㈠ 求C语言中的回溯法,举一个简单的小例子,说明回溯法的运行过程!
求子串位置
int Index(SString S, SString T, int pos) {
// 返回子串T在主串S中第pos个字符之后的位置。
// 若不存在,则函数值为0。
// 其中,T非空,1≤pos≤StrLength(S)。
int i = pos;
int j = 1;
while (i <= S[0] && j <= T[0]) {
if (S[i] == T[j]) { // 继续比较后继字符
++i;
++j;
} else { // 指针后退重新开始匹配
i = i-j+2;
j = 1;
}
}
if (j > T[0]) return i-T[0];
else return 0;
} // Index
㈡ 什么是回溯算法
回溯算法也叫试探法,它是一种系统地搜索问题的解的方法。回溯算法的基本思想是:从一条路往前走,能进则进,不能进则退回来,换一条路再试。用回溯算法解决问题的一般步骤为: 1、定义一个解空间,它包含问题的解。 2、利用适于搜索的方法组织解空间。 3、利用深度优先法搜索解空间。 4、利用限界函数避免移动到不可能产生解的子空间。 问题的解空间通常是在搜索问题的解的过程中动态产生的,这是回溯算法的一个重要特性。 1.跳棋问题: 33个方格顶点摆放着32枚棋子,仅中央的顶点空着未摆放棋子。下棋的规则是任一棋子可以沿水平或成垂直方向跳过与其相邻的棋子,进入空着的顶点并吃掉被跳过的棋子。试设计一个算法找出一种下棋方法,使得最终棋盘上只剩下一个棋子在棋盘中央。 算法实现提示 利用回溯算法,每次找到一个可以走的棋子走动,并吃掉。若走到无子可走还是剩余多颗,则回溯,走下一颗可以走动的棋子。当吃掉31颗时说明只剩一颗,程序结束。 2.中国象棋马行线问题: 中国象棋半张棋盘如图1(a)所示。马自左下角往右上角跳。今规定只许往右跳,不许往左跳。比如 图4(a)中所示为一种跳行路线,并将所经路线打印出来。打印格式为: 0,0->2,1->3,3->1,4->3,5->2,7->4,8… 算法分析: 如图1(b),马最多有四个方向,若原来的横坐标为j、纵坐标为i,则四个方向的移动可表示为: 1: (i,j)→(i+2,j+1); (i<3,j<8) 2: (i,j)→(i+1,j+2); (i<4,j<7) 3: (i,j)→(i-1,j+2); (i>0,j<7) 4: (i,j)→(i-2,j+1); (i>1,j<8) 搜索策略: S1:A[1]:=(0,0); S2:从A[1]出发,按移动规则依次选定某个方向,如果达到的是(4,8)则转向S3,否则继续搜索下 一个到达的顶点; S3:打印路径。 算法设计: procere try(i:integer); {搜索} var j:integer; begin for j:=1 to 4 do {试遍4个方向} if 新坐标满足条件 then begin 记录新坐标; if 到达目的地 then print {统计方案,输出结果} else try(i+1); {试探下一步} 退回到上一个坐标,即回溯; end; end;
㈢ 24点问题,回溯算法
回溯算法也叫试探法,它是一种系统地搜索问题的解的方法。回溯算法的基本思想是:从一条路往前走,能进则进,不能进则退回来,换一条路再试。用回溯算法解决问题的一般步骤为: 1、定义一个解空间,它包含问题的解。 2、利用适于搜索的方法组织解空间。 3、利用深度优先法搜索解空间。 4、利用限界函数避免移动到不可能产生解的子空间。 问题的解空间通常是在搜索问题的解的过程中动态产生的,这是回溯算法的一个重要特性。1.跳棋问题:33个方格顶点摆放着32枚棋子,仅中央的顶点空着未摆放棋子。下棋的规则是任一棋子可以沿水平或成垂直方向跳过与其相邻的棋子,进入空着的顶点并吃掉被跳过的棋子。试设计一个算法找出一种下棋方法,使得最终棋盘上只剩下一个棋子在棋盘中央。算法实现提示利用回溯算法,每次找到一个可以走的棋子走动,并吃掉。若走到无子可走还是剩余多颗,则回溯,走下一颗可以走动的棋子。当吃掉31颗时说明只剩一颗,程序结束。2.中国象棋马行线问题:中国象棋半张棋盘如图1(a)所示。马自左下角往右上角跳。今规定只许往右跳,不许往左跳。比如图4(a)中所示为一种跳行路线,并将所经路线打印出来。打印格式为:0,0->2,1->3,3->1,4->3,5->2,7->4,8…算法分析:如图1(b),马最多有四个方向,若原来的横坐标为j、纵坐标为i,则四个方向的移动可表示为:1: (i,j)→(i+2,j+1); (i<3,j<8) 2: (i,j)→(i+1,j+2); (i<4,j<7)3: (i,j)→(i-1,j+2); (i>0,j<7) 4: (i,j)→(i-2,j+1); (i>1,j<8)搜索策略:S1:A[1]:=(0,0);S2:从A[1]出发,按移动规则依次选定某个方向,如果达到的是(4,8)则转向S3,否则继续搜索下一个到达的顶点;S3:打印路径。算法设计:procere try(i:integer); var j:integer;beginfor j:=1 to 4 do if 新坐标满足条件 thenbegin记录新坐标;if 到达目的地 then print else try(i+1); 退回到上一个坐标,即回溯;end;end;
㈣ 简述回溯法的2种算法框架,并分别举出适合用这两种框架解决的一个问题实例
回溯法(探索与回溯法)是一种选优搜索法,又称为试探法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。
基本思想
在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根结点出发深度探索解空间树。当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。(其实回溯法就是对隐式图的深度优先搜索算法)。 若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。 而若使用回溯法求任一个解时,只要搜索到问题的一个解就可以结束
一般表达
可用回溯法求解的问题P,通常要能表达为:对于已知的由n元组(x1,x2,…,xn)组成的一个状态空间E={(x1,x2,…,xn)∣xi∈Si ,i=1,2,…,n},给定关于n元组中的一个分量的一个约束集D,要求E中满足D的全部约束条件的所有n元组。其中Si是分量xi的定义域,且 |Si| 有限,i=1,2,…,n。我们称E中满足D的全部约束条件的任一n元组为问题P的一个解。
解问题P的最朴素的方法就是枚举法,即对E中的所有n元组逐一地检测其是否满足D的全部约束,若满足,则为问题P的一个解。但显然,其计算量是相当大的。
规律
我们发现,对于许多问题,所给定的约束集D具有完备性,即i元组(x1,x2,…,xi)满足D中仅涉及到x1,x2,…,xi的所有约束意味着j(j<=i)元组(x1,x2,…,xj)一定也满足d中仅涉及到x1,x2,…,xj的所有约束,i=1,2,…,n。换句话说,只要存在0≤j≤n-1,使得(x1,x2,…,xj)违反d中仅涉及到x1,x2,…,xj的约束之一,则以(x1,x2,…,xj)为前缀的任何n元组(x1,x2,…,xj,xj+1,…,xn)一定也违反d中仅涉及到x1,x2,…,xi的一个约束,n≥i≥j。因此,对于约束集d具有完备性的问题p,一旦检测断定某个j元组(x1,x2,…,xj)违反d中仅涉及x1,x2,…,xj的一个约束,就可以肯定,以(x1,x2,…,xj)为前缀的任何n元组(x1,x2,…,xj,xj+1,…,xn)都不会是问题p的解,因而就不必去搜索它们、检测它们。回溯法正是针对这类问题,利用这类问题的上述性质而提出来的比枚举法效率更高的算法。
㈤ 用递归回溯法设计旅行售货员问题的算法
一、回溯法:
回溯法是一个既带有系统性又带有跳跃性的的搜索算法。它在包含问题的所有解的解空间树中,按照深度优先的策略,从根结点出发搜索解空间树。算法搜索至解空间树的任一结点时,总是先判断该结点是否肯定不包含问题的解。如果肯定不包含,则跳过对以该结点为根的子树的系统搜索,逐层向其祖先结点回溯。否则,进入该子树,继续按深度优先的策略进行搜索。回溯法在用来求问题的所有解时,要回溯到根,且根结点的所有子树都已被搜索遍才结束。而回溯法在用来求问题的任一解时,只要搜索到问题的一个解就可以结束。这种以深度优先的方式系统地搜索问题的解的算法称为回溯法,它适用于解一些组合数较大的问题。
二、算法框架:
1、问题的解空间:应用回溯法解问题时,首先应明确定义问题的解空间。问题的解空间应到少包含问题的一个(最优)解。
2、回溯法的基本思想:确定了解空间的组织结构后,回溯法就从开始结点(根结点)出发,以深度优先的方式搜索整个解空间。这个开始结点就成为一个活结点,同时也成为当前的扩展结点。在当前的扩展结点处,搜索向纵深方向移至一个新结点。这个新结点就成为一个新的活结点,并成为当前扩展结点。如果在当前的扩展结点处不能再向纵深方向移动,则当前扩展结点就成为死结点。换句话说,这个结点不再是一个活结点。此时,应往回移动(回溯)至最近的一个活结点处,并使这个活结点成为当前的扩展结点。回溯法即以这种工作方式递归地在解空间中搜索,直至找到所要求的解或解空间中已没有活结点时为止。
运用回溯法解题通常包含以下三个步骤:
(1)针对所给问题,定义问题的解空间;
(2)确定易于搜索的解空间结构;
(3)以深度优先的方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索;
3、递归回溯:由于回溯法是对解空间的深度优先搜索,因此在一般情况下可用递归函数来实现回溯法如下:
procere try(i:integer);
var
begin
if i>n then 输出结果
else for j:=下界 to 上界 do
begin
x[i]:=h[j];
if 可行{满足限界函数和约束条件} then begin 置值;try(i+1); end;
end;
end;
说明:
i是递归深度;
n是深度控制,即解空间树的的高度;
可行性判断有两方面的内容:不满约束条件则剪去相应子树;若限界函数越界,也剪去相应子树;两者均满足则进入下一层;
搜索:全面访问所有可能的情况,分为两种:不考虑给定问题的特有性质,按事先顶好的顺序,依次运用规则,即盲目搜索的方法;另一种则考虑问题给定的特有性质,选用合适的规则,提高搜索的效率,即启发式的搜索。
回溯即是较简单、较常用的搜索策略。
基本思路:若已有满足约束条件的部分解,不妨设为(x1,x2,x3,……xi),I<n,则添加x(i+1)属于s(i+2),检查(x1,x2,……,xi,x(i+1))是否满足条件,满足了就继续添加x(i+2)、s(i+2),若所有的x(i+1)属于s(i+1)都不能得到部分解,就去掉xi,回溯到(xi,x2,……x(i-1)),添加那些未考察过的x1属于s1,看其是否满足约束条件,为此反复进行,直至得到解或证明无解。
㈥ 0-1背包问题的多种解法代码(动态规划、贪心法、回溯法、分支限界法)
一.动态规划求解0-1背包问题
/************************************************************************/
/* 0-1背包问题:
/* 给定n种物品和一个背包
/* 物品i的重量为wi,其价值为vi
/* 背包的容量为c
/* 应如何选择装入背包的物品,使得装入背包中的物品
/* 的总价值最大?
/* 注:在选择装入背包的物品时,对物品i只有两种选择,
/* 即装入或不装入背包。不能将物品i装入多次,也
/* 不能只装入部分的物品i。
/*
/* 1. 0-1背包问题的形式化描述:
/* 给定c>0, wi>0, vi>0, 0<=i<=n,要求找到一个n元的
/* 0-1向量(x1, x2, ..., xn), 使得:
/* max sum_{i=1 to n} (vi*xi),且满足如下约束:
/* (1) sum_{i=1 to n} (wi*xi) <= c
/* (2) xi∈{0, 1}, 1<=i<=n
/*
/* 2. 0-1背包问题的求解
/* 0-1背包问题具有最优子结构性质和子问题重叠性质,适于
/* 采用动态规划方法求解
/*
/* 2.1 最优子结构性质
/* 设(y1,y2,...,yn)是给定0-1背包问题的一个最优解,则必有
/* 结论,(y2,y3,...,yn)是如下子问题的一个最优解:
/* max sum_{i=2 to n} (vi*xi)
/* (1) sum_{i=2 to n} (wi*xi) <= c - w1*y1
/* (2) xi∈{0, 1}, 2<=i<=n
/* 因为如若不然,则该子问题存在一个最优解(z2,z3,...,zn),
/* 而(y2,y3,...,yn)不是其最优解。那么有:
/* sum_{i=2 to n} (vi*zi) > sum_{i=2 to n} (vi*yi)
/* 且,w1*y1 + sum_{i=2 to n} (wi*zi) <= c
/* 进一步有:
/* v1*y1 + sum_{i=2 to n} (vi*zi) > sum_{i=1 to n} (vi*yi)
/* w1*y1 + sum_{i=2 to n} (wi*zi) <= c
/* 这说明:(y1,z2,z3,...zn)是所给0-1背包问题的更优解,那么
/* 说明(y1,y2,...,yn)不是问题的最优解,与前提矛盾,所以最优
/* 子结构性质成立。
/*
/* 2.2 子问题重叠性质
/* 设所给0-1背包问题的子问题 P(i,j)为:
/* max sum_{k=i to n} (vk*xk)
/* (1) sum_{k=i to n} (wk*xk) <= j
/* (2) xk∈{0, 1}, i<=k<=n
/* 问题P(i,j)是背包容量为j、可选物品为i,i+1,...,n时的子问题
/* 设m(i,j)是子问题P(i,j)的最优值,即最大总价值。则根据最优
/* 子结构性质,可以建立m(i,j)的递归式:
/* a. 递归初始 m(n,j)
/* //背包容量为j、可选物品只有n,若背包容量j大于物品n的
/* //重量,则直接装入;否则无法装入。
/* m(n,j) = vn, j>=wn
/* m(n,j) = 0, 0<=j<wn
/* b. 递归式 m(i,j)
/* //背包容量为j、可选物品为i,i+1,...,n
/* //如果背包容量j<wi,则根本装不进物品i,所以有:
/* m(i,j) = m(i+1,j), 0<=j<wi
/* //如果j>=wi,则在不装物品i和装入物品i之间做出选择
/* 不装物品i的最优值:m(i+1,j)
/* 装入物品i的最优值:m(i+1, j-wi) + vi
/* 所以:
/* m(i,j) = max {m(i+1,j), m(i+1, j-wi) + vi}, j>=wi
/*
/************************************************************************/
#define max(a,b) (((a) > (b)) ? (a) : (b))
#define min(a,b) (((a) < (b)) ? (a) : (b))
template <typename Type>
void Knapsack(Type* v, int *w, int c, int n, Type **m)
{
//递归初始条件
int jMax = min(w[n] - 1, c);
for (int j=0; j<=jMax; j++) {
m[n][j] = 0;
}
for (j=w[n]; j<=c; j++) {
m[n][j] = v[n];
}
//i从2到n-1,分别对j>=wi和0<=j<wi即使m(i,j)
for (int i=n-1; i>1; i--) {
jMax = min(w[i] - 1, c);
for (int j=0; j<=jMax; j++) {
m[i][j] = m[i+1][j];
}
for (j=w[i]; j<=c; j++) {
m[i][j] = max(m[i+1][j], m[i+1][j-w[i]]+v[i]);
}
}
m[1][c] = m[2][c];
if (c >= w[1]) {
m[1][c] = max(m[1][c], m[2][c-w[1]]+v[1]);
}
}
template <typename Type>
void TraceBack(Type **m, int *w, int c, int n, int* x)
{
for (int i=1; i<n; i++) {
if(m[i][c] == m[i+1][c]) x[i] = 0;
else {
x[i] = 1;
c -= w[i];
}
}
x[n] = (m[n][c])? 1:0;
}
int main(int argc, char* argv[])
{
int n = 5;
int w[6] = {-1, 2, 2, 6, 5, 4};
int v[6] = {-1, 6, 3, 5, 4, 6};
int c = 10;
int **ppm = new int*[n+1];
for (int i=0; i<n+1; i++) {
ppm[i] = new int[c+1];
}
int x[6];
Knapsack<int>(v, w, c, n, ppm);
TraceBack<int>(ppm, w, c, n, x);
return 0;
}
二.贪心算法求解0-1背包问题
1.贪心法的基本思路:
——从问题的某一个初始解出发逐步逼近给定的目标,以尽可能快的地求得更好的解。当达到某算法中的某一步不能再继续前进时,算法停止。
该算法存在问题:
1).不能保证求得的最后解是最佳的;
2).不能用来求最大或最小解问题;
3).只能求满足某些约束条件的可行解的范围。
实现该算法的过程:
从问题的某一初始解出发;
while 能朝给定总目标前进一步 do
求出可行解的一个解元素;
由所有解元素组合成问题的一个可行解;
2.例题分析
1).[背包问题]有一个背包,背包容量是M=150。有7个物品,物品可以分割成任意大小。
要求尽可能让装入背包中的物品总价值最大,但不能超过总容量。
物品 A B C D E F G
重量 35 30 60 50 40 10 25
价值 10 40 30 50 35 40 30
分析:
目标函数: ∑pi最大
约束条件是装入的物品总重量不超过背包容量:∑wi<=M( M=150)
(1)根据贪心的策略,每次挑选价值最大的物品装入背包,得到的结果是否最优?
(2)每次挑选所占空间最小的物品装入是否能得到最优解?
(3)每次选取单位容量价值最大的物品,成为解本题的策略。
<程序代码:>(环境:c++)
#include<iostream.h>
#define max 100 //最多物品数
void sort (int n,float a[max],float b[max]) //按价值密度排序
{
int j,h,k;
float t1,t2,t3,c[max];
for(k=1;k<=n;k++)
c[k]=a[k]/b[k];
for(h=1;h<n;h++)
for(j=1;j<=n-h;j++)
if(c[j]<c[j+1])
{t1=a[j];a[j]=a[j+1];a[j+1]=t1;
t2=b[j];b[j]=b[j+1];b[j+1]=t2;
t3=c[j];c[j]=c[j+1];c[j+1]=t3;
}
}
void knapsack(int n,float limitw,float v[max],float w[max],int x[max])
{float c1; //c1为背包剩余可装载重量
int i;
sort(n,v,w); //物品按价值密度排序
c1=limitw;
for(i=1;i<=n;i++)
{
if(w[i]>c1)break;
x[i]=1; //x[i]为1时,物品i在解中
c1=c1-w[i];
}
}
void main()
{int n,i,x[max];
float v[max],w[max],totalv=0,totalw=0,limitw;
cout<<"请输入n和limitw:";
cin>>n >>limitw;
for(i=1;i<=n;i++)
x[i]=0; //物品选择情况表初始化为0
cout<<"请依次输入物品的价值:"<<endl;
for(i=1;i<=n;i++)
cin>>v[i];
cout<<endl;
cout<<"请依次输入物品的重量:"<<endl;
for(i=1;i<=n;i++)
cin>>w[i];
cout<<endl;
knapsack (n,limitw,v,w,x);
cout<<"the selection is:";
for(i=1;i<=n;i++)
{
cout<<x[i];
if(x[i]==1)
totalw=totalw+w[i];
}
cout<<endl;
cout<<"背包的总重量为:"<<totalw<<endl; //背包所装载总重量
cout<<"背包的总价值为:"<<totalv<<endl; //背包的总价值
}
三.回溯算法求解0-1背包问题
1.0-l背包问题是子集选取问题。
一般情况下,0-1背包问题是NP难题。0-1背包
问题的解空间可用子集树表示。解0-1背包问题的回溯法与装载问题的回溯法十分类
似。在搜索解空间树时,只要其左儿子结点是一个可行结点,搜索就进入其左子树。当
右子树有可能包含最优解时才进入右子树搜索。否则将右子树剪去。设r是当前剩余
物品价值总和;cp是当前价值;bestp是当前最优价值。当cp+r≤bestp时,可剪去右
子树。计算右子树中解的上界的更好方法是将剩余物品依其单位重量价值排序,然后
依次装入物品,直至装不下时,再装入该物品的一部分而装满背包。由此得到的价值是
右子树中解的上界。
2.解决办法思路:
为了便于计算上界,可先将物品依其单位重量价值从大到小排序,此后只要顺序考
察各物品即可。在实现时,由bound计算当前结点处的上界。在搜索解空间树时,只要其左儿子节点是一个可行结点,搜索就进入左子树,在右子树中有可能包含最优解是才进入右子树搜索。否则将右子树剪去。
回溯法是一个既带有系统性又带有跳跃性的的搜索算法。它在包含问题的所有解的解空间树中,按照深度优先的策略,从根结点出发搜索解空间树。算法搜索至解空间树的任一结点时,总是先判断该结点是否肯定不包含问题的解。如果肯定不包含,则跳过对以该结点为根的子树的系统搜索,逐层向其祖先结点回溯。否则,进入该子树,继续按深度优先的策略进行搜索。回溯法在用来求问题的所有解时,要回溯到根,且根结点的所有子树都已被搜索遍才结束。而回溯法在用来求问题的任一解时,只要搜索到问题的一个解就可以结束。这种以深度优先的方式系统地搜索问题的解的算法称为回溯法,它适用于解一些组合数较大的问题。
2.算法框架:
a.问题的解空间:应用回溯法解问题时,首先应明确定义问题的解空间。问题的解空间应到少包含问题的一个(最优)解。
b.回溯法的基本思想:确定了解空间的组织结构后,回溯法就从开始结点(根结点)出发,以深度优先的方式搜索整个解空间。这个开始结点就成为一个活结点,同时也成为当前的扩展结点。在当前的扩展结点处,搜索向纵深方向移至一个新结点。这个新结点就成为一个新的活结点,并成为当前扩展结点。如果在当前的扩展结点处不能再向纵深方向移动,则当前扩展结点就成为死结点。换句话说,这个结点不再是一个活结点。此时,应往回移动(回溯)至最近的一个活结点处,并使这个活结点成为当前的扩展结点。回溯法即以这种工作方式递归地在解空间中搜索,直至找到所要求的解或解空间中已没有活结点时为止。
3.运用回溯法解题通常包含以下三个步骤:
a.针对所给问题,定义问题的解空间;
b.确定易于搜索的解空间结构;
c.以深度优先的方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索;
#include<iostream>
using namespace std;
class Knap
{
friend int Knapsack(int p[],int w[],int c,int n );
public:
void print()
{
for(int m=1;m<=n;m++)
{
cout<<bestx[m]<<" ";
}
cout<<endl;
};
private:
int Bound(int i);
void Backtrack(int i);
int c;//背包容量
int n; //物品数
int *w;//物品重量数组
int *p;//物品价值数组
int cw;//当前重量
int cp;//当前价值
int bestp;//当前最优值
int *bestx;//当前最优解
int *x;//当前解
};
int Knap::Bound(int i)
{
//计算上界
int cleft=c-cw;//剩余容量
int b=cp;
//以物品单位重量价值递减序装入物品
while(i<=n&&w[i]<=cleft)
{
cleft-=w[i];
b+=p[i];
i++;
}
//装满背包
if(i<=n)
b+=p[i]/w[i]*cleft;
return b;
}
void Knap::Backtrack(int i)
{
if(i>n)
{
if(bestp<cp)
{
for(int j=1;j<=n;j++)
bestx[j]=x[j];
bestp=cp;
}
return;
}
if(cw+w[i]<=c) //搜索左子树
{
x[i]=1;
cw+=w[i];
cp+=p[i];
Backtrack(i+1);
cw-=w[i];
cp-=p[i];
}
if(Bound(i+1)>bestp)//搜索右子树
{
x[i]=0;
Backtrack(i+1);
}
}
class Object
{
friend int Knapsack(int p[],int w[],int c,int n);
public:
int operator<=(Object a)const
{
return (d>=a.d);
}
private:
int ID;
float d;
};
int Knapsack(int p[],int w[],int c,int n)
{
//为Knap::Backtrack初始化
int W=0;
int P=0;
int i=1;
Object *Q=new Object[n];
for(i=1;i<=n;i++)
{
Q[i-1].ID=i;
Q[i-1].d=1.0*p[i]/w[i];
P+=p[i];
W+=w[i];
}
if(W<=c)
return P;//装入所有物品
//依物品单位重量排序
float f;
for( i=0;i<n;i++)
for(int j=i;j<n;j++)
{
if(Q[i].d<Q[j].d)
{
f=Q[i].d;
Q[i].d=Q[j].d;
Q[j].d=f;
}
}
Knap K;
K.p = new int[n+1];
K.w = new int[n+1];
K.x = new int[n+1];
K.bestx = new int[n+1];
K.x[0]=0;
K.bestx[0]=0;
for( i=1;i<=n;i++)
{
K.p[i]=p[Q[i-1].ID];
K.w[i]=w[Q[i-1].ID];
}
K.cp=0;
K.cw=0;
K.c=c;
K.n=n;
K.bestp=0;
//回溯搜索
K.Backtrack(1);
K.print();
delete [] Q;
delete [] K.w;
delete [] K.p;
return K.bestp;
}
void main()
{
int *p;
int *w;
int c=0;
int n=0;
int i=0;
char k;
cout<<"0-1背包问题——回溯法 "<<endl;
cout<<" by zbqplayer "<<endl;
while(k)
{
cout<<"请输入背包容量(c):"<<endl;
cin>>c;
cout<<"请输入物品的个数(n):"<<endl;
cin>>n;
p=new int[n+1];
w=new int[n+1];
p[0]=0;
w[0]=0;
cout<<"请输入物品的价值(p):"<<endl;
for(i=1;i<=n;i++)
cin>>p[i];
cout<<"请输入物品的重量(w):"<<endl;
for(i=1;i<=n;i++)
cin>>w[i];
cout<<"最优解为(bestx):"<<endl;
cout<<"最优值为(bestp):"<<endl;
cout<<Knapsack(p,w,c,n)<<endl;
cout<<"[s] 重新开始"<<endl;
cout<<"[q] 退出"<<endl;
cin>>k;
}
四.分支限界法求解0-1背包问题
1.问题描述:已知有N个物品和一个可以容纳M重量的背包,每种物品I的重量为WEIGHT,一个只能全放入或者不放入,求解如何放入物品,可以使背包里的物品的总效益最大。
2.设计思想与分析:对物品的选取与否构成一棵解树,左子树表示不装入,右表示装入,通过检索问题的解树得出最优解,并用结点上界杀死不符合要求的结点。
#include <iostream.h>
struct good
{
int weight;
int benefit;
int flag;//是否可以装入标记
};
int number=0;//物品数量
int upbound=0;
int curp=0, curw=0;//当前效益值与重量
int maxweight=0;
good *bag=NULL;
void Init_good()
{
bag=new good [number];
for(int i=0; i<number; i++)
{
cout<<"请输入第件"<<i+1<<"物品的重量:";
cin>>bag[i].weight;
cout<<"请输入第件"<<i+1<<"物品的效益:";
cin>>bag[i].benefit;
bag[i].flag=0;//初始标志为不装入背包
cout<<endl;
}
}
int getbound(int num, int *bound_u)//返回本结点的c限界和u限界
{
for(int w=curw, p=curp; num<number && (w+bag[num].weight)<=maxweight; num++)
{
w=w+bag[num].weight;
p=w+bag[num].benefit;
}
*bound_u=p+bag[num].benefit;
return ( p+bag[num].benefit*((maxweight-w)/bag[num].weight) );
}
void LCbag()
{
int bound_u=0, bound_c=0;//当前结点的c限界和u限界
for(int i=0; i<number; i++)//逐层遍历解树决定是否装入各个物品
{
if( ( bound_c=getbound(i+1, &bound_u) )>upbound )//遍历左子树
upbound=bound_u;//更改已有u限界,不更改标志
if( getbound(i, &bound_u)>bound_c )//遍历右子树
//若装入,判断右子树的c限界是否大于左子树根的c限界,是则装入
{
upbound=bound_u;//更改已有u限界
curp=curp+bag[i].benefit;
curw=curw+bag[i].weight;//从已有重量和效益加上新物品
bag[i].flag=1;//标记为装入
}
}
}
void Display()
{
cout<<"可以放入背包的物品的编号为:";
for(int i=0; i<number; i++)
if(bag[i].flag>0)
cout<<i+1<<" ";
cout<<endl;
delete []bag;
}
㈦ 回溯法的基本思想是什么
回溯法又称试探法。回溯法的基本做法是深度优先搜索,是一种组织得井井有条的、能避免不必要重复搜索的穷举式搜索算法。
回溯算法的基本思想是:从一条路往前走,能进则进,不能进则退回来,换一条路再试。
当我们遇到某一类问题时,它的问题可以分解,但是又不能得出明确的动态规划或是递归解法,此时可以考虑用回溯法解决此类问题。回溯法的优点在于其程序结构明确,可读性强,易于理解,而且通过对问题的分析可以大大提高运行效率。但是,对于可以得出明显的递推公式迭代求解的问题,还是不要用回溯法,因为它花费的时间比较长。
对于用回溯法求解的问题,首先要将问题进行适当的转化,得出状态空间树。这棵树的每条完整路径都代表了一种解的可能。通过深度优先搜索这棵树,枚举每种可能的解的情况;从而得出结果。但是,回溯法中通过构造约束函数,可以大大提升程序效率,因为在深度优先搜索的过程中,不断的将每个解(并不一定是完整的,事实上这也就是构造约束函数的意义所在)与约束函数进行对照从而删除一些不可能的解,这样就不必继续把解的剩余部分列出从而节省部分时间。
回溯法中,首先需要明确下面三个概念:
(一)约束函数:约束函数是根据题意定出的。通过描述合法解的一般特征用于去除不合法的解,从而避免继续搜索出这个不合法解的剩余部分。因此,约束函数是对于任何状态空间树上的节点都有效、等价的。
(二)状态空间树:刚刚已经提到,状态空间树是一个对所有解的图形描述。树上的每个子节点的解都只有一个部分与父节点不同。
(三)扩展节点、活结点、死结点:所谓扩展节点,就是当前正在求出它的子节点的节点,在深度优先搜索中,只允许有一个扩展节点。活结点就是通过与约束函数的对照,节点本身和其父节点均满足约束函数要求的节点;死结点反之。由此很容易知道死结点是不必求出其子节点的(没有意义)。
利用回溯法解题的具体步骤
首先,要通过读题完成下面三个步骤:
(1)描述解的形式,定义一个解空间,它包含问题的所有解。
(2)构造状态空间树。
(3)构造约束函数(用于杀死节点)。
然后就要通过深度优先搜索思想完成回溯,完整过程如下:
(1)设置初始化的方案(给变量赋初值,读入已知数据等)。
(2)变换方式去试探,若全部试完则转(7)。
(3)判断此法是否成功(通过约束函数),不成功则转(2)。
(4)试探成功则前进一步再试探。
(5)正确方案还未找到则转(2)。
(6)已找到一种方案则记录并打印。
(7)退回一步(回溯),若未退到头则转(2)。
(8)已退到头则结束或打印无解
㈧ 回溯法的用回溯法解题的一般步骤
(1)针对所给问题,定义问题的解空间;
(2)确定易于搜索的解空间结构;
(3)以深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效搜索。
回溯法C语言举例
八皇后问题是能用回溯法解决的一个经典问题。
八皇后问题是一个古老而着名的问题。该问题是十九世纪着名的数学家高斯1850年提出:在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一对角线上,问有多少种摆法。引入一个整型一维数组col[]来存放最终结果,col[i]就表示在棋盘第i列、col[i]行有一个皇后,为了使程序再找完了全部解后回到最初位置,设定col[0]的初值为0,即当回溯到第0列时,说明以求得全部解,结束程序运行。为了方便算法的实现,引入三个整型数组来表示当前列在三个方向上的状态 :
a[] a[i]=0表示第i行上还没有皇后;
b[] b[i]=0表示第i列反斜线/上没有皇后;
c[] c[i]=0表示第i列正斜线上没有皇后。
棋盘中同一反斜线/上的方格的行号与列号之和相同;同一正斜线上的方格的行号与列号之差均相同,这就是判断斜线的依据。
初始时,所有行和斜线上都没有皇后,从第1列的第1行配置第一个皇后开始,在第m列,col[m]行放置了一个合理的皇后,准备考察第m+1列时,在数组a[],b[]和c[]中为第m列,col[m]行的位置设定有皇后的标志;当从第m列回溯到m-1列时,并准备调整第m-1列的皇后配置时,清除在数组a[],b[]和c[]对应位置的值都为1来确定。 #include<stdio.h>
#include<stdlib.h>
#define Queens 8
int a[Queens+1]; //八皇后问题的皇后所在每一行位置,从1开始算
int main()
{
int i,k,flag,not_finish=1,count=0;
i=1;//初始
a[1]=1;
printf(the possible configuration of 8 queesns are:
);
while(not_finish) //not_finsh=1:处理未结束
{
while(not_finish && i<Queens+1) //处理未结束
{
for(flag=1,k=1;flag && k<i;k++)//判断是否有多个皇后在同一行
if(a[k]==a[i])
flag=0;
for(k=1;flag && k<i;k++) //判断是否有多个皇后在对角线
if((a[i]==a[k]-(k-i))||(a[i]==a[k]+(k-i)))
flag=0;
if(!flag) //若存在矛盾 重设第i个元素
{
if(a[i]==a[i-1]) //若a[i]的值已经已经一圈追上a[i-1]的值
{
i--; //退回一步 重新试探处理前一个元素
if(i>1 && a[i]==Queens)
a[i]=1; // 当a[i]为 Queens时 将a[i]的值重置
else
if(i==1 && a[i]==Queens)//当第一未位的值达到Queens时结束
not_finish=0;
else
a[i]++;
}
else
if(a[i]==Queens)
a[i]=1;
else
a[i]++;
}
else
if(++i<=Queens) //若前一个元素的值为Queens
if(a[i-1]==Queens)
a[i]=1;
else //否则元素为前一个元素的下一个值
a[i]=a[i-1]+1;
}
if (not_finish)
{
++count;
printf((count-1)%3?[%2d]::
[%2d]:,count);
for(k=1;k<=Queens;k++) //输出结果
printf(%d,a[k]);
if(a[Queens-1]<Queens)
a[Queens-1]++;
else
a[Queens-1]=1;
i=Queens-1;
}
}
system(pause);
} var
n,k,t,i:longint;
x:array[1..100] of integer;
function pa(k:integer):boolean;
begin
pa:=true;
for i:=1 to k-1 do
if (x[i]=x[k]) or (abs(x[i]-x[k])=abs(i-k)) then pa:=false;
end;
procere try(k:integer);
var
i:integer;
begin
if k>n then
begin
t:=t+1;
exit;
end;
for i:=1 to n do
begin
x[k]:=i;
if pa(k) then try(k+1);
end;
end;
begin
read(n);
t:=0;
try(1);
write(t);
end. #include
#include
#define m 5
#define n 6
int sf=0;
int mase[m][n]={{0,0,0,1,0,0},{0,1,0,0,0,0},{0,1,1,1,1,0},{0,0,0,0,0,1},{1,0,1,1,0,0}};
void search(int x,int y)
{
if((x==m-1)&&(y==n-1))
sf=1;
else
{
mase[x][y]=1;
if((sf!=1)&&(y!=n-1)&&mase[x][y+1]==0)
search(x,y+1);
if((sf!=1)&&(x!=m-1)&&mase[x+1][y]==0)
search(x+1,y);
if((sf!=1)&&(y!=0)&&mase[x][y-1]==0)
search(x,y-1);
if((sf!=1)&&(x!=0)&&mase[x-1][y]==0)
search(x-1,y);
}
mase[x][y]=0;
if(sf==1)
mase[x][y]=5;//通过路径用数字的表示
}
int main()
{
int i=0,j=0;
//clrscr();
search(0,0);
for(i=0;i<m;i++) p=></m;i++)>
{
for(j=0;j<n;j++) p=></n;j++)>
printf(%d,mase[i][j]);
printf(
);
}
system(pause);
return 0;
}
回溯法解决迷宫问题PASCAL语言
program migong;
var
n,k,j,x,y:integer;
a:array[0..10000,0..10000] of integer;
b:array[0..1000000,0..2] of integer;
procere search(x,y,i:integer);
begin
a[x,y]:=1;
if (x=n) and (y=n) then
begin
for j:=1 to i-1 do
writeln(j,':(',b[j,1],',',b[j,2],')');
writeln(i,':(',x,',',y,')');
halt;
end;
if a[x-1,y]=0 then begin b[i,1]:=x;b[i,2]:=y;search(x-1,y,i+1);end;
if a[x+1,y]=0 then begin b[i,1]:=x;b[i,2]:=y;search(x+1,y,i+1);end;
if a[x,y-1]=0 then begin b[i,1]:=x;b[i,2]:=y;search(x,y-1,i+1);end;
if a[x,y+1]=0 then begin b[i,1]:=x;b[i,2]:=y;search(x,y+1,i+1);end;
a[x,y]:=0;
end;
begin
read(n);
for k:=1 to n do
for j:=1 to n do
read(a[k,j]);
for k:=0 to n+1 do
begin
a[k,0]:=-1;
a[k,n+1]:=-1;
a[n+1,k]:=-1;
a[0,k]:=-1;
end;
x:=1;y:=1;
if a[x+1,y]=0 then begin a[x,y]:=1;b[1,1]:=x;b[1,2]:=y;search(x+1,y,1);a[x,y]:=0;end;
if a[x,y+1]=0 then begin a[x,y]:=1;b[1,1]:=x;b[1,2]:=y;search(x,y+1,1);a[x,y]:=0;end;
end.
㈨ 回溯算法的典型例题
八皇后问题:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。