❶ 有理数的加减乘除混合运算法则
加减乘除混合运算例子28+3×23-30÷6
解题思路:四则运算规则(按顺序计算,先算乘除后算加减,有括号先算括号,有乘方先算乘方)即脱式运算(递等式计算)需在该原则前提下进行
解题过程:
28+3×23-30÷6
=28+69-30÷6
=28+69-5
=97-5
=92
存疑请追问,满意请采纳
❷ 四则混合运算法则
1、加法交换律:在两个数的加法运算中,交换两个加数的位置,和不变。字母表示:
a+b=b+a
2、加法结合律:三个数相加,先把前两个数相加,再加另一个加数;或者先把后两个数相加,再加另一个加数,和不变。字母表示:
(a+b)+c=a+(b+c)
3、乘法交换律:两个数相乘的乘法运算中,交换两个乘数的位置,积不变。字母表示:
a×b=b×a
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变。字母表示:
(a×b)×c=a×(b×c)
5、乘法分配律:两个数相加(或相减)再乘另一个数,等于把这个数分别同两个加数(减数)相乘,再把两个积相加(相减),得数不变。字母表示:
①(a+b)×c=a×c+b×c;a×c+b×c=(a+b)×c;
②a×(b—c)=a×b—a×c;a×b—a×c=a×(b—c)
6、连减定律:
①一个数连续减两个数, 等于这个数减后两个数的和,得数不变;字母表示:
a—b—c=a—(b+c);a—(b+c)=a—b—c;
②在三个数的加减法运算中,交换后两个数的位置,得数不变。字母表示:
a—b—c=a—c—b;a—b+c=a+c—b
7、连除定律:
①一个数连续除以两个数, 等于这个数除以后两个数的积,得数不变。字母表示:
a÷b÷c=a÷(b×c);a÷(b×c)=a÷b÷c;
②在三个数的乘除法运算中,交换后两个数的位置,得数不变。字母表示:
a÷b÷c=a÷c÷b;a÷b×c=a×c÷b
(2)脑图加减乘除混合运算法则公式扩展阅读
分数、小数四则混合运算的计算方法
1、分数、小数加减混合运算,当分数能转化成有限小数时(分母只含有质因数2和5),一般把分数化成小数后计算比较简便,当有的分数不能化成有限小数时,就把小数化成分数计算。
2、分数、小数乘法混合运算,如果小数与分数的分母约分时,可直接运算或把小数化成分数后再计算比较方便;如果把分数化成小数后能进行简算,也可以把分数化成小数计算。
3、有些题目,不一定把全题统一化成分数或化成小数计算,可以根现运算顺序,分成几部分进行处理,选择合适的算法。
注意:四则混合运算的结果,是分数的要化成最简分数,假分数要化成带分数或整数。遇到除不尽的部分而又没有规定取近似值时,可用分数表示商,也可以按惯例保留两位小数。
❸ 乘除加减的混合运算规则
先乘除,后加减,有括号的先算括号内,再算括号外。同级运算先乘除后加减按从左到右的顺序。
❹ 加减乘除混合运算口诀是什么
混合运算有顺序,同级计算左边起。加、减、乘、除混算题,先算乘、除要牢记。如果要是有括号,先算括号里面题。
混合运算法则
1、算式里只有加减法,则依次计算;只有乘除法,也依次计算。
2、算式里既有加减法又有乘法,先算乘法,后算加减法。
3、算式里既有加减法又有除法,先算除法,后算加减法。
4、每一步不参加计算的部分,要位置、符号不变地抄下来,保证等号前后应该相等。
5、小括号在混合运算中的作用是改变运算顺序。带小括号的混合运算的运算顺序:先算小括号里面的,后算小括号外面的。
列式计算技巧总结
(1)逆推法:从间句入手,先确定最后一种运算,再确定参与这种运算分别需要那些数,然后根据数量关系逆推上去,列出算式。
(2)缩句法:这种方法就是找准文字题中的关键句,从条件出发,在不改变题意的前提下,把题目中的词句缩短,从而突出主要数量关系,再列式计算。
(3)分段法:有的文字题步骤较多,且题目中每层意思用“,”隔开,对于这类文字题,可以用分段法。
(4)方程法:有的文字题逆向思考比较困难,可以用x代替题目中的未知数,根据数量间的相等关系,列出方程,最后解方程。
❺ 加减乘除混合运算添或去括号的规律
括号前面为加号时,去或添括号后,括号里的符号不变,括号前面为减号时,去或添括号后,括号里的符号和原来的符号相反,但乘除好除外,括号前面为乘或除号时,去或添括号后,括号里的符号和原来的符号相反。
一、加减法的运算法则
1、整数:
(1)相同数位对齐
(2)从个位算起
(3)加法中满几十就向高一位进几;减法中不够减时,就从高一位退1当10和本数位相加后再减。
2、小数:
(1)小数点对齐(即相同数位对齐);
(2)按整数加、减法的法则进行计算;
(3)在得数里对齐横线上的小数点,点上小数点;
3、分数
(1)同分母分数相加、减,分母不变,只把分子相加、减;
(2)异分母分数相加、减,先通分,再按同分母分数加、减法的法则进行计算;
(3)结果不是最简分数的要约分成最简分数。
二、乘法的运算法则
1、整数
(1)从个位乘起,依次用第二个因数每位上的数去乘第一个因数;
(2)用第二个因数那一位上的数去乘,得数的末位就和第二个因数的那一位对齐;
(3)再把几次乘得的数加起来;
2、小数
(1)按整数乘法的法则先求出积;
(2)看因数中一共有几位小数,就从积的右边起数出几位点上小数点;
3、分数
(1)分数乘分数,用分子相乘的积作分子,分母相乘的积作分母;
(2)有整数的把整数看作分母是1的假分数;
(3)能约分的要先约分。
三、除法的运算法则
1、整数
(1)从被除数的高位除起;
(2)除数是几位数,就先看被除数的前几位,如果不够除,就要多看一位;
(3)除到哪一位就要把商写在哪一位上面;
(4)每次除得的余数必须比除数小;
(5)求出商的最高位后如果被除数的哪一位上不够商1就在哪一位上写0;
2、小数
(1)除数是整数时,按整数除法进行计算,商的4、数点要与被除数的小数点对齐;
(2)除数是小数时,先转化成除数是整数的小数除法,再按照除数是整数的外数除法进行计算;
3、分数
甲数除以乙数(0除外),等于甲数乘乙数的倒数。
(5)脑图加减乘除混合运算法则公式扩展阅读:
1、加法运算性质
从加法交换律和结合律可以得到:几个加数相加,可以任意交换加数的位置;或者先把几个加数相加再和其他的加数相加,它们的和不变。例如:34+72+66+28=(34+66)+(72+28)=200。
2、减法运算性质
①一个数减去两个数的和,等于从这个数中依次减去和里的每一个加数。例如:134-(34+63)=134-34-63=37。
②一个数减去两个数的差,等于这个数先减去差里的被减数,再加上减数。例如:100一(32—15)=100—32+15=68+15=83。
③几个数的和减去一个数,可以选其中任一个加数减去这个数,再同其余的加数相加。例如:(35+17+29)-25=35-25+17+29=56。
④一个数连续减去几个数,可以先把所有的减数相加,再从被减数里减去减数相加的和。例如:276-115-85=276-(115+85)=76。
3、乘法运算性质
①几个数的积乘一个数,可以让积里的任意一个因数乘这个数,再和其他数相乘。例如:(25×3 × 9)×4=25×4×3×9=2700。
②两个数的差与一个数相乘,可以让被减数和减数分别与这个数相乘,再把所得的积相减。例如: (137-125)×8=137×8-125×8=96。
4、除法运算性质
①若某数除以(或乘)一个数,又乘(或除以)同一个数,则这个数不变。例如:68÷17×17=68(或68×17÷17=68)。
②一个数除以几个数的积,可以用这个数依次除以积里的各个因数。例如:320÷(2×5×8)=320÷2÷5÷8=4。
③一个数除以两个数的商,等于这个数先除以商中的被除数,再乘商中的除数。例如:56÷(8÷4)=56÷8×4=28。
④几个数的积除以一个数,可以让积里的任何一个因数除以这个数,再与其他的因数相乘。例如:8×72 X 4÷9=72÷9×8×4=256。
⑤几个数的和除以一个数,可以先让各个加数分别除以这个数,然后再把各个商相加。例如:(24+32+16)÷4=24÷4+32÷4+16÷4=18。
⑥两个数的差除以一个数,可以从被减数除以这个数所得的商里,减去减数除以这个数所得的商。例如:(65-39)÷13=65÷13-39÷13=2。
❻ 二年级下册加减乘除混合运算法则有哪些
加减乘:例如12+2-3*4=2
加乘减:例如12+3*2-5=13
乘减加:例如3*8+4-3=25
乘加减:例如3*6+5-3=20
减加乘:例如20-2+3*2=24
减乘加:例如20-2*6-3=5
除减加:例如30÷5-3+6=9
除加减:例如30÷6+12-4=13
除乘加:例如40÷4*3+2=32
❼ 加减乘除的运算法则是什么
1、整数加、减计算法则:
1)要把相同数位对齐,再把相同计数单位上的数相加或相减;
2)哪一位满十就向前一位进。
2、小数加、减法的计算法则:
1)计算小数加、减法,先把各数的小数点对齐(也就是把相同数位上的数对齐),
2)再按照整数加、减法的法则进行计算,最后在得数里对齐横线上的小数点点上小数点。
(得数的小数部分末尾有0,一般要把0去掉。)
3、分数加、减计算法则:
1)分母相同时,只把分子相加、减,分母不变;
2)分母不相同时,要先通分成同分母分数再相加、减。
4、整数乘法法则:
1)从右起,依次用第二个因数每位上的数去乘第一个因数,乘到哪一位,得数的末尾就和第二个因数的哪一位对个因数的哪一位对齐;
2)然后把几次乘得的数加起来。
(整数末尾有0的乘法:可以先把0前面的数相乘,然后看各因数的末尾一共有几个0,就在乘得的数的末尾添写几个0。)
5、小数乘法法则:
1)按整数乘法的法则算出积;
2)再看因数中一共有几位小数,就从得数的右边起数出几位,点上小数点。
3)得数的小数部分末尾有0,一般要把0去掉。
6、分数乘法法则:把各个分数的分子乘起来作为分子,各个分数的分母相乘起来作为分母,(即乘上这个分数的倒数),然后再约分。
7、整数的除法法则
1)从被除数的商位起,先看除数有几位,再用除数试除被除数的前几位,如果它比除数小,再试除多一位数;
2)除到被除数的哪一位,就在那一位上面写上商;
3)每次除后余下的数必须比除数小。
8、除数是整数的小数除法法则:
1)按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;
2)如果除到被除数的末尾仍有余数,就在余数后面补零,再继续除。
9、除数是小数的小数除法法则:
1)先看除数中有几位小数,就把被除数的小数点向右移动几位,数位不够的用零补足;
2)然后按照除数是整数的小数除法来除
10、分数的除法法则:
1)用被除数的分子与除数的分母相乘作为分子;
2)用被除数的分母与除数的分子相乘作为分母。
(二)运算顺序:
1、加法和减法叫做第一级运算,乘法和除法叫做第二级运算。
2、在一个没有括号的算式里,如果只含同一级运算,要从左往右依次计算;如果含有两级运算,要先做第一级运算,后做第二级运算。
3、在一个有括号的算式里,要先算小括号里面的,再算中括号里面的。
❽ 加减乘除运算顺序口诀是什么
加减乘除运算顺序口诀:先乘除,后加减,有括号的先进性括号内的计算。
运算顺序是混合运算教学的重中之重,在进行混合运算的相关练习时,学生经常因运算顺序不清出现计算错误,因此,对运算顺序的讲解,教师不能只是简单地告知,还应该巧用对比思想,让知识的本质内化于学生的心中。
混合运算法则
(1)算式里只有加减法,则依次计算;只有乘除法,也依次计算。
(2)算式里既有加减法又有乘法,先算乘法,后算加减法。
(3)算式里既有加减法又有除法,先算除法,后算加减法。
(4)每一步不参加计算的部分,要位置、符号不变地抄下来,保证等号前后应该相等。
(5)小括号在混合运算中的作用是改变运算顺序。带小括号的混合运算的运算顺序:先算小括号里面的,后算小括号外面的。
❾ 加减乘除四则混合运算法则是什么
从左到右 先乘除后加减 有括号先算括号里面的,
括号里面的也遵循从左到右 先乘除后加减的原则,
如果有大括号,中括号,小括号,遵循先小括号,
再中括号,最后大括号。
❿ 加减乘除四则的混合运算法则
从左到右
先乘除后加减
有括号先算括号里面的,
括号里面的也遵循从左到右
先乘除后加减的原则,
如果有大括号,中括号,小括号,遵循先小括号,
再中括号,最后大括号。