㈠ ps里面自动图像拼接用的是什么算法
adobe photoshop cc 2015.5拼接图像方法是:
1、打开PS,新建适当大小白色背景文件;
2、文件-打开-选择要拼接的图片,ctrl+t调整图片大小、位置;
3、继续打开图片,拖进来,调整大小位置,直至布满这张画布,合并图层,完成。
㈡ 数字图像的拼接算法技术研究 也是基于matlab的,要把2副图合成一幅图的那种算法,有提供程序要有图的
im2=imread(file1);%假定两图像大小完全一致
im1=imread(file2);%假定两图像大小完全一致
a=size(im1);
im=im1;
im(a(1)+1:2*a(1),:,:)=im2;
imshow(im)
㈢ 图像拼接技术的图像拼接的基本流程图
相邻图像的配准及拼接是全景图生成技术的关键,有关图像配准技术的研究至今已有很长的历史,其主要的方法有以下两种:基于两幅图像的亮度差最小的方法和基于特征的方法。其中使用较多的是基于特征模板匹配特征点的拼接方法。该方法允许待拼接的图像有一定的倾斜和变形,克服了获取图像时轴心必须一致的问题,同时允许相邻图像之间有一定色差。全景图的拼接主要包括以下4个步骤:图像的预拼接,即确定两幅相邻图像重合的较精确位置,为特征点的搜索奠定基础。特征点的提取,即在基本重合位置确定后,找到待匹配的特征点。图像矩阵变换及拼接,即根据匹配点建立图像的变换矩阵并实现图像的拼接。最后是图像的平滑处理。
㈣ 在图像处理中有哪些算法
1、图像变换:
由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,可减少计算量,获得更有效的处理。它在图像处理中也有着广泛而有效的应用。
2、图像编码压缩:
图像编码压缩技术可减少描述图像的数据量,以便节省图像传输、处理时间和减少所占用的存储器容量。
压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。
编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。
3、图像增强和复原:
图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。
图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。
4、图像分割:
图像分割是数字图像处理中的关键技术之一。
图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。
5、图像描述:
图像描述是图像识别和理解的必要前提。
一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法。对于特殊的纹理图像可采用二维纹理特征描述。
6、图像分类:
图像分类属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类。
图像分类常采用经典的模式识别方法,有统计模式分类和句法模式分类。
图像处理主要应用在摄影及印刷、卫星图像处理、医学图像处理、面孔识别、特征识别、显微图像处理和汽车障碍识别等。
数字图像处理技术源于20世纪20年代,当时通过海底电缆从英国伦敦到美国纽约传输了一幅照片,采用了数字压缩技术。
数字图像处理技术可以帮助人们更客观、准确地认识世界,人的视觉系统可以帮助人类从外界获取3/4以上的信息,而图像、图形又是所有视觉信息的载体,尽管人眼的鉴别力很高,可以识别上千种颜色,
但很多情况下,图像对于人眼来说是模糊的甚至是不可见的,通过图象增强技术,可以使模糊甚至不可见的图像变得清晰明亮。
㈤ 图像处理算法问题~~~~分割与拼接
只能给你点提示。以2值化算法为中心取要分割的部分,再把被分割图片变成二维数组或一维数组,替换到被加图片的数组值上就可以了。算法挺容易的,就是麻烦点,呵呵。
㈥ android 全景图像拼接算法哪种方案最好
首先介绍一下流程:
1.选图,两张图的重叠区域不能太小,我个人认为最少不少于15%,这样才能保证有足够的角点匹配。
2.角点检测。这一步OpenCV提供了很多种方法,譬如Harris角点检测,而监测出的角点用CvSeq存储,这是一个双向链表。
3.角点提纯。在提纯的时候,需要使用RANSAC提纯。OpenCV自带了一个函数,FindHomography,不但可以提纯,还可以计算出3x3的转换矩阵。这个转换矩阵十分重要。
4.角点匹配。经过提纯后的角点,则需要匹配。
5.图像变换。这一步我曾经尝试过很多办法,最后选择了FindHomography输出的变换矩阵,这是一个透视变换矩阵。经过这个透视变换后的图像,可以直接拿来做拼接。
6.图象拼接。完成上面步骤之后,其实这一步很容易。
7.球面变换。这一步需要对坐标系进行转换,从平面坐标到球面坐标。
㈦ 图像处理的算法有哪些
图像处理基本算法操作从处理对象的多少可以有如下划分:
一)点运算:处理点单元信息的运算
二)群运算:处理群单元 (若干个相邻点的集合)的运算
1.二值化操作
图像二值化是图像处理中十分常见且重要的操作,它是将灰度图像转换为二值图像或灰度图像的过程。二值化操作有很多种,例如一般二值化、翻转二值化、截断二值化、置零二值化、置零翻转二值化。
2.直方图处理
直方图是图像处理中另一重要处理过程,它反映图像中不同像素值的统计信息。从这句话我们可以了解到直方图信息仅反映灰度统计信息,与像素具体位置没有关系。这一重要特性在许多识别类算法中直方图处理起到关键作用。
3.模板卷积运算
模板运算是图像处理中使用频率相当高的一种运算,很多操作可以归结为模板运算,例如平滑处理,滤波处理以及边缘特征提取处理等。这里需要说明的是模板运算所使用的模板通常说来就是NXN的矩阵(N一般为奇数如3,5,7,...),如果这个矩阵是对称矩阵那么这个模板也称为卷积模板,如果不对称则是一般的运算模板。我们通常使用的模板一般都是卷积模板。如边缘提取中的Sobel算子模板。
㈧ 高分跪求图像拼接MATLAB源代码,基于特征点,算法任意
般图像拼接分为:特征点提取、特征点匹配、求解投影矩阵、拼接。
每一步都有比较经典的算法,就特征点提取、特征点匹配而言,比较经典的有SIFT算法
matlab中文论坛 搜索 “求高手帮忙简单调试一下图像拼接的matlab源程序!!
这个图像拼接的程序是基于特征点提取的,用的是SIFT算法,现在已经可以运行到特征点的提取和匹配,只是到了RANSAC这一步有点问题,但我不懂,相信你举手之劳就可以帮到我。跪求…… ”
没法发链接地址 你懂的
㈨ 数字图像处理的基本算法及要解决的主要问题
图像处理,是对图像进行分析、加工、和处理,使其满足视觉、心理以及其他要求的技术。图像处理是信号处理在图像域上的一个应用。目前大多数的图像是以数字形式存储,因而图像处理很多情况下指数字图像处理。此外,基于光学理论的处理方法依然占有重要的地位。
图像处理是信号处理的子类,另外与计算机科学、人工智能等领域也有密切的关系。
传统的一维信号处理的方法和概念很多仍然可以直接应用在图像处理上,比如降噪、量化等。然而,图像属于二维信号,和一维信号相比,它有自己特殊的一面,处理的方式和角度也有所不同。
目录
[隐藏]
* 1 解决方案
* 2 常用的信号处理技术
o 2.1 从一维信号处理扩展来的技术和概念
o 2.2 专用于二维(或更高维)的技术和概念
* 3 典型问题
* 4 应用
* 5 相关相近领域
* 6 参见
[编辑] 解决方案
几十年前,图像处理大多数由光学设备在模拟模式下进行。由于这些光学方法本身所具有的并行特性,至今他们仍然在很多应用领域占有核心地位,例如 全息摄影。但是由于计算机速度的大幅度提高,这些技术正在迅速的被数字图像处理方法所替代。
从通常意义上讲,数字图像处理技术更加普适、可靠和准确。比起模拟方法,它们也更容易实现。专用的硬件被用于数字图像处理,例如,基于流水线的计算机体系结构在这方面取得了巨大的商业成功。今天,硬件解决方案被广泛的用于视频处理系统,但商业化的图像处理任务基本上仍以软件形式实现,运行在通用个人电脑上。
[编辑] 常用的信号处理技术
大多数用于一维信号处理的概念都有其在二维图像信号领域的延伸,它们中的一部分在二维情形下变得十分复杂。同时图像处理也具有自身一些新的概念,例如,连通性、旋转不变性,等等。这些概念仅对二维或更高维的情况下才有非平凡的意义。
图像处理中常用到快速傅立叶变换,因为它可以减小数据处理量和处理时间。
[编辑] 从一维信号处理扩展来的技术和概念
* 分辨率(Image resolution|Resolution)
* 动态范围(Dynamic range)
* 带宽(Bandwidth)
* 滤波器设计(Filter (signal processing)|Filtering)
* 微分算子(Differential operators)
* 边缘检测(Edge detection)
* Domain molation
* 降噪(Noise rection)
[编辑] 专用于二维(或更高维)的技术和概念
* 连通性(Connectedness|Connectivity)
* 旋转不变性(Rotational invariance)
[编辑] 典型问题
* 几何变换(geometric transformations):包括放大、缩小、旋转等。
* 颜色处理(color):颜色空间的转化、亮度以及对比度的调节、颜色修正等。
* 图像合成(image composite):多个图像的加、减、组合、拼接。
* 降噪(image denoising):研究各种针对二维图像的去噪滤波器或者信号处理技术。
* 边缘检测(edge detection):进行边缘或者其他局部特征提取。
* 分割(image segmentation):依据不同标准,把二维图像分割成不同区域。
* 图像制作(image editing):和计算机图形学有一定交叉。
* 图像配准(image registration):比较或集成不同条件下获取的图像。
* 图像增强(image enhancement):
* 图像数字水印(image watermarking):研究图像域的数据隐藏、加密、或认证。
* 图像压缩(image compression):研究图像压缩。
[编辑] 应用
* 摄影及印刷 (Photography and printing)
* 卫星图像处理 (Satellite image processing)
* 医学图像处理 (Medical image processing)
* 面孔识别, 特征识别 (Face detection, feature detection, face identification)
* 显微图像处理 (Microscope image processing)
* 汽车障碍识别 (Car barrier detection)
[编辑] 相关相近领域
* 分类(Classification)
* 特征提取(Feature extraction)
* 模式识别(Pattern recognition)
* 投影(Projection)
* 多尺度信号分析(Multi-scale signal analysis)
* 离散余弦变换(The Discrete Cosine Transform)
㈩ 急求!图像拼接算法代码
算法描述
procere ImageMatching
{
输入FirstImage;
输入SecondImage;
//获得两幅图象的大小
Height1=GetImageHeight(FirstImage);
Height2=GetImageHeight(SecondImage);
Width1=GetImageWidth(FirstImage);
Width2=GetImageWidth(SecondImage);
// 从第二幅图象取网格匹配模板
SecondImageGrid = GetSecondImageGrid(SecondImage);
// 粗略匹配,网格在第一幅图象中先从左向右移动,再从下到上移动,每次移动一个网格间距,Step_Width 或Step_Height,当网格移出重叠区域后结束
y=Heitht1-GridHeight;
MinValue = MaxInteger;
While ( y<Height1-OverlapNumber)//当网格移出重叠部分后结束
{
x=Grid_Width/2; //当网格位于第一幅图象的最左边时,A点的横坐标。
While ( x<(Width1-Grid_Width/2) )
{
FirstImageGrid=GetImgaeGrid(FirstImgaeGrid, x, y);
differ=CaculateDiff(FirstImgaeGrid, SecondImageGrid);//计算象素值差的平
//方和
if (differ<MinValue)
{
BestMatch_x=x;
BestMatch_y=y;
MinValue = differ;
}
x= x+Step_width;
}
y=y-Step_Height;
}
//精确匹配
Step_Width= Step_Width/2;
Step_Height= Step_Height/2;
While ( Step_Height>0 & Step_Width>0)//当水平步长和垂直步长均减为零时结束
{
if(Step_Height==0)//当仅有垂直步长减为零时,将其置为1
Step_Height=1;
If(Step_Width==0) //当仅有水平步长减为零时,将其置为1
Step_Width=1;
temp_x = BestMatch_x;
temp_y = BestMatch_y;
for ( i= -1; i<1; i++)
for( j= -1; j<1; j++)
{
if ((i=0&j!=0)|(i!=0&j=0))
{
FirstImageGrid=GetImgaeGrid(FirstImgaeGrid,
temp_x+i*Step_Width, temp_y +j*Step_Height);
differ=CaculateDiff(FirstImgaeGrid, SecondImageGrid);
if (differ<MinValue)
{
BestMatch_x=x;
BestMatch_y=y;
MinValue = differ;
}
}
}
Step_Height = Step_Height /2;
Step_Width = Step_Width/2;
}
}
不懂的可以问我,相互交流