导航:首页 > 源码编译 > 01规划问题粒子群算法

01规划问题粒子群算法

发布时间:2022-07-16 09:48:23

⑴ 用粒子群算法,编写MATLAB程序,关于线性规划问题,怎么样处理那些限制条件(就是那几个<=的式子)

B=I2*g2;
I3=int(B,L2,600,1600);
%以上为第三次积分,未验证
g1=(1/(44.036*sqrt(2*pi)))*exp((-0.5)*((L1-880.72)/44.036)^2);
D=I3*g1;
R=int(A,L1,400,1400)

⑵ 关于粒子群算法的问题

粒子群的版本甚多,常用的是加有惯性权重w的
v[] = w * v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[])
一般选择惯性权重在迭代过程中线性下降,目的是在迭代的初期,以比较大的权重分配给粒子的原速度,而防止粒子过早的倾向于其本身的局部最优与全局最优,此时的全局搜索能力是可以的。但粒子群是基于牛顿力学的,随着w的减小,速度v的作用会在更新中弱化,对应的是,pbest和gbest的作用得到了加强,这也就意味着,粒子会更加趋向于pbest和gbest的方向移动。这个时候粒子就特别容易陷入局部最优了。

其实陷入局部最优不只是粒子群的问题,进化类的算法都存在这个问题,只不过有些算法随机性强一些,收敛速度慢一些,所以更加容易跳出局部最优(但不是绝对避免)

⑶ 粒子群算法在求解整数规划问题时局限性表现在什么地方

粒子群优化算法的应用及算法改进:
http://ipub.cqvip.com/Shop/PackDetail.aspx?id=69534

⑷ 粒子群算法的优缺点

优点:PSO同遗传算法类似,是一种基于迭代的优化算法。系统初始化为一组随机解,通过迭代搜寻最优值。同遗传算法比较,PSO的优势在于简单容易实现,并且没有许多参数需要调整。

缺点:在某些问题上性能并不是特别好。网络权重的编码而且遗传算子的选择有时比较麻烦。最近已经有一些利用PSO来代替反向传播算法来训练神经网络的论文。

(4)01规划问题粒子群算法扩展阅读:

注意事项:

基础粒子群算法步骤较为简单。粒子群优化算法是由一组粒子在搜索空间中运动,受其自身的最佳过去位置pbest和整个群或近邻的最佳过去位置gbest的影响。

对于有些改进算法,在速度更新公式最后一项会加入一个随机项,来平衡收敛速度与避免早熟。并且根据位置更新公式的特点,粒子群算法更适合求解连续优化问题。

⑸ 粒子群算法的介绍

粒子群算法,也称粒子群优化算法(Particle Swarm Optimization),缩写为 PSO, 是近年来由J. Kennedy和R. C. Eberhart等1开发的一种新的进化算法(Evolutionary Algorithm - EA)。PSO 算法属于进化算法的一种,和模拟退火算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质,但它比遗传算法规则更为简单,它没有遗传算法的“交叉”(Crossover) 和“变异”(Mutation) 操作,它通过追随当前搜索到的最优值来寻找全局最优。这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性。粒子群算法是一种并行算法。

⑹ 粒子群算法及其应用

既然是数学系的,可以考虑从粒子群算法的收敛性证明和分布性检验方面着手,偏理论性的证明,这方面比较欠缺,有点类似于高楼地基不稳,大家却在上面继续垒
可以参考遗传算法的模式定理或隐性并行性定理等,如果能够提出关于粒子群算法的定理,应该足够具有挑战性了
还有就是对粒子群算法进行算法融合或改进,然后针对改进的算法进行测试,检验其在函数优化等方面的效能。

⑺ 粒子群算法的matlab程序,一个线性规划问题的解决。主要是那个限制条件的处理。

[r,c] = find(R == max(R(:))); 检索R中最大元素所在的位置(行标r和列标c)
thetap = theta(c(1)); theta()是自定义函数

⑻ 粒子群算法解决实际问题时 其维度如何与实际问题相对应

要明白粒子群算法中,粒子的位置即代表了问题的解,例如你需要求一条路径 路径上假定N个节点 那么N即是这个粒子中的维度

⑼ 用粒子群算法求解线性约束整数规划的Matlab程序

对粒子群的约束问题涉及的比较少。这儿摘抄下网络的内容:

PSO算法推广到约束优化问题,分为两类:(http://ke..com/view/1531379.htm)
(1)罚函数法。罚函数的目的是将约束优化问题转化成无约束优化问题。
(2)将粒子群的搜索范围都限制在条件约束簇内,即在可行解范围内寻优。

第一种方法有相关论文,看了下,感觉比较适合等式约束情况,比较类似于在适应度函数中加入拉格朗日乘子的做法,如果论文下不到的话,请留言。

第二种做法倒是用过。大概讲下。
针对你的问题,初始化两维向量,但是由于存在不等式约束,所以考虑先初始化向量的第一维,然后动态算出第二维的范围,随机出第二维变量。然后就是计算适应度值,全局、局部最优。
更新过程一样,先更新第一维变量,然后动态计算第二维的范围,更新第二维,如果更新后超过了边界,则取边界值(或者也可以再次重新更新,直到满足条件,直觉上感觉第一种还好点,第二种可能会出现无法更新的情况),更新完毕后,计算适应度,更新全局、局部最优解。

补充两个链接吧
http://download.csdn.net/detail/yinjian_2004/1567342
论文:基于改进粒子群优化算法的约束多目标优化

⑽ 粒子群算法的算法介绍

如前所述,PSO模拟鸟群的捕食行为。设想这样一个场景:一群鸟在随机搜索食物。在这个区域里只有一块食物。所有的鸟都不知道食物在那里。但是他们知道当前的位置离食物还有多远。那么找到食物的最优策略是什么呢。最简单有效的就是搜寻目前离食物最近的鸟的周围区域。
PSO从这种模型中得到启示并用于解决优化问题。PSO中,每个优化问题的解都是搜索空间中的一只鸟。我们称之为“粒子”。所有的粒子都有一个由被优化的函数决定的适应值(fitness value),每个粒子还有一个速度决定他们飞翔的方向和距离。然后粒子们就追随当前的最优粒子在解空间中搜索。
PSO 初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。在每一次迭代中,粒子通过跟踪两个极值来更新自己。第一个就是粒子本身所找到的最优解,这个解叫做个体极值pBest。另一个极值是整个种群目前找到的最优解,这个极值是全局极值gBest。另外也可以不用整个种群而只是用其中一部分作为粒子的邻居,那么在所有邻居中的极值就是局部极值。 在找到这两个最优值时,粒子根据如下的公式来更新自己的速度和新的位置:
v[] = w * v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[]) (a)
present[] = present[] + v[] (b)
v[] 是粒子的速度, w是惯性权重,present[] 是当前粒子的位置. pbest[] and gbest[] 如前定义 rand () 是介于(0, 1)之间的随机数. c1, c2 是学习因子. 通常 c1 = c2 = 2.
程序的伪代码如下
For each particle
____Initialize particle
END
Do
____For each particle
________Calculate fitness value
________If the fitness value is better than the best fitness value (pBest) in history
____________set current value as the new pBest
____End
____Choose the particle with the best fitness value of all the particles as the gBest
____For each particle
________Calculate particle velocity according equation (a)
________Update particle position according equation (b)
____End
While maximum iterations or minimum error criteria is not attained
在每一维粒子的速度都会被限制在一个最大速度Vmax,如果某一维更新后的速度超过用户设定的Vmax,那么这一维的速度就被限定为Vmax

阅读全文

与01规划问题粒子群算法相关的资料

热点内容
喷油螺杆制冷压缩机 浏览:577
python员工信息登记表 浏览:375
高中美术pdf 浏览:158
java实现排列 浏览:511
javavector的用法 浏览:979
osi实现加密的三层 浏览:230
大众宝来原厂中控如何安装app 浏览:911
linux内核根文件系统 浏览:240
3d的命令面板不见了 浏览:523
武汉理工大学服务器ip地址 浏览:146
亚马逊云服务器登录 浏览:522
安卓手机如何进行文件处理 浏览:70
mysql执行系统命令 浏览:928
php支持curlhttps 浏览:142
新预算法责任 浏览:443
服务器如何处理5万人同时在线 浏览:249
哈夫曼编码数据压缩 浏览:424
锁定服务器是什么意思 浏览:383
场景检测算法 浏览:616
解压手机软件触屏 浏览:348