像器)内成像。这样,当光电鼠标移动时,其移动轨迹便会被记录为一组高速拍摄的连贯图像。最后利用光电鼠标内部的一块专用图像分析芯片(DSP,即数字微处理器)对移动轨迹上摄取的一系列图像进行分析处理,通过对这些图像上特征点位置的变化进行分析,来判断鼠标的移动方向和移动距离,从而完成光标的定位。所以,这种光电鼠标不可或缺的三个配件是:光学感应器、光学透镜、发光二极管。这样的技术统称为光眼技术。不需要具有反光的鼠标板。
激光:这个激光,并不是科幻电影里的“死光”,虽然那的确是激光的一种即高能激光。激光,本质上是工质在受外界强大能量注入刺激下,工质原子内层电子规则跃迁而产生的光线,由于它不是热运动产生的光线,所以其波长、相位、方向具有高度的一致性。而正因为这种波长、相位、方向的高度一致性,所以激光才会表现出不同于普通光的高能、强干涉、高度集中的性能。而“激光”这个名字,实际上就是“受激发光”的意思。以罗技MX1000为例,从MX1000包装上的原理图可以看出,这款鼠标使用了镜面反射定位。在普通工作表面上使用镜面反射定位,那么就只有激光才能有足够高的光照强度和反射强度。之所以使用镜面反射,本质上还是为了提高鼠标的精度和对工作表面的适应性。传统的光电引擎,由于使用的是漫反射原理,所以绝大部分的照射光都散射了,只有少部分被成像镜头捕捉。所成的像是模糊不清的。虽然通过光电系统的改善以及DSP算法的更新,可以尽量提升它的定位能力,但到了1000CPI也就差不多了。而特别是这种工作原理决定了它对工作表面的适应性还是有限的——在镜面或透明玻璃上,始终没有什么光电鼠标能用。而使用激光镜面反射就不同。由于激光中绝大部分都被工作表面完成了镜面反射,所以成像光强度非常高,而且高纯度的激光在工作表面上形成的反差远比漫反射强烈——在较为光滑的地方,激光被强烈反射,而在较为粗糙的地方,激光则被强烈吸收,从而在成像上形成强烈的光强度对比。其他的激光鼠标差不多也是这个原理。。。
还有问题加群17815336 附带你的问题 我晚上通过验证
⑩ 板的受力筋算法
受力筋定义底筋、面筋,用XY方式布置到板中,布置范围要与图纸一致。
负筋按找图中的编号定义后画到图中,一定要与图纸的标注吻合。
布置后软件会自动计算弯折、弯勾的。现浇板
1、定义及画板
第一步:新建板构件,名称为“100”(方便查找),板厚为“100”;马凳筋的输入方式如下图:
第二步:点击工具栏中的 按钮,软件将在封闭区域(墙、梁为边线)内生成板,而无需用画点的方式逐块布置。(如右图)
温馨提示:当遇到不同板厚的楼面板时,可以选择数量最多的构件进行布置,然后利用 功能或在“构件属性编辑器”中进行修改。如果同一个楼层同一个位置不同高度有板时,可以用“分层板”功能进行绘制。
2、板受力钢筋
(1)、定义板受力钢筋
在构件管理中建立名称为A12-150和A10-100的受力钢筋。(如右图)(2)、画受力钢筋
以下介绍几种常用的画板受力筋的方式供大家参考:
(一)、“单板范围”布置受力筋
第一步:选择受力筋,点击工具栏中的 (水平筋)按钮或者 (垂直筋)按钮;
第二步:点击工具栏中的 按钮;
第三步:按鼠标左键点击需要布筋的板即可布置板受力筋。如右图。
温馨提示:1、板受力钢筋分为底筋、中层筋、面筋和温度筋,其画法相同,请根据实际工程选择钢筋类型。
2、不同板中的受力筋布置相同时,可采用 的方式快速布置受力筋,软件自动适应目标板的大小和形状。双层双向布筋:
当板的受力筋为双层双向时,可以利用“XY方向布置”功能布置受力筋,操作步骤为:
第一步:在构件管理中建立M-A12和M-A10;(如右图)
第二步:点击工具栏中的 按钮选择“XY方向布置受力筋”;
第三步:点击工具栏中的 按钮;
第四步:选择按鼠标左键选择需要布置受力筋的板;
第五步:选择配筋内容即可。(如右图)(二)、“多板范围”布置受力筋方式一:如果在多板范围内布置钢筋,操作步骤为:
第一步:选择受力筋A12-150,点击工具栏中的 (水平筋)按钮;
第二步:点击工具栏中的 按钮;
第三步:按鼠标左键选择需要布筋的板点击鼠标右键“确认”;
第四步:在板范围内点击鼠标左键即可布置板受力筋。如上图(如左图)
方式二:自定义范围布置受力筋
如果按照以上方式不能直接布置板钢筋时,还可以利用“自定义范围”布置受力筋,操作步骤为:
第一步:点击工具栏中的 按钮下的“自定义范围”;
第二步:画出需要布置钢筋的范围(要求在板范围内画闭合的范围);
第三步:布置受力筋。
双层布筋:
在一块中如果已经布置了水平或者垂直方向的受力筋,另外一个方向的钢筋则可以
点击工具栏中的 按钮来布置受力筋,操作步骤为:
第一步:点击工具栏中的 按钮下的“选择受力筋范围”;
第二步:按鼠标左键选择已经布置的受力筋;
第三步:点击鼠标左键布置受力筋。合并板:
工程中如果需要把小块的板合并成一块板再布置钢筋,操作步骤为:
第一步:选择需要合并的板图元;
第二步:点击工具栏中的 按钮,在确认窗口点击“是”即可合并选中的板。
第三步:直接布置受力钢筋即可。画线分割板:
工程中如果需要把一块整板分割成几块板,操作步骤为:
第一步:选择需要分割的板图元;
第二步:点击工具栏中的 按钮,在确认窗口点击“是”即可分割选中的板。
(三)、布置跨板受力筋
在板受力筋的构件管理中新建跨板受力筋,操作步骤为:
第一步:选择跨板受力筋A12-150,点击工具栏中的 (水平筋)按钮;
第二步:点击工具栏中的 按钮;
第三步:按鼠标左键选择需要布筋的板点击鼠标右键“确认”;
第四步:在板范围内点击鼠标左键即可布置跨板受力筋。
温馨提示:布置完板受力筋后,可通过 按钮查看板受力筋的布置范围。
1、 板负筋及其分布筋
(1)、定义板负筋
在构件管理中建立名称为A8-150的板负筋(如右图)。(2)、根据梁、墙或者板边线布置板负筋(图20)
第一步:选择板负筋A8-150;
第二步:点击工具栏中的 (您也可以选
择 或者 )按钮,按鼠标左键选中需要布筋的梁;
第三步:按鼠标左键确定负筋左标注的方向即可布置负筋。温馨提示:1、在布置过程中,负筋的左右标注在画图时标注反了,无需删除,只要点击工具栏中的 按钮,选择板负筋即可交换负筋左右标注的位置
2、也可点击板负筋上的标注在图元上进行直接修改。 (图20)
(3)、单标注板负筋
对于板边缘上的负筋,操作步骤为:第一步:在构件管理中新建D-A10负筋(图21);第二步:点击工具栏中的 按钮,按鼠标 左键选中需要布筋的梁; (图21)第三步:按鼠标左键确定负筋左标注的方向即可布置负筋。(图22)
(图22) (图23)
(4)、画线布置板负筋
操作步骤为:
第一步:选择需要布置的负筋;
第二步:点击工具栏中的 按钮,确定负筋的布筋范围;
第三步:按鼠标左键确定负筋左标注的方向即可布置负筋。(图23)