① 数字签名技术算法的优缺点
RSA的安全性主要取决于构造其加密算法的数学函数的求逆的困难性,这同大多数公钥密码系统一样(例如ElGamal算法就是基于离散对数问题的困难性,我们称这样的函数为单向函数。单向函数不能直接用作密码体制,因为如果用单向函数对明文进行加密,即使是合法的接收者也不能还原出明文,因为单向函数的逆运算是困难的。与密码体制关系更为密切的陷门单向函数,即函数及其逆函数的计算都存在有效的算法,而且可以将计算函数的方法公开。单向和陷门单向函数的概念是公钥密码学的核心,它对公钥密码系统的构造非常重要,甚至可以说公钥密码体制的设计就是陷门单向函数的设计。
ECDSA算法将DsA运用在椭圆曲线方程上,将安全性的基础由求取有限域上
离散对数的困难性变成了在椭圆曲线群上计算离散对数的困难性,安全性基础改
变,使得在同等安全程度下使用的密钥长度变短,仅仅使用192位长的密钥就可
以保证安全性了,而DSA算法需要1024位长的密钥才能保证足够的安全性。改进
后的ECDSA算法提高了算法实现的效率。
② 数字签名的工作原理谁能给介绍下呢
数字签名就是附加在数据单元上的一些数据,或是对数据单元所作的密码变换。这种数据或变换允许数据单元的接收者用以确认数据单元的来源和数据单元的完整性并保护数据,防止被人(例如接收者)进行伪造。它是对电子形式的消息进行签名的一种方法,一个签名消息能在一个通信网络中传输。基于公钥密码体制和私钥密码体制都可以获得数字签名,目前主要是基于公钥密码体制的数字签名。包括普通数字签名和特殊数字签名
您可到GlobalSign 的官方网站进行详细了解!
③ 数字签名怎么做
很简单麻,以后有不懂的地方可以查联机帮助
:-p:-p:-p:-p:-p:-p:-p:-p:-p
“开始”菜单
(windows):程序
autodesk
autocad
附加数字签名
命令行:
(dos)
acsignapply.exe
④ 什么是椭圆曲线数字签名算法
椭圆曲线数字签名算法(ECDSA)是使用椭圆曲线密码(ECC)对数字签名算法(DSA)的模拟。ECDSA于1999年成为ANSI标准,并于2000年成为IEEE和NIST标准。它在1998年既已为ISO所接受,并且包含它的其他一些标准亦在ISO的考虑之中。与普通的离散对数问题(discrete logarithm problem DLP)和大数分解问题(integer factorization problem IFP)不同,椭圆曲线离散对数问题(elliptic curve discrete logarithm problem ECDLP)没有亚指数时间的解决方法。因此椭圆曲线密码的单位比特强度要高于其他公钥体制。
数字签名算法(DSA)在联邦信息处理标准FIPS中有详细论述,称为数字签名标准。它的安全性基于素域上的离散对数问题。椭圆曲线密码(ECC)由Neal Koblitz和Victor Miller于1985年发明。它可以看作是椭圆曲线对先前基于离散对数问题(DLP)的密码系统的模拟,只是群元素由素域中的元素数换为有限域上的椭圆曲线上的点。椭圆曲线密码体制的安全性基于椭圆曲线离散对数问题(ECDLP)的难解性。椭圆曲线离散对数问题远难于离散对数问题,椭圆曲线密码系统的单位比特强度要远高于传统的离散对数系统。因此在使用较短的密钥的情况下,ECC可以达到于DL系统相同的安全级别。这带来的好处就是计算参数更小,密钥更短,运算速度更快,签名也更加短小。因此椭圆曲线密码尤其适用于处理能力、存储空间、带宽及功耗受限的场合。
ECDSA是椭圆曲线对DSA的模拟。ECDSA首先由Scott和Vanstone在1992年为了响应NIST对数字签名标准(DSS)的要求而提出。ECDSA于1998年作为ISO标准被采纳,在1999年作为ANSI标准被采纳,并于2000年成为IEEE和FIPS标准。包含它的其他一些标准亦在ISO的考虑之中。
⑤ 签名算法怎么来的
数字签名算法分析与Hash签名
序:这篇文章我用了近一周的时间完成,其中涉及到的RSA算法已经在上一篇《公钥密码体系》中详细的介绍过,目前数字签名中人们使用很多的还是512位与1024位的RSA算法。
摘要: 数字签字和认证机构是电子商务的核心技术。数字签名作为目前Internet中电子商务重要的技术,不断地进行改进,标准化。本文从数字签名的意义出发,详细介绍了数字签名中涉及到的内容与算法,并自行结合进行改进。
关键词:Internet公钥加密 Hash函数 电子商务加密数字签名
数字签名简介
我们对加解密算法已经有了一定理解,可以进一步讨论"数字签名"(注意不要与数字认证混淆)的问题了,即如何给一个计算机文件进行签字。数字签字可以用对称算法实现,也可以用公钥算法实现。但前者除了文件签字者和文件接受者双方,还需要第三方认证,较麻烦;通过公钥加密算法的实现方法,由于用秘密密钥加密的文件,需要靠公开密钥来解密,因此这可以作为数字签名,签名者用秘密密钥加密一个签名(可以包括姓名、证件号码、短信息等信息),接收人可以用公开的、自己的公开密钥来解密,如果成功,就能确保信息来自该公开密钥的所有人。
公钥密码体制实现数字签名的基本原理很简单,假设A要发送一个电子文件给B,A、B双方只需经过下面三个步骤即可:
1. A用其私钥加密文件,这便是签字过程
2. A将加密的文件送到B
3. B用A的公钥解开A送来的文件
这样的签名方法是符合可靠性原则的。即:
签字是可以被确认的,
签字是无法被伪造的,
签字是无法重复使用的,
文件被签字以后是无法被篡改的,
签字具有无可否认性,
数字签名就是通过一个单向函数对要传送的报文进行处理得到的用以认证报文来源并核实报文是否发生变化的一个字母数字串。用这几个字符串来代替书写签名或印章,起到与书写签名或印章同样的法律效用。国际社会已开始制定相应的法律、法规,把数字签名作为执法的依据。
数字签名的实现方法
实现数字签名有很多方法,目前数字签名采用较多的是公钥加密技术,如基于RSA Data Security公司的PKCS(Public Key Cryptography Standards)、DSA(Digital Signature Algorithm)、x.509、PGP(Pretty Good Privacy)。1994年美国标准与技术协会公布了数字签名标准(DSS)而使公钥加密技术广泛应用。同时应用散列算法(Hash)也是实现数字签名的一种方法。
非对称密钥密码算法进行数字签名
算法的含义:
非对称密钥密码算法使用两个密钥:公开密钥和私有密钥,分别用于对数据的加密和解密,即如果用公开密钥对数据进行加密,只有用对应的私有密钥才能进行解密;如果用私有密钥对数据进行加密,则只有用对应的公开密钥才能解密。
使用公钥密码算法进行数字签名通用的加密标准有: RSA,DSA,Diffie-Hellman等。
签名和验证过程:
发送方(甲)首先用公开的单向函数对报文进行一次变换,得到数字签名,然后利用私有密钥对数字签名进行加密后附在报文之后一同发出。
接收方(乙)用发送方的公开密钥对数字签名进行解密交换,得到一个数字签名的明文。发送方的公钥可以由一个可信赖的技术管理机构即认证中心(CA)发布的。
接收方将得到的明文通过单向函数进行计算,同样得到一个数字签名,再将两个数字签名进行对比,如果相同,则证明签名有效,否则无效。
这种方法使任何拥有发送方公开密钥的人都可以验证数字签名的正确性。由于发送方私有密钥的保密性,使得接受方既可以根据结果来拒收该报文,也能使其无法伪造报文签名及对报文进行修改,原因是数字签名是对整个报文进行的,是一组代表报文特征的定长代码,同一个人对不同的报文将产生不同的数字签名。这就解决了银行通过网络传送一张支票,而接收方可能对支票数额进行改动的问题,也避免了发送方逃避责任的可能性。
对称密钥密码算法进行数字签名
算法含义
对称密钥密码算法所用的加密密钥和解密密钥通常是相同的,即使不同也可以很容易地由其中的任意一个推导出另一个。在此算法中,加、解密双方所用的密钥都要保守秘密。由于计算机速度而广泛应用于大量数据如文件的加密过程中,如RD4和DES,用IDEA作数字签名是不提倡的。
使用分组密码算法数字签名通用的加密标准有:DES,Tripl-DES,RC2,RC4,CAST等。
签名和验证过程
Lamport发明了称为Lamport-Diffle的对称算法:利用一组长度是报文的比特数(n)两倍的密钥A,来产生对签名的验证信息,即随机选择2n个数B,由签名密钥对这2n个数B进行一次加密交换,得到另一组2n个数C。
发送方从报文分组M的第一位开始,依次检查M的第I位,若为0时,取密钥A的第i位,若为1则取密钥A的第i+1位;直至报文全部检查完毕。所选取的n个密钥位形成了最后的签名。
接受方对签名进行验证时,也是首先从第一位开始依次检查报文M,如果M的第i位为0时,它就认为签名中的第i组信息是密钥A的第i位,若为1则为密钥A的第i+1位;直至报文全部验证完毕后,就得到了n个密钥,由于接受方具有发送方的验证信息C,所以可以利用得到的n个密钥检验验证信息,从而确认报文是否是由发送方所发送。
这种方法由于它是逐位进行签名的,只有有一位被改动过,接受方就得不到正确的数字签名,因此其安全性较好,其缺点是:签名太长(对报文先进行压缩再签名,可以减少签名的长度);签名密钥及相应的验证信息不能重复使用,否则极不安全。
结合对称与非对称算法的改进
对称算法与非对称算法各有利弊,所以结合各自的优缺点进行改进,可以用下面的模块进行说明:
Hash算法进行数字签名
Hash算法也称作散列算法或报文摘要,Hash算法将在数字签名算法中详细说明。
Hash算法数字签字通用的加密标准有: SHA-1,MD5等。
数字签名算法
数字签名的算法很多,应用最为广泛的三种是: Hash签名、DSS签名、RSA签名。这三种算法可单独使用,也可综合在一起使用。数字签名是通过密码算法对数据进行加、解密变换实现的,常用的HASH算法有MD2、MD5、SHA-1,用DES算法、RSA算法都可实现数字签名。但或多或少都有缺陷,或者没有成熟的标准。
Hash签名
Hash签名是最主要的数字签名方法,也称之为数字摘要法(digital digest)、数字指纹法(digital finger print)。它与RSA数字签名是单独的签名不同,该数字签名方法是将数字签名与要发送的信息紧密联系在一起,它更适合于电子商务活动。将一个商务合同的个体内容与签名结合在一起,比合同和签名分开传递,更增加了可信度和安全性。下面我们将详细介绍Hash签名中的函数与算法。
⑥ 数字签名加密算法
这个问题 如果不是专业人员估计累死你也找不到这样的文章。
想自学 就必须要有深刻的技术 另外其中用到很多高数问题的。
那些算法例子不用去看 越看越乱。
学一些 语言:C JAVA 什么的 还有 数学一定要过关如果数学不好的话 技术会了语言也没用 因为其中的算法你没法编译那么就不是一个好的加密程序。
如果能弄会OK了。
⑦ 试分析dsa签名算法中,若用户a签名时k已泄露,对整个dsa签名算法有何影响
DSA算法 Digital Signature Algorithm (DSA)是Schnorr和ElGamal签名算法的变种,被美国NIST作为DSS(DigitalSignature Standard)。算法中应用了下述参数: p:L bits长的素数。L是64的倍数,范围是512到1024; q:p - 1的160bits的素因子
⑧ 数字签名的原理
数字签名是附加在数据单元上的一些数据,或是对数据单元所作的密码变换。这种数据或变换允许数据单元的接收者用以确认数据单元的来源和数据单元的完整性并保护数据,防止被人(例如接收者)进行伪造。
它是对电子形式的消息进行签名的一种方法,一个签名消息能在一个通信网络中传输。基于公钥密码体制和私钥密码体制都可以获得数字签名,主要是基于公钥密码体制的数字签名。包括普通数字签名和特殊数字签名。
(8)dss签名算法扩展阅读:
实现方法
数字签名算法依靠公钥加密技术来实现的。在公钥加密技术里,每一个使用者有一对密钥:一把公钥和一把私钥。公钥可以自由发布,但私钥则秘密保存;还有一个要求就是要让通过公钥推算出私钥的做法不可能实现。
普通的数字签名算法包括三种算法:
1.密码生成算法;
2.标记算法;
3.验证算法。