导航:首页 > 源码编译 > 序列数据处理算法

序列数据处理算法

发布时间:2022-07-19 02:44:33

⑴ 对一个数据序列,设计一个算法计算它们的最大值和最小值

可以用递归的思想计算。例如,计算最大值,如果数据序列只有一个值,则取这个值本身;如果只有两个值,则取这两个值的最大值;如果超过两个值,则把序列分成元素个数相近的两组,分别取它们的最大值,然后在这两个值中再取最大值。最小值也可以用同样的递归方法。

⑵ 如何进行海量数据排序,有哪些流行方法

你问的是关于对于海量数据排序的算法?工具?
1 排序算法:①就时间性能而言:数据序列基本正序(基本接近期望结果)时,直接插入排序、冒泡排序最好;数据序列基本逆序(基本与期望结果相反)时,归并排序、堆排序较好,快速排序次之,冒泡排序、直接插入排序最差;数据序列分布比较随机时的平均时间性能快速排序最佳;②就空间开销而言,归并排序的空间开销最多;③就算法复杂程度而言,冒泡排序、直接插入排序的实现最简单;
2 排序工具:推荐使用数据库系统,特别是Oracle、DB2、SQL Server等,容量大、速度快、功能强、安全性高,当然价格也上去了。流行的DBMS主要有Oracle、DB2、SQL Server、Sybase、MySql、VF、Access等,各有千秋。

⑶ 数据挖掘算法的算法分类

C4.5就是一个决策树算法,它是决策树(决策树也就是做决策的节点间像一棵树一样的组织方式,其实是一个倒树)核心算法ID3的改进算法,所以基本上了解了一半决策树构造方法就能构造它。决策树构造方法其实就是每次选择一个好的特征以及分裂点作为当前节点的分类条件。C4.5比ID3改进的地方时:
ID3选择属性用的是子树的信息增益(这里可以用很多方法来定义信息,ID3使用的是熵(entropy)(熵是一种不纯度度量准则)),也就是熵的变化值,而C4.5用的是信息增益率。也就是多了个率嘛。一般来说率就是用来取平衡用的,就像方差起的作用差不多,比如有两个跑步的人,一个起点是100m/s的人、其1s后为110m/s;另一个人起速是1m/s、其1s后为11m/s。如果仅算差值那么两个就是一样的了;但如果使用速度增加率(加速度)来衡量,2个人差距就很大了。在这里,其克服了用信息增益选择属性时偏向选择取值多的属性的不足。在树构造过程中进行剪枝,我在构造决策树的时候好讨厌那些挂着几个元素的节点。对于这种节点,干脆不考虑最好,不然很容易导致overfitting。对非离散数据都能处理,这个其实就是一个个式,看对于连续型的值在哪里分裂好。也就是把连续性的数据转化为离散的值进行处理。能够对不完整数据进行处理,这个重要也重要,其实也没那么重要,缺失数据采用一些方法补上去就是了。 (朴素贝叶斯NB)
NB认为各个特征是独立的,谁也不关谁的事。所以一个样本(特征值的集合,比如“数据结构”出现2次,“文件”出现1次),可以通过对其所有出现特征在给定类别的概率相乘。比如“数据结构”出现在类1的概率为0.5,“文件”出现在类1的概率为0.3,则可认为其属于类1的概率为0.5*0.5*0.3。 (支持向量机SVM)
SVM就是想找一个分类得最”好”的分类线/分类面(最近的一些两类样本到这个”线”的距离最远)。这个没具体实现过,上次听课,那位老师自称自己实现了SVM,敬佩其钻研精神。常用的工具包是LibSVM、SVMLight、MySVM。 (Mining frequent patterns without candidate generation)
这个也不太清楚。FP-growth算法(Frequent Pattern-growth)使用了一种紧缩的数据结构来存储查找频繁项集所需要的全部信息。采用算法:将提供频繁项集的数据库压缩到一棵FP-tree来保留项集关联信息,然后将压缩后的数据库分成一组条件数据库(一种特殊类型的投影数据库),每个条件数据库关联一个频繁项集。 K-Means是一种最经典也是使用最广泛的聚类方法,时至今日扔然有很多基于其的改进模型提出。K-Means的思想很简单,对于一个聚类任务(你需要指明聚成几个类,当然按照自然想法来说不应该需要指明类数,这个问题也是当前聚类任务的一个值得研究的课题),首先随机选择K个簇中心,然后反复计算下面的过程直到所有簇中心不改变(簇集合不改变)为止:步骤1:对于每个对象,计算其与每个簇中心的相似度,把其归入与其最相似的那个簇中。
步骤2:更新簇中心,新的簇中心通过计算所有属于该簇的对象的平均值得到。
k-means 算法的工作过程说明如下:首先从n个数据对象任意选择k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。一般都采用均方差作为标准测度函数. k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。 BIRCH也是一种聚类算法,其全称是Balanced Iterative Recing and Clustering using Hierarchies。BIRCH也是只是看了理论没具体实现过。是一个综合的层次聚类特征(Clustering Feature, CF)和聚类特征树(CF Tree)两个概念,用于概括聚类描述。聚类特征树概括了聚类的有用信息,并且占用空间较元数据集合小得多,可以存放在内存中,从而可以提高算法在大型数据集合上的聚类速度及可伸缩性。
BIRCH算法包括以下两个阶段:
1)扫描数据库,建立动态的一棵存放在内存的CF Tree。如果内存不够,则增大阈值,在原树基础上构造一棵较小的树。
2)对叶节点进一步利用一个全局性的聚类算法,改进聚类质量。
由于CF Tree的叶节点代表的聚类可能不是自然的聚类结果,原因是给定的阈值限制了簇的大小,并且数据的输入顺序也会影响到聚类结果。因此需要对叶节点进一步利用一个全局性的聚类算法,改进聚类质量。 AdaBoost做分类的一般知道,它是一种boosting方法。这个不能说是一种算法,应该是一种方法,因为它可以建立在任何一种分类算法上,可以是决策树,NB,SVM等。
Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。使用adaboost分类器可以排除一些不必要的训练数据,并将关键放在关键的训练数据上面。 GSP,全称为Generalized Sequential Pattern(广义序贯模式),是一种序列挖掘算法。对于序列挖掘没有仔细看过,应该是基于关联规则的吧!网上是这样说的:
GSP类似于Apriori算法,采用冗余候选模式的剪除策略和特殊的数据结构-----哈希树来实现候选模式的快速访存。
GSP算法描述:
1)扫描序列数据库,得到长度为1的序列模式L1,作为初始的种子集。
2)根据长度为i 的种子集Li ,通过连接操作和修剪操作生成长度为i+1的候选序列模式Ci+1;然后扫描序列数据库,计算每个候选序列模式的支持度,产生长度为i+1的序列模式Li+1,并将Li+1作为新的种子集。
3)重复第二步,直到没有新的序列模式或新的候选序列模式产生为止。
产生候选序列模式主要分两步:
连接阶段:如果去掉序列模式s1的第一个项目与去掉序列模式s2的最后一个项目所得到的序列相同,则可以将s1与s2进行连接,即将s2的最后一个项目添加到s1中。
修切阶段:若某候选序列模式的某个子序列不是序列模式,则此候选序列模式不可能是序列模式,将它从候选序列模式中删除。
候选序列模式的支持度计算:对于给定的候选序列模式集合C,扫描序列数据库,对于其中的每一条序列s,找出集合C中被s所包含的所有候选序列模式,并增加其支持度计数。 又是一个类似Apriori的序列挖掘。
其中经典十大算法为:C4.5,K-Means,SVM,Apriori,EM,PageRank,AdaBoost,KNN,NB和CART。

⑷ 用冒泡排序算法对数据序列(49,38,65,97,76,134,27,49)

思路解析:(49,38,65,97,76,13,27)→(38,49,65,76,13,27,97)→(38,49,65,13,27,76,97) 答案:2

⑸ 数据的算法都有哪些……

A*搜寻算法
俗称A星算法。这是一种在图形平面上,有多个节点的路径,求出最低通过成本的算法。常用于游戏中的 NPC的移动计算,或线上游戏的 BOT的移动计算上。该算法像 Dijkstra算法一样,可以找到一条最短路径;也像BFS一样,进行启发式的搜索。

Beam Search
束搜索(beam search)方法是解决优化问题的一种启发式方法,它是在分枝定界方法基础上发展起来的,它使用启发式方法估计k个最好的路径,仅从这k个路径出发向下搜索,即每一层只有满意的结点会被保留,其它的结点则被永久抛弃,从而比分枝定界法能大大节省运行时间。束搜索于20 世纪70年代中期首先被应用于 人工智能领域,1976 年Lowerre在其称为 HARPY的语音识别系统中第一次使用了束搜索方法。他的目标是并行地搜索几个潜在的最优决策路径以减少回溯,并快速地获得一个解。

二分取中查找算法
一种在有序数组中查找某一特定元素的搜索算法。搜素过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜素过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。这种搜索算法每一次比较都使搜索范围缩小一半。

Branch and bound
分支定界算法是一种在问题的解空间树上搜索问题的解的方法。但与回溯算法不同,分支定界算法采用广度优先或最小耗费优先的方法搜索解空间树,并且,在分支定界算法中,每一个活结点只有一次机会成为扩展结点。

数据压缩
数据压缩是通过减少计算机中所存储数据或者通信传播中数据的冗余度,达到增大数据密度,最终使数据的存储空间减少的技术。数据压缩在文件存储和分布式系统领域有着十分广泛的应用。数据压缩也代表着尺寸媒介容量的增大和网络带宽的扩展。

Diffie–Hellman密钥协商
Diffie–Hellman key exchange,简称“D–H”,是一种安全协议。它可以让双方在完全没有对方任何预先信息的条件下通过不安全信道建立起一个密钥。这个密钥可以在后续的通讯中作为对称密钥来加密通讯内容。

Dijkstra’s 算法
迪科斯彻算法(Dijkstra)是由荷兰计算机科学家艾兹格·迪科斯彻发明的。算法解决的是有向图中单个源点到其他顶点的最短路径问题。举例来说,如果图中的顶点表示城市,而边上的权重表示着城市间开车行经的距离,迪科斯彻算法可以用来找到两个城市之间的最短路径。

动态规划
动态规划是一种在 数学和计算机科学中使用的,用于求解包含重叠子问题的最优化问题的方法。其基本思想是,将原问题分解为相似的子问题,在求解的过程中通过子问题的解求出原问题的解。 动态规划的思想是多种算法的基础,被广泛应用于计算机科学和工程领域。比较着名的应用实例有:求解最短路径问题,背包问题,项目管理,网络流优化等。这里也有一篇文章说得比较详细。

欧几里得算法
在 数学中,辗转相除法,又称 欧几里得算法,是求 最大公约数的算法。辗转相除法首次出现于 欧几里得的《几何原本》(第VII卷,命题i和ii)中,而在中国则可以追溯至 东汉出现的《九章算术》。

快速傅里叶变换(FFT)
快速傅里叶变换(Fast Fourier Transform,FFT),是离散傅里叶变换的快速算法,也可用于计算离散傅里叶变换的逆变换。快速傅里叶变换有广泛的应用,如数字信号处理、计算大整数乘法、求解偏微分方程等等。

哈希函数
HashFunction是一种从任何一种数据中创建小的数字“指纹”的方法。该 函数将数据打乱混合,重新创建一个叫做散列值的指纹。散列值通常用来代表一个短的随机字母和数字组成的字符串。好的散列 函数在输入域中很少出现散列冲突。在散列表和数据处理中,不抑制冲突来区别数据,会使得数据库记录更难找到。

堆排序
Heapsort是指利用堆积树(堆)这种 数据结构所设计的一种排序算法。堆积树是一个近似完全二叉树的结构,并同时满足堆积属性:即子结点的键值或索引总是小于(或者大于)它的父结点。

归并排序
Merge sort是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

RANSAC 算法
RANSAC 是”RANdom SAmpleConsensus”的缩写。该算法是用于从一组观测数据中估计 数学模型参数的迭代方法,由Fischler and Bolles在1981提出,它是一种非确定性算法,因为它只能以一定的概率得到合理的结果,随着迭代次数的增加,这种概率是增加的。该算法的基本假设是观测数据集中存在”inliers”(那些对模型参数估计起到支持作用的点)和”outliers”(不符合模型的点),并且这组观测数据受到噪声影响。RANSAC 假设给定一组”inliers”数据就能够得到最优的符合这组点的模型。

RSA加密算法
这是一个公钥加密算法,也是世界上第一个适合用来做签名的算法。今天的RSA已经 专利失效,其被广泛地用于 电子商务加密,大家都相信,只要密钥足够长,这个算法就会是安全的。

并查集Union-find
并查集是一种树型的 数据结构,用于处理一些不相交集合(Disjoint Sets)的合并及查询问题。常常在使用中以森林来表示。

Viterbi algorithm
寻找最可能的隐藏状态序列
等等这些,算法很多。

⑹ 时间序列分析的具体算法

用随机过程理论和数理统计学方法,研究随机数据序列所遵从的统计规律,以用于解决实际问题。由于在多数问题中,随机数据是依时间先后排成序列的,故称为时间序列。它包括一般统计分析(如自相关分析、谱分析等),统计模型的建立与推断,以及关于随机序列的最优预测、控制和滤波等内容。经典的统计分析都假定数据序列具有独立性,而时间序列分析则着重研究数据序列的相互依赖关系。后者实际上是对离散指标的随机过程的统计分析,所以又可看作是随机过程统计的一个组成部分。例如,用x(t)表示某地区第t个月的降雨量,{x(t),t=1,2,…}是一时间序列。对t=1,2,…,T,记录到逐月的降雨量数据x(1),x(2),…,x(T),称为长度为T的样本序列。依此即可使用时间序列分析方法,对未来各月的雨量x(T+l)(l=1,2,…)进行预报。时间序列分析在第二次世界大战前就已应用于经济预测。二次大战中和战后,在军事科学、空间科学和工业自动化等部门的应用更加广泛。
就数学方法而言,平稳随机序列(见平稳过程)的统计分析,在理论上的发展比较成熟,从而构成时间序列分析的基础。
频域分析 一个时间序列可看成各种周期扰动的叠加,频域分析就是确定各周期的振动能量的分配,这种分配称为“谱”,或“功率谱”。因此频域分析又称谱分析。谱分析中的一个重要是统计量,称为序列的周期图。当序列含有确定性的周期分量时,通过I(ω)的极大值点寻找这些分量的周期,是谱分析的重要内容之一。在按月记录的降雨量序列中,序列x(t)就可视为含有以12为周期的确定分量,所以序列x(t)可以表示为 ,它的周期图I(ω)处有明显的极大值。
当平稳序列的谱分布函数F(λ)具有谱密度ƒ(λ)(即功率谱)时,可用(2π)-1I(λ)去估计ƒ(λ),它是ƒ(λ)的渐近无偏估计。如欲求ƒ(λ)的相合估计(见点估计),可用I(ω)的适当的平滑值去估计ƒ(λ),常用的方法为谱窗估计即取ƒ(λ)的估计弮(λ)为 ,式中wt(ω)称为谱窗函数。谱窗估计是实际应用中的重要方法之一。谱分布F(λ)本身的一种相合估计可由I(ω)的积分直接获得,即 。研究以上各种估计量的统计性质,改进估计方法,是谱分析的重要内容。时域分析 它的目的在于确定序列在不同时刻取值的相互依赖关系,或者说,确定序列的相关结构。这种结构是用序列的自相关函0,1,…)来描述的,为序列的自协方差函数值,m=Ex(t)是平稳序列的均值。常常采用下列诸式给出m,γ(k),ρ(k)的估计: ,通(k)了解序列的相关结构,称为自相关分析。研究它们的强、弱相合性及其渐近分布等问题,是相关分析中的基本问题。模型分析 20世纪70年代以来,应用最广泛的时间序列模型是平稳自回归-滑动平均模型 (简称ARMA模型)。其形状为: 式中ε(t)是均值为零、方差为σ2的独立同分布的随机序列;和σ2为模型的参数,它们满足: 对一切|z|≤1的复数z成立。p和q是模型的阶数,为非负整数。特别当q=0时,上述模型称为自回归模型;当p=0时, 称为滑动平均模型。根据x(t)的样本值估计这些参数和阶数,就是对这种模型的统计分析的内容。对于满足ARMA模型的平稳序列,其线性最优预测与控制等问题都有较简捷的解决方法,尤其是自回归模型,使用更为方便。G.U.尤尔在1925~1930年间就提出了平稳自回归的概念。1943年,Η.Β.曼和Α.瓦尔德发表了关于这种模型的统计方法及其渐近性质的一些理论结果。一般ARMA模型的统计分析研究,则是20世纪60年代后才发展起来的。特别是关于p,q值的估计及其渐近理论,出现得更晚些。除ARMA模型之外,还有其他的模型分析的研究,其中以线性模型的研究较为成熟,而且都与ARMA模型分析有密切关系。回归分析 如果时间序列x(t)可表示为确定性分量φ(t)与随机性分量ω(t)之和,根据样本值x(1),x(2),…,x(T)来估计φ(t)及分析ω(t)的统计规律,属于时间序列分析中的回归分析问题。它与经典回归分析不同的地方是,ω(t)一般不是独立同分布的,因而在此必须涉及较多的随机过程知识。当φ(t)为有限个已知函数的未知线性组合时,即 ,式中ω(t)是均值为零的平稳序列,α1,α2,…,αs是未知参数,φ1(t),φ2(t),…,φs(t)是已知的函数,上式称为线性回归模型,它的统计分析已被研究得比较深入。前面叙述的降雨量一例,便可用此类模型描述。回归分析的内容包括:当ω(t)的统计规律已知时,对参数α1,α2,…,αs进行估计,预测x(T+l)之值;当ω(t)的统计规律未知时,既要估计上述参数,又要对ω(t)进行统计分析,如谱分析、模型分析等。在这些内容中,一个重要的课题是:在相当广泛的情况下,证明 α1,α2,…,αs的最小二乘估计,与其线性最小方差无偏估计一样,具有相合性和渐近正态分布性质。最小二乘估计姙j(1≤j≤s)不涉及ω(t)的统计相关结构,是由数据x(1),x(2),…,x(T)直接算出,由此还可得(t)进行时间序列分析中的各种统计分析,以代替对ω(t)的分析。在理论上也已证明,在适当的条件下,这样的替代具有满意的渐近性质。由于ω(t)的真值不能直接量测,这些理论结果显然有重要的实际意义。这方面的研究仍在不断发展。
时间序列分析中的最优预测、控制与滤波等方面的内容见平稳过程条。近年来多维时间序列分析的研究有所进展,并应用到工业生产自动化及经济分析中。此外非线性模型统计分析及非参数统计分析等方面也逐渐引起人们的注意。

⑺ 一维实序列的快速傅里叶变换(FFT)

通过前面的分析,我们认识到傅里叶变换本身是复数运算,地球物理获取的数据大多数是实数,对于实数的变换原则上可直接套用复序列的FFT算法,但那样是把实数序列当作虚部为零的复数对待,显然需要存储虚部的零并进行无功的运算,既浪费了一倍的计算内存,又降低了约一半的运算速度。

为了不浪费不可不设的虚部内存和必然出现的复数运算,可否将一个实序列分为两个子实序列,分别作为实部与虚部构成一个复数序列,然后用复序列的FFT算法求其频谱,对合成的复序列频谱进行分离和加工得到原实序列的频谱呢?答案是肯定的,实现这一过程思路就是实序列FFT算法的基本思想。

1.实序列的傅里叶变换性质

对于一个N个样本的实序列x(k),其频谱为X(j),用Xr(j)和Xi(j)表示X(j)的实部和虚部, 表示X(j)的共轭,则

证明:已知 则

地球物理数据处理基础

上式两端取共轭,并注意到x(k)是实序列,则

地球物理数据处理基础

这就是实序列的傅里叶变换具有复共轭性。

其同样具有周期性,即

地球物理数据处理基础

2.一维实序列的FFT算法

(1)同时计算两个实序列的FFT算法

已知两个实序列h(k),g(k)(k=0,1,…,N-1),例如重磁异常平面数据中的两条剖面,或地震勘探中的两道地震记录,可以人为地构成一个复序列:

地球物理数据处理基础

设h(k)的频谱为H(j)=Hr(j)+iHi(j)

g(k)的频谱为G(j)=Gr(j)+iGi(j)

y(k)的频谱为Y(j)=Yr(j)+i Yi(j)

利用上节的复序列FFT算法,求得Y(j),即Yr(j)和Yi(j)已知,来寻找Hr(j),Hi(j),Gr(j),Gi(j)与Yr(j),Yi(j)之间的关系。

对式(8-22)作傅里叶变换:

地球物理数据处理基础

由于H(j),G(j)本身是复序列,所以不能仅从上式分离出H(j)和G(j)。应用Y(j)的周期性,容易得到

Y(N-j)=H(-j)+iG(-j)

上式取共轭:

地球物理数据处理基础

由于h(k),g(k)为实序列,对上式右端应用复共轭定理,得

地球物理数据处理基础

对式(8-23)展开,得

地球物理数据处理基础

对式(8-24)展开,并应用共轭关系,得

地球物理数据处理基础

把式(8-25)和式(8-26)与Y(j)=Yr(j)+iYi(j)进行对比,有

地球物理数据处理基础

整理得

地球物理数据处理基础

因此,对于两个实序列,通过构造一个复序列,应用复序列的FFT算法和式(8-28)的分离加工,即可得到两个实序列的频谱。

(2)计算2 N个数据点的实序列FFT算法

设有2N点的实序列u(k)(k=0,1,…,2N-1),首先按k的偶、奇分成两个子实序列,并构成复序列,即

地球物理数据处理基础

通过调用复序列FFT算法,求得y(k)的频谱为Y(j)。另记h(k),g(k)的频谱为H(j)和G(j)。

利用前面式(8-23)和式(8-24),容易求得

地球物理数据处理基础

下面分析用H(j),G(j)形成u(k)频谱的问题。记u(k)(k=0,1,…,2 N-1)的频谱为V(j),分析V(j),H(j),G(j)之间的关系,根据定义

地球物理数据处理基础

利用式(8-31)和式(8-34)可换算出u(k)的前N个频谱V(j)(j=0,1,…,N-1),还要设法求u(k)的后N个频谱V(N+j)(j=0,1,…,N-1)。利用实序列其频谱的复共轭和周期性:

(1)H(N)=H(0),G(N)=G(0),WN1=-1,得

地球物理数据处理基础

(2)由于u(k)(k=0,1,…,2N-1)是实序列,同样利用实序列其频谱的复共轭和周期性,用已求出的前N个频谱V(j)表示出后面的N-1个频谱V(N+j):

地球物理数据处理基础

由于0<2N-j<N,所以可从V(j)(j=0,1,…,N-1)中选出V(2N-j)(j=N+1,N+2,…,2 N-1),并直接取其共轭 即可得到V(N+1)~V(2 N-1),从而完成整个实序列频谱的计算。

总结以上叙述,一维实序列u(k)(k=0,1,…,2N-1)的FFT计算编程步骤如下:

(1)按偶、奇拆分实序列u(k),并构造复序列:

地球物理数据处理基础

(2)调用复序列的FFT计算y(k)的频谱Y(j)(j=0,1,…,N-1);

(3)用下式计算形成h(k),g(k)的频谱H(j)和G(j);

地球物理数据处理基础

(4)用下式换算实序列u(k)的频谱V(j)(j=0,1,…,2 N-1):

地球物理数据处理基础

[例3]求实序列样本u(k)={1,2,1,1,3,2,1,2}(k=0,1,…,7)的频谱。

解:按偶、奇拆分实序列u(k),按式(8-37)构造复序列c(j)(j=0,1,2,3),即

c(0)=1+2i; c(1)=1+i; c(2)=3+2i; c(3)=1+2i。

(1)调用复序列FFT求c(j)(j=0,1,2,3)的频谱Z(k)(k=0,1,2,3),得

Z(0)=6+7i; Z(1)=-3; Z(2)=2+i; Z(3)=-1。

地球物理数据处理基础

(3)运用公式(8-38)计算H(j),G(j):

地球物理数据处理基础

(4)根据式(8-39)求出u(k)(k=0,1,…,7)的8个频谱V(j)(j=0,1,…,7):

地球物理数据处理基础

地球物理数据处理基础

由上例可见,完成全部2 N个实序列频谱的计算只需做N次FFT计算,相比直接用复序列的FFT算法节省了约一半的计算量。

⑻ 将一组无序的数据排列成一个有序序列,写一算 法实现。并分析该算法的时间复杂度。

#include "stdio.h"
int main()
{
int a[100],n,i,j,k,tmp;
scanf("%d",&n);
for(i=0;i<n;i++)scanf("%d",&a[i]);
for(i=0;i<n;i++)//选择排序,两重循环,复杂度O(n*n)
{
k=i;
for(j=i+1;j<n;j++)
{
if(a[j]<a[k])k=j;
}
tmp=a[i];
a[i]=a[k];
a[k]=tmp;
}
for(i=0;i<n;i++)printf("%d ",a[i]);
puts("");
return 0;
}

⑼ 消除冗余序列算法

main()
{
int a[100];
int i, t,b,c;
printf("please enter 100 number.");
do
{
for(i=0;i<100;i++)
{scanf("%d",a[i]);
if(a[i]!=0||a[i]!=1)
{
break;printf("error,please enter again!");
}
else
t=0;
}
} while (t=0) ;

b=strlen(a);

for(i=b,c=1;i>0;i--)
{if (a[i]==a[i-1]==1)
c+=1;
else
break;
}
if(c>=3)
{
a[b]=2;
for(i=1;i<=c;i++)
a[b-i]=0;
a[b-c]=1;
}

for(i=0,c=0;i<b;i++)
{if(a[i]==a[i+1]==1)
c+=1;
else
break;
}
if(c>=3)
{for(i=0;i<=c;i++)
{a[i+1]=a[i];a[i+1]=0;}
a[i]=1;
a[c+1]=2;
}

}
我用的是WIN-TC遍的
已经测试过
可以通过
你可以试试

⑽ 序列比对的算法有哪些在应用上各有何特点

首先你要明白——Clustalx的多序列比对算法是基于双序列比对的,它先将所有序列两两比对,然后根据两两比对结果构建指导树,再根据指导树依次添加相似度最高的

阅读全文

与序列数据处理算法相关的资料

热点内容
喷油螺杆制冷压缩机 浏览:569
python员工信息登记表 浏览:369
高中美术pdf 浏览:153
java实现排列 浏览:505
javavector的用法 浏览:974
osi实现加密的三层 浏览:225
大众宝来原厂中控如何安装app 浏览:906
linux内核根文件系统 浏览:235
3d的命令面板不见了 浏览:520
武汉理工大学服务器ip地址 浏览:141
亚马逊云服务器登录 浏览:517
安卓手机如何进行文件处理 浏览:65
mysql执行系统命令 浏览:923
php支持curlhttps 浏览:136
新预算法责任 浏览:437
服务器如何处理5万人同时在线 浏览:244
哈夫曼编码数据压缩 浏览:419
锁定服务器是什么意思 浏览:378
场景检测算法 浏览:612
解压手机软件触屏 浏览:343