导航:首页 > 源码编译 > 效率提高的算法

效率提高的算法

发布时间:2022-07-19 04:16:48

① 效率提升怎么算

一般是算这个月比上月提高了多少个百分点。具体算法是:(本月/上月x100%)-100%

② 常见的提高消隐算法效率的方法有哪些

提高消隐算法效率的常见方法(利用连贯性,将透视投影转换成平行投影,包围盒技术,背面剔除,空间分割技术,物体分层表示)
选择好的算法, 小心地实现, 同时确定程序不做额外的事。例如, 即使世界上最优化的字符复制循环也比不上不用复制。
当担心效率时, 要保持几样事情在视野中, 这很重要。首先, 虽然效率是个非常流行的话题, 它并不总是象人们想的那样重要。大多数程序的大多数代码并不是时间紧要的。当代码不是时间紧要时, 通常把代码写得清楚和可移植比达到最大效率更重要。记住, 电脑运行得非常非常快, 那些看起来 “低效率” 的代码, 也许可以编译得比较有效率, 而运行起来也没有明显的延时。
试图预知程序的 “热点” 是个非常困难的事。当要关心效率时, 使用 profiling软件来确定程序中需要得到关注的地方。通常, 实际计算时间都被外围任务占用了 (例如 I/O 或内存的分配), 可以通过使用缓冲和超高速缓存来提高速度。
即使对于时间紧要的代码, 最无效的优化技巧是忙乱于代码细节。许多常被建议的 “有效的代码技巧”, 即使是很简单的编译器也会自动完成 (例如, 用移位运算符代替二的幂次方乘)。非常多的手动优化有可能是代码变得笨重而使效率反而低下了, 同时几乎不可移植。例如, 也许可以在某台机器上提了速, 但在另一台机器上去变慢了。任何情况下, 修整代码通常最多得到线性信能提高; 更好的算法可以得到更好的回报。

③ 如何提高apriori算法的效率

Apriori算法是关联规则挖掘中的经典算法。在Apriori算法中,使用频繁项集的先验知识,逐层搜索的迭代方法,通过扫描数据库,累积每个项的计数,并收集满足最小支持度的项,找每个Lk都需要扫描一次数据库。算法的效率随着数据量的增大,频繁项集的增多,算法的效率就非常的低,本文通过对Apriori算法分析,应用散列、事务压缩、划分、抽样等方法,最大可能的减少数据库扫描的次数,快速发现频繁项集,提高Apriori算法的效率。

④ 效率提升率计算方法

1、改变工作观念,主观上对工作充满激情,是提高工作效率的动因

一个人对某件事的主观意愿,决定了他可以付出多少激情和努力。如果主观上对工作充满抵触,在工作中不免会消极懈怠,何谈工作效率。提高工作效率,需要解决主观上的问题。

2、提升素质能力,在学习锻炼中不断进步,是提高工作效率的基础

常言说得好:“没有金刚钻别揽瓷器活”。可见能力素质对一个人的重要性。通过学习和锻炼,不断提升自身的能力素质,是保证工作效率得到提升的基础。

3、加强自我管理,掌握工作中的实用技巧,是提高工作效率的捷径

提高工作效率,光有主观意愿和工作激情,以及超人一等的才华和能力远远不够,学会时间管理、计划管理、行为养成等技巧,会起到至关重要的效果。

4、目标计划明确

每一个工作效率较高的人,都会对自己的工作有着详细的计划和规划,每一天都有明确的目标,从不会处在忙而无序的状态。每月、每周对重要工作制定一个明确目标和计划,每天对自己的工作进行小结和简单规划,然后按照要事优先的原则,去完成工作计划和工作目标,你会感觉到自己越来越轻松。

5、方法技巧实用

随着科技和信息技术的发展,越来越多的办公软件被应用到实际工作中,很多实用的技巧会帮助人们提高工作效率。在实际工作中,要努力接受新事物,不断掌握实用的交流工具、文案写作、软件操作等新技巧和新方法,会缩短无效办公时间,让自己在更加快捷方便的环境中实现工作效率的提高。

⑤ 使用什么算法解决效率最高

汇编语言实现的最有效的,但需要分配的堆栈和寄存器和内存空间的保护;能源系统的高级语言编译器分配堆栈和内存,存储器,寄存器和堆栈保护在编译阶段。
汇编语言被编译成机器语言,并与其他计算机执行。
字长的主要技术指标是衡量的准确性的计算机的运算速度跟CPU核心频率,协处理器的核心架构,流水线,高速缓存缓冲区的大小有关是否

⑥ 如何有效地提高蚁群算法算法的效率

蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型技术.它由Marco Dorigo于1992年在他的博士论文中引入,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为.
蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值.
蚁群算法是一种求解组合最优化问题的新型通用启发式方法,该方法具有正反馈、分布式计算和富于建设性的贪婪启发式搜索的特点.通过建立适当的数学模型,基于故障过电流的配电网故障定位变为一种非线性全局寻优问题.由柳洪平创建.
预期的结果:
各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物.当一只找到食物以后,它会向环境释放一种信息素,吸引其他的蚂蚁过来,这样越来越多的蚂蚁会找到食物!有些蚂蚁并没有象其它蚂蚁一样总重复同样的路,他们会另辟蹊径,如果令开辟的道路比原来的其他道路更短,那么,渐渐,更多的蚂蚁被吸引到这条较短的路上来.最后,经过一段时间运行,可能会出现一条最短的路径被大多数蚂蚁重复着.
原理:
为什么小小的蚂蚁能够找到食物?他们具有智能么?设想,如果我们要为蚂蚁设计一个人工智能的程序,那么这个程序要多么复杂呢?首先,你要让蚂蚁能够避开障碍物,就必须根据适当的地形给它编进指令让他们能够巧妙的避开障碍物,其次,要让蚂蚁找到食物,就需要让他们遍历空间上的所有点;再次,如果要让蚂蚁找到最短的路径,那么需要计算所有可能的路径并且比较它们的大小,而且更重要的是,你要小心翼翼的编程,因为程序的错误也许会让你前功尽弃.这是多么不可思议的程序!太复杂了,恐怕没人能够完成这样繁琐冗余的程序.
然而,事实并没有你想得那么复杂,上面这个程序每个蚂蚁的核心程序编码不过100多行!为什么这么简单的程序会让蚂蚁干这样复杂的事情?答案是:简单规则的涌现.事实上,每只蚂蚁并不是像我们想象的需要知道整个世界的信息,他们其实只关心很小范围内的眼前信息,而且根据这些局部信息利用几条简单的规则进行决策,这样,在蚁群这个集体里,复杂性的行为就会凸现出来.这就是人工生命、复杂性科学解释的规律!那么,这些简单规则是什么呢?下面详细说明:
1、范围:
蚂蚁观察到的范围是一个方格世界,蚂蚁有一个参数为速度半径(一般是3),那么它能观察到的范围就是3*3个方格世界,并且能移动的距离也在这个范围之内.
2、环境:
蚂蚁所在的环境是一个虚拟的世界,其中有障碍物,有别的蚂蚁,还有信息素,信息素有两种,一种是找到食物的蚂蚁洒下的食物信息素,一种是找到窝的蚂蚁洒下的窝的信息素.每个蚂蚁都仅仅能感知它范围内的环境信息.环境以一定的速率让信息素消失.
3、觅食规则:
在每只蚂蚁能感知的范围内寻找是否有食物,如果有就直接过去.否则看是否有信息素,并且比较在能感知的范围内哪一点的信息素最多,这样,它就朝信息素多的地方走,并且每只蚂蚁多会以小概率犯错误,从而并不是往信息素最多的点移动.蚂蚁找窝的规则和上面一样,只不过它对窝的信息素做出反应,而对食物信息素没反应.
4、移动规则:
每只蚂蚁都朝向信息素最多的方向移,并且,当周围没有信息素指引的时候,蚂蚁会按照自己原来运动的方向惯性的运动下去,并且,在运动的方向有一个随机的小的扰动.为了防止蚂蚁原地转圈,它会记住最近刚走过了哪些点,如果发现要走的下一点已经在最近走过了,它就会尽量避开.
5、避障规则:
如果蚂蚁要移动的方向有障碍物挡住,它会随机的选择另一个方向,并且有信息素指引的话,它会按照觅食的规则行为.
7、播撒信息素规则:
每只蚂蚁在刚找到食物或者窝的时候撒发的信息素最多,并随着它走远的距离,播撒的信息素越来越少.
根据这几条规则,蚂蚁之间并没有直接的关系,但是每只蚂蚁都和环境发生交互,而通过信息素这个纽带,实际上把各个蚂蚁之间关联起来了.比如,当一只蚂蚁找到了食物,它并没有直接告诉其它蚂蚁这儿有食物,而是向环境播撒信息素,当其它的蚂蚁经过它附近的时候,就会感觉到信息素的存在,进而根据信息素的指引找到了食物.
问题:
说了这么多,蚂蚁究竟是怎么找到食物的呢?
在没有蚂蚁找到食物的时候,环境没有有用的信息素,那么蚂蚁为什么会相对有效的找到食物呢?这要归功于蚂蚁的移动规则,尤其是在没有信息素时候的移动规则.首先,它要能尽量保持某种惯性,这样使得蚂蚁尽量向前方移动(开始,这个前方是随机固定的一个方向),而不是原地无谓的打转或者震动;其次,蚂蚁要有一定的随机性,虽然有了固定的方向,但它也不能像粒子一样直线运动下去,而是有一个随机的干扰.这样就使得蚂蚁运动起来具有了一定的目的性,尽量保持原来的方向,但又有新的试探,尤其当碰到障碍物的时候它会立即改变方向,这可以看成一种选择的过程,也就是环境的障碍物让蚂蚁的某个方向正确,而其他方向则不对.这就解释了为什么单个蚂蚁在复杂的诸如迷宫的地图中仍然能找到隐蔽得很好的食物.
当然,在有一只蚂蚁找到了食物的时候,其他蚂蚁会沿着信息素很快找到食物的.
蚂蚁如何找到最短路径的?这一是要归功于信息素,另外要归功于环境,具体说是计算机时钟.信息素多的地方显然经过这里的蚂蚁会多,因而会有更多的蚂蚁聚集过来.假设有两条路从窝通向食物,开始的时候,走这两条路的蚂蚁数量同样多(或者较长的路上蚂蚁多,这也无关紧要).当蚂蚁沿着一条路到达终点以后会马上返回来,这样,短的路蚂蚁来回一次的时间就短,这也意味着重复的频率就快,因而在单位时间里走过的蚂蚁数目就多,洒下的信息素自然也会多,自然会有更多的蚂蚁被吸引过来,从而洒下更多的信息素……;而长的路正相反,因此,越来越多地蚂蚁聚集到较短的路径上来,最短的路径就近似找到了.也许有人会问局部最短路径和全局最短路的问题,实际上蚂蚁逐渐接近全局最短路的,为什么呢?这源于蚂蚁会犯错误,也就是它会按照一定的概率不往信息素高的地方走而另辟蹊径,这可以理解为一种创新,这种创新如果能缩短路途,那么根据刚才叙述的原理,更多的蚂蚁会被吸引过来.
引申
跟着蚂蚁的踪迹,你找到了什么?通过上面的原理叙述和实际操作,我们不难发现蚂蚁之所以具有智能行为,完全归功于它的简单行为规则,而这些规则综合起来具有下面两个方面的特点:
1、多样性
2、正反馈
多样性保证了蚂蚁在觅食的时候不置走进死胡同而无限循环,正反馈机制则保证了相对优良的信息能够被保存下来.我们可以把多样性看成是一种创造能力,而正反馈是一种学习强化能力.正反馈的力量也可以比喻成权威的意见,而多样性是打破权威体现的创造性,正是这两点小心翼翼的巧妙结合才使得智能行为涌现出来了.
引申来讲,大自然的进化,社会的进步、人类的创新实际上都离不开这两样东西,多样性保证了系统的创新能力,正反馈保证了优良特性能够得到强化,两者要恰到好处的结合.如果多样性过剩,也就是系统过于活跃,这相当于蚂蚁会过多的随机运动,它就会陷入混沌状态;而相反,多样性不够,正反馈机制过强,那么系统就好比一潭死水.这在蚁群中来讲就表现为,蚂蚁的行为过于僵硬,当环境变化了,蚂蚁群仍然不能适当的调整.
既然复杂性、智能行为是根据底层规则涌现的,既然底层规则具有多样性和正反馈特点,那么也许你会问这些规则是哪里来的?多样性和正反馈又是哪里来的?我本人的意见:规则来源于大自然的进化.而大自然的进化根据刚才讲的也体现为多样性和正反馈的巧妙结合.而这样的巧妙结合又是为什么呢?为什么在你眼前呈现的世界是如此栩栩如生呢?答案在于环境造就了这一切,之所以你看到栩栩如生的世界,是因为那些不能够适应环境的多样性与正反馈的结合都已经死掉了,被环境淘汰了!
参数说明:
最大信息素:蚂蚁在一开始拥有的信息素总量,越大表示程序在较长一段时间能够存在信息素.信息素消减的速度:随着时间的流逝,已经存在于世界上的信息素会消减,这个数值越大,那么消减的越快.
错误概率表示这个蚂蚁不往信息素最大的区域走的概率,越大则表示这个蚂蚁越有创新性.
速度半径表示蚂蚁一次能走的最大长度,也表示这个蚂蚁的感知范围.
记忆能力表示蚂蚁能记住多少个刚刚走过点的坐标,这个值避免了蚂蚁在本地打转,停滞不前.而这个值越大那么整个系统运行速度就慢,越小则蚂蚁越容易原地转圈.
蚁群算法的实现
下面的程序开始运行之后,蚂蚁们开始从窝里出动了,寻找食物;他们会顺着屏幕爬满整个画面,直到找到食物再返回窝.
其中,‘F’点表示食物,‘H’表示窝,白色块表示障碍物,‘+’就是蚂蚁了.
参数说明:
最大信息素:蚂蚁在一开始拥有的信息素总量,越大表示程序在较长一段时间能够存在信息素.信息素消减的速度:随着时间的流逝,已经存在于世界上的信息素会消减,这个数值越大,那么消减的越快.
错误概率表示这个蚂蚁不往信息素最大的区域走的概率,越大则表示这个蚂蚁越有创新性.
速度半径表示蚂蚁一次能走的最大长度,也表示这个蚂蚁的感知范围.
记忆能力表示蚂蚁能记住多少个刚刚走过点的坐标,这个值避免了蚂蚁在本地打转,停滞不前.而这个值越大那么整个系统运行速度就慢,越小则蚂蚁越容易原地转圈.

⑦ 标题如何提高程序或算法的效率,有哪些切实可行的措施

提高程序或算法的效率措施:
1、优化SQL语句,查询语句中尽量不使用select,用哪个字段查哪个字段;少用子查询可用表连接代替;少用模糊查询,数据表中创建索引。
2、对程序中经常用到的数据生成缓存(如使用redis缓存数据等)。
3、对mysql做主从复制,读写分离。从而提高mysq执行效率和查询速度。
4、使用nginx做负载均衡。将访问压力平均分配到多态服务器。

⑧ 效率提升率计算方法 改善前36秒一个,改善后16秒一个,问效率提升多少

效率提升率=(改善前的效率-改善后效率)÷改善前效率×100%
=(36-16)÷36×100%
=55.6%
答:效率提升了55.6%

⑨ 如何改进此算法,使得算法效率提高

voidDeletaz(ElemTypex)
{
inti=0,j;
while(i<length&&elem[i]<x)i++;
if(i==length)cout<<”X不存在”<<endl;
else{
while(elem[i]==x)
{n++;i++;}//关键在这里
for(j=i;j<length-1;j++)
elem[j-n]=elem[j];
length=length-n;
}
}

解析:这里用了一个变量n,可以更好的解决连续出现x的情况,你可以想一下,假设数据是{1,2,x,x,x,3,3,3},按照原先的代码,连续的3个x需要连续3次运行

for(j=I;j<length;j++)elem[j]=elem[j+1];
length--;

而此处则仅需要一次,相对而言提高了效率,但是这也不是绝对的,比如:如果所有的x都不是连续出现的,那么这两个代码没什么区别!

阅读全文

与效率提高的算法相关的资料

热点内容
喷油螺杆制冷压缩机 浏览:569
python员工信息登记表 浏览:369
高中美术pdf 浏览:153
java实现排列 浏览:505
javavector的用法 浏览:974
osi实现加密的三层 浏览:225
大众宝来原厂中控如何安装app 浏览:906
linux内核根文件系统 浏览:235
3d的命令面板不见了 浏览:520
武汉理工大学服务器ip地址 浏览:141
亚马逊云服务器登录 浏览:517
安卓手机如何进行文件处理 浏览:65
mysql执行系统命令 浏览:923
php支持curlhttps 浏览:136
新预算法责任 浏览:437
服务器如何处理5万人同时在线 浏览:244
哈夫曼编码数据压缩 浏览:419
锁定服务器是什么意思 浏览:379
场景检测算法 浏览:612
解压手机软件触屏 浏览:343