㈠ GPS定位原理
GPS(Global Positioning System)即全球定位系统,是由美国建立的一个卫星导航定位系统,利用该系统,用户可以在全球范围内实现全天候、连续、实时的三维导航定位和测速;另外,利用该系统,用户还能够进行高精度的时间传递和高精度的精密定位。
现实生活中,GPS定位主要用于对移动的人、宠物、车及设备进行远程实时定位监控的一门技术。GPS定位是结合了GPS技术、无线通信技术(GSM/GPRS/CDMA)、图像处理技术及GIS技术的定位技术,主要可实现如下功能:
1.跟踪定位
监控中心能全天侯24小时监控所有被控车辆的实时位置、行驶方向、行驶速度,以便最及时的掌握车辆的状况。
2.轨迹回放
监控中心能随时回放近60天内的自定义时段车辆历史行程、轨迹记录。(根据情况,可选配轨迹DVD刻录服务)
3.报警(报告)
3.1,超速报警:车辆行驶速度超出监控中心预设的速度时,及时上报监控中心
3.2,区域报警(电子围栏):监控中心设定区域范围,车辆超出或驶入预设的区域会向监控调度中心给出相应的报警
3.3,停车报告:调度中心可对车辆的历史停车记录以文字形式生成报表,其中描述车辆的停车地点、时间和开车时间等信息,并可对其进行打印。
3.4,应急报警: 一旦遇有紧急险情(如遭劫等),请马上按动应急报警按钮,向监管中心报警,监管中心即刻会知道您处于紧急状态以及您所在的位置。经核实后,进入警情处置程序,助您脱险。(注:一旦应急报警按钮启动,此设备会立即关闭通话功能,但短信功能正常)
3.5,欠压报警,当汽车电瓶电压过低时,车载主机会自动向监控中心报警,由监控中心值班员提醒用户及时给车辆充电。
3.6,剪线报警,车辆主电瓶被破坏后或不能供电时,内置备用电池可维持产品继续工作,并向监控中心发送剪线报警。
4.地图制作功能
根据查看需要,客户可以添加修改自定义地图线路,以更好服务企业运行
5.里程统计
系统利用GPS车载终端的行驶记录功能和GIS地理系统原理对车辆进行行驶里程统计,并可生成报表且可打印。
6.车辆信息管理
方便易用的管理平台,提供了车辆、驾驶人员、车辆图片等信息的设定,以方便调度人员的工作。
7.短信通知功能
将被控车辆的各种报警或状态信息在必要时发送到管理者手机上,以便随时随地掌握车辆重要状态信息。
8.车辆远程控制
监控中心可随时对车辆进行远程断油断电,锁车功能。
9.车载电话
车载电话可以象普通手机一样拔打电话,调度中心可对此电话进行远程权限设置,即呼入限制、呼出限制、只能呼叫指定的若干电话号码。
10.油耗检测
实时监控车辆的油耗变化,并生成历史时段油量变化报表或油量曲线图,进而直观反映出油量的正常消耗与非正常消耗及加油数量不足等现象,达到油耗高水平管理,杜绝不良事件的发生。(需搭配油量传感器)
11.车辆调度
调度人员确定调度车辆或者在地图上画定调度范围,GPS系统自动向车辆或者画定范围内的所有车辆发出调度命令,被调度车辆及时回应调度中心,以确定调度命令的执行情况。GPS系统还可对每辆车成功调度次数进行月统计。 智能自检 车载终端可以进行自我诊断,一旦发生故障,就会向中心发出故障通知,方便工作人员维修,确保设备正常工作。
GPS计划始于1973年 ,已于1994年进入完全运行状态。GPS的整个系统由空间部分、地面控制部分和用户部分所组成:
空间部分(太空部分)
GPS的空间部分是由24颗GPS工作卫星所组成,这些GPS工作卫星共同组成了GPS卫星星座,其中21颗为可用于导航的卫星,3颗为活动的备用卫星。这24颗卫星分布在6个倾角为55°的轨道上绕地球运行。卫星的运行周期约为12恒星时。每颗GPS工作卫星都发出用于导航定位的信号。GPS用户正是利用这些信号来进行工作的。
控制部分
GPS的控制部分由分布在全球的由若干个跟踪站所组成的监控系统所构成,根据其作用的不同,这些跟踪站又被分为主控站、监控站和注入站。主控站有一个,位于美国克罗拉多(Colorado)的法尔孔(Falcon)空军基地,它的作用是根据各监控站对GPS的观测数据,计算出卫星的星历和卫星钟的改正参数等,并将这些数据通过注入站注入到卫星中去;同时,它还对卫星进行控制,向卫星发布指令,当工作卫星出现故障时,调度备用卫星,替代失效的工作卫星工作;另外,主控站也具有监控站的功能。监控站有五个,除了主控站外,其它四个分别位于夏威夷(Hawaii)、阿松森群岛(Ascencion)、迭哥伽西亚(Diego Garcia)、卡瓦加兰(Kwajalein),监控站的作用是接收卫星信号,监测卫星的工作状态;注入站有三个,它们分别位于阿松森群岛(Ascencion)、迭哥伽西亚(Diego Garcia)、卡瓦加兰(Kwajalein),注入站的作用是将主控站计算出的卫星星历和卫星钟的改正数等注入到卫星中去。
用户部分(地面接收)
GPS的用户部分由GPS接收机、数据处理软件及相应的用户设备如计算机气象仪器等所组成。它的作用是接收GPS卫星所发出的信号,利用这些信号进行导航定位等工作。 以上这三个部分共同组成了一个完整的GPS系统。 GPS的信号
GPS卫星发射两种频率的载波信号,即频率为1575.42MHz的L1载波和频率为1227.60MHz的L2载波,它们的频率分别是基本频率10.23MHz的154倍和120倍,它们的波长分别为19.03cm和24.42cm。在L1和L2上又分别调制着多种信号,这些信号主要有:
C/A码
C/A码又被称为粗捕获码,它被调制在L1载波上,是1MHz的伪随机噪声码(PRN码),其码长为1023位(周期为1ms)。由于每颗卫星的C/A码都不一样,因此,我们经常用它们的PRN号来区分它们。C/A码是普通用户用以测定测站到卫星间的距离的一种主要的信号。
P码
P码又被称为精码,它被调制在L1和L2载波上,是10MHz的伪随机噪声码,其周期为七天。在实施AS时,P码与W码进行模二相加生成保密的Y码,此时,一般用户无法利用P码来进行导航定位。
Y码
见P码。
导航信息
导航信息被调制在L1载波上,其信号频率为50Hz,包含有GPS卫星的轨道参数、卫星钟改正数和其它一些系统参数。用户一般需要利用此导航信息来计算某一时刻GPS卫星在地球轨道上的位置,导航信息也被称为广播星历。
SPS和PPS是GPS系统针对不同用户提供两种不同类型的服务。一种是标准定位服务(SPSStandard Positioning Service),另一种是精密定位服务(PPSPrecision Positioning Service)。这两种不同类型的服务分别由两种不同的子系统提供,标准定位服务由标准定位子系统(SPSStandard Positioning System)提供,精密定位服务则由精密定位子系统(PPSPrecision Positioning System)提供。
SPS主要面向全世界的民用用户。
PPS主要面向美国及其盟国的军事部门以及民用的特许用户。
在GPS定位中,经常采用下列观测值中的一种或几种进行数据处理,以确定出待定点的坐标或待定点之间的基线向量:
L1载波相位观测值
L2载波相位观测值(半波或全波)
调制在L1上的C/A码伪距
调制在L1上的P码伪距
调制在L2上的P码伪距
L1上的多普勒频移
L2上的多普勒频移
实际上,在进行GPS定位时,除了大量地使用上面的观测值进行数据处理以外,还经常使用由上面的观测值通过某些组合而形成的一些特殊观测值,如宽巷观测值(Wide-Lane)、窄巷观测值(Narrow-Lane)、消除电离层延迟的观测值(Ion-Free)来进行数据处理。 GPS的误差
我们在利用GPS进行定位时,会受到各种各样因素的影响。影响GPS定位精度的因素可分为以下四大类:
人为
美国政府从其国家利益出发,通过降低广播星历精度( 技术)、在GPS基准信号中加入高频抖动( 技术)等方法,人为降低普通用户利用GPS进行导航定位时的精度。
卫星星历误差
在进行GPS定位时,计算在某时刻GPS卫星位置所需的卫星轨道参数是通过各种类型的星历[7]提供的,但不论采用哪种类型的星历,所计算出的卫星位置都会与其真实位置有所差异,这就是所谓的星历误差。
卫星钟差
卫星钟差是GPS卫星上所安装的原子钟的钟面时与GPS标准时间之间的误差。
卫星信号发射天线相位中心偏差
卫星信号发射天线相位中心偏差是GPS卫星上信号发射天线的标称相位中心与其真实相位中心之间的差异。 GPS定位的基本原理是根据高速运动的卫星瞬间位置作为已知的起算数据,采用空间距离后方交会的方法,确定待测点的位置。如图所示,假设t时刻在地面待测点上安置GPS接收机,可以测定GPS信号到达接收机的时间△t,再加上接收机所接收到的卫星星历等其它数据可以确定以下四个方程式:上述四个方程式中待测点坐标x、 y、 z 和Vto为未知参数,其中di=c△ti (i=1、2、3、4)。
di (i=1、2、3、4) 分别为卫星1、卫星2、卫星3、卫星4到接收机之间的距离。
△ti (i=1、2、3、4) 分别为卫星1、卫星2、卫星3、卫星4的信号到达接收机所经历的时间。
c为GPS信号的传播速度(即光速)。
四个方程式中各个参数意义如下:
x、y、z 为待测点坐标的空间直角坐标。
xi 、yi 、zi (i=1、2、3、4) 分别为卫星1、卫星2、卫星3、卫星4在t时刻的空间直角坐标,
可由卫星导航电文求得。
Vt i (i=1、2、3、4) 分别为卫星1、卫星2、卫星3、卫星4的卫星钟的钟差,由卫星星历提供。
Vto为接收机的钟差。
由以上四个方程即可解算出待测点的坐标x、y、z 和接收机的钟差Vto 。
事实上,接收机往往可以锁住4颗以上的卫星,这时,接收机可按卫星的星座分布分成若干组,每组4颗,然后通过算法挑选出误差最小的一组用作定位,从而提高精度。
由于卫星运行轨道、卫星时钟存在误差,大气对流层、电离层对信号的影响,以及人为的SA保护政策,使得民用GPS的定位精度只有100米。为提高定位精度,普遍采用差分GPS(DGPS)技术,建立基准站(差分台)进行GPS观测,利用已知的基准站精确坐标,与观测值进行比较,从而得出一修正数,并对外发布。接收机收到该修正数后,与自身的观测值进行比较,消去大部分误差,得到一个比较准确的位置。实验表明,利用差分GPS,定位精度可提高到5米。
车用导航系统主要由导航主机和导航显示终端两部分构成。内置的GPS天线会接收到来自环绕地球的24颗GPS卫星中的至少3颗所传递的数据信息,由此测定汽车当前所处的位置。导航主机通过GPS卫星信号确定的位置坐标与电子地图数据相匹配,便可确定汽车在电子地图中的准确位置。
在此基础上,将会实现行车导航、路线推荐、信息查询、播放AV/TV等多种功能。驾驶者只须通过观看显示器上的画面、收听语音提示,操纵手中的遥控器即可实现上述功能,从而轻松自如地驾车。
㈡ gps定位的基本原理
24颗GPS卫星在离地面2万200千米的高空上,以12小时的周期环绕地球运行,使得在任意时刻,在地面上的任意一点都可以同时观测到4颗以上的卫星。
由于卫星的位置精确可知,在GPS观测中,我们可得到卫星到接收机的距离,利用三维坐标中的距离公式,利用3颗卫星,就可以组成3个方程式,解出观测点的位置(X,Y,Z)。考虑到卫星的时钟与接收机时钟之间的误差,实际上有4个未知数,X、Y、Z和钟差,因而需要引入第4颗卫星,形成4个方程式进行求解,从而得到观测点的经纬度和高程。
事实上,接收机往往可以锁住4颗以上的卫星,这时,接收机可按卫星的星座分布分成若干组,每组4颗,然后通过算法挑选出误差最小的一组用作定位,从而提高精度。
由于卫星运行轨道、卫星时钟存在误差,大气对流层、电离层对信号的影响,以及人为的SA保护政策(2000年5月1日取消),使得民用GPS的定位精度只有100米。为提高定位精度,普遍采用差分GPS(DGPS)技术,建立基准站 (差分台)进行GPS观测,利用已知的基准站精确坐标,与观测值进行比较,从而得出一修正数,并对外发布。接收机收到该修正数后,与自身的观测值进行比较,消去大部分误差,得到一个比较准确的位置。实验表明,利用差GPS,定位精度可提高到5米。
㈢ GPS怎么定位的定位原理 通俗点
GPS模块定位原理
24颗GPS卫星在离地面1万2千公里的高空上,以12小时的周期环绕地球运行,使得在任意时刻,在地面上的任意一点都可以同时观测到4颗以上的卫星。
由于卫星的位置精确可知,在GPS观测中,卫星到接收机的距离,利用三维坐标中的距离公式,利用3颗卫星,就可以组成3个方程式,解出观测点的位置(X,Y,Z)。考虑到卫星的时钟与接收机时钟之间的误差,实际上有4个未知数,X、Y、Z和钟差,因而需要引入第4颗卫星,形成4个方程式进行求解,从而得到观测点的经纬度和高程。
事实上,接收机往往可以锁住4颗以上的卫星,这时,接收机可按卫星的星座分布分成若干组,每组4颗,然后通过算法挑选出误差最小的一组用作定位,从而提高精度。
由于卫星运行轨道、卫星时钟存在误差,大气对流层、电离层对信号的影响,使得民用GPS的定位精度只有10米。为提高定位精度,普遍采用差分GPS(DGPS)技术,建立基准站(差分台)进行GPS观测,利用已知的基准站精确坐标,与观测值进行比较,从而得出一修正数,并对外发布。接收机收到该修正数后,与自身的观测值进行比较,消去大部分误差,得到一个比较准确的位置。实验表明,利用差分GPS,定位精度可提高到5米。
什么是GPS模块
GPS 模块就是GPS信号接收器,它是一个可以用无线蓝牙或有线方式与电脑或手机连接,将它接收到的GPS信号传递给电脑或手机中的GPS软件进行处理。我们常说的GPS定位模块称为用户部分,它像“收音机”一样接收、解调卫星的广播C/A码信号,中以频率为1575.42MHz。GPS模块并不播发信号,属于被动定位。
GPS模块的应用关键在于串口通信协议的制定,也就是模块的相关输入输出协议格式。它主要包括数据类型与信息格式,其中数据类型主要有二进制信息和NMEA全国海洋电子协会数据信息。这两类信息可以通过串口与GPS接收机进行通信。
GPS模块通过运算与每个卫星的伪距离,采用距离交会法求出接收机的得出经度、纬度、高度和时间修正量这四个参数,特点是点位速度快,但误差大。初次定位的模块至少需要4颗卫星参与计算,称为3D定位,3颗卫星即可实现2D定位,但精度不佳。GPS模块通过串行通信口不断输出NMEA格式的定位信息及辅助信息,供接收者选择应用。
㈣ “目前船舶使用的定位系统及定位方法有哪些 ”
海事针对内河航道上的船舶安装了很多的身份识别的系统,比如船载自动 识别系统(AIS)、无线射频识别(RFID)、场间测试信号(VITS)、卫星定位、雷达等。每一个系 统都会有一个经炜度位置,这会导致后台系统无法判别哪一个经炜度的位置才是准确的。 另外,由于这些系统都是单独存在,无法与闭路电视摄像机(CCTV)进行联动,这会导致海 事部门无法通过查看CCTV视频来确认船舶的身份。现有的海事系统中CCTV与定位系统是 分离的,要么只能通过CCTV查看船舶的实时视频,要么只能通过定位系统在地图上查看船 舶的位置,这种方式有个很大的不足,海事人员无法单独通过CCTV或者AIS准确定位船舶 的信息。
【发明内容】
[0003] 针对现有技术的缺陷,本发明提供了一种船舶定位系统及方法。
[0004] 一种船舶定位系统,包括:位置信息获取单元,用于从多个不同定位端获取船舶的 多个位置信息;排序单元,用于对获取到的多个位置信息按照优先级进行排序,将优先级大 于设定阈值的多个位置信息发送至融合单元;融合单元,将优先级大于设定阈值的多个位 置信息进行融合,得出唯一的船舶经炜度坐标;监控单元,用于根据船舶经炜度坐标获取船 舶监控影像。
[0005] 可选的,所述位置信息包括船舶当前所处的经炜度、位置信息获取的时刻以及定 位端标识。
[0006] 可选的,所述对获取到的多个位置信息按照优先级进行排序,具体包括:将各定位 端所获取的船舶位置信息的时刻与当前时刻相减,得到各定位端所发送的位置信息距离当 前时刻的时长,按照时长从小到大的优先级顺序对所述多个位置信息进行排序。
[0007] 可选的,所述多个不同定位端包括413、1^10、¥几3、卫星定位、和/或雷达。
[0008] 可选的,所述将优先级大于设定阈值的多个位置信息进行融合,得出唯一的船舶 经炜度坐标,具体包括:在当前时刻t,设此时船舶的真实位置为Pt,在t时刻之前,优先级 大于设定阈值的多个位置信息中的位置坐标分别为朽、^、巧,设这三个坐标分别对应 三个点分别是A、V、G,矢量速度为%、%、%,且分别距离t时刻S、较、巧,根据该 坐标和矢量速度,计算出t时刻船舶的参考位置茗、轻、每,其中:
_1] G 点:?=?+?*? (3)
[0012] 以大地作为参考系,根据参考位置,计算A、V、G三点所对应的参心大地坐标分别 为(BA,LA,HA)、(Bv,Lv,H v)、(Bc,Lc,Hc),其中,该坐标系是以参考椭球的中心为坐标原点, 椭球的短轴与参考椭球旋转轴重合;B是大地炜度,是以过地面点的椭球法线与椭球赤道 面的夹角;L是大地经度,以过地面点的椭球子午面与起始子午面之间的夹角;H为大地高 度;
[0013] 把大地坐标转换成空间直角坐标,转换公式为:
[0015] 在空间直角坐标系中,1)以参心0为坐标原点;2)Z轴和参考椭球的短轴相重合; 3) X轴与起始子午面和赤道的交线重合;4) Y轴在赤道面上与X轴垂直,构成右手直角坐标 系O-XYZ ;在上述公式⑷中,N为椭球面卯酉圈的曲率半径,e为椭球的第一偏心率,a、b 椭球的长短半径,W为第一辅助系数;其中:a = 6378. 137km ;b = 6356. 7523141km ;
[0019] 把A、V、G三点的坐标代入上述公式(5) -(7),计算得到A、V、G相对应的空间直角 坐标分别为(XA,YA,ZA)、(Xv,Y v,Zv)、(Xs,Ys,Zs);把A、V、G三点融合成一点,令该点为S点, 算法如下:
[0021] 由此得到S点坐标为(XS,YS,ZS);为了得到经炜度坐标,把空间直角坐标转换成大 地坐标,转换公式如下:
[0022] CN 105180943 A 说明书 3/9 页
[0023] 经过融合单元处理之后,便得到唯一经炜度坐标S点为(Bs,Ls,H s)。
[0024] 可选的,所述用于根据船舶经炜度坐标获取船舶监控影像,具体包括:设得到的船 舶经炜度坐标为S点,获得摄像头与S点的水平距离a,摄像头与地面距离b是已知的,根据 直角三角形勾股定理:
[0026] 获得摄像头与S点的距离c,由此对摄像头焦距进行调整,根据该直角面,同时可 以确定该摄像头的俯角α为:
[0028] 接下来求出S点相对于摄像头的真方位角,即从某点的真北方向线起,依顺时针 方向到目标方向线间的水平夹角,采用站心地平坐标系来计算真方位角;设摄像头的位置 为M点,该点的大地坐标为(BM,LM,ΗΜ),经上述坐标转换公式(4),转换为空间直角坐标,即 (XM,YM,Zm),以M点所在的坐标系为站心直角坐标系,记为M-NEU,已知M点、S点的空间直角 坐标,根据两坐标系之间的平移旋转关系,得到:
CN 105180943 A 说明书 4/9 页
[0035] 则M点至S点的方位角为:θ = arctan(E/N) (18)
[0036] 依据定义该方位角即为真方位角,根据真方位角θ,调整摄像头位置。
[0037] -种船舶定位方法,包括如下步骤:SlOO :从多个不同定位端获取船舶的多个位 置信息;S200 :对获取到的多个位置信息按照优先级进行排序,将优先级大于设定阈值的 多个位置信息发送至融合单元;S300 :将优先级大于设定阈值的多个位置信息进行融合, 得出唯一的船舶经炜度坐标;S400 :根据船舶经炜度坐标获取船舶监控影像。
[0038] 可选的,所述位置信息包括船舶当前所处的经炜度、位置信息获取的时刻以及定 位端标识。
[0039] 可选的,所述步骤S200具体包括:将各定位端所获取的船舶位置信息的时刻与当 前时刻相减,得到各定位端所发送的位置信息距离当前时刻的时长,按照时长从小到大的 优先级顺序对所述多个位置信息进行排序。
[0040] 可选的,所述多个不同定位端包括413、1^10、¥几3、卫星定位、和/或雷达。
[0041] 本发明的有益效果是:本发明通过经炜度位置的融合算法得出经炜度后,与监控 系统进行联动,能让海事人员在视频中就能准确得知船舶的相关信息,从而可以准确的定 位船舶进行视频监控。
【附图说明】
[0042]图1是本发明船舶定位系统的结构示意图;
[0043] 图2是空间大地坐标系;
[0044] 图3是空间直角坐标系;
[0045] 图4是监控单元与S点联动示意图;
[0046] 图5是站心地平直角坐标系与空间直角坐标系示意图;
[0047] 图6是本发明船舶定位方法的流程图。
【具体实施方式】
[0048] 为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明 的【具体实施方式】做详细的说明,使本发明的上述及其它目的、特征和优势将更加清晰。在全 部附图中相同的附图标记指示相同的部分。并未刻意按比例绘制附图,重点在于示出本发 明的本发明的船舶定位系统包括依次连接的位置信息获取单元、排序单 元、融合单元、和监控单元。该系统首先通过位置信息获取单元收集所有定位端上传上来的 船舶位置信息,接着排序单元和融合单元通过相关的规则判断、计算得出唯一的一个经炜 度信息,用于精确的表示船舶的地理位置。系统将精确的地理位置发送至监控单元,监控单 元根据自已视频范围内的船舶图像结合上传上来的地理位置,可在视频中船舶的上方设计 一个浮动窗,用于显示出该船舶的相关信息。
[0051] 位置信息获取单元,其用于从不同定位端获取船舶的多个位置信息,一般而言,船 舶上会安装多种定位端,例如第一定位端(可以是AIS)、
㈤ 安卓定位如何实现GPS与cell-ID相结合的
1:安卓自带的系统GOOGLE是没有直接靠GPS功能的,他主要靠的是GPRS发射源。
2:谷歌先利用GPS卫星可以定位到你所在城市的信号塔位置,然后依靠电磁波的传播速度算法,可以大致的估算出你手机所在的地理位置,当然这个还是是弧形的,再根据直角坐标系确定最终的位置。实现cell-ID结合!
3:安卓谷歌系统在09年7月秘密启动过客户跟踪系统,利用发射源的变化和来源,可以推断出手机用户使用的类型,以及软件。
㈥ 差分GPS的算法
GPS定位是利用一组卫星的伪距、星历、卫星发射时间等观测量和用户钟差来实现的。要获得地面的三维坐标,必须对至少4颗卫星进行测量。在这一定位过程中,存在3部分误差:
第一部分误差是由卫星钟误差、星历误差、电离层误差、对流层误差等引起的;
第二部分是由传播延迟导致的误差;
第三部分为各用户接收机固有的误差,由内部噪声、通道延迟、多路径效应等原因造成。
利用差分技术,第一部分误差可以完全消除;第二部分误差大部分可以消除,消除程度主要取决于基准接收机和用户接收机的距离;第三部分误差则无法消除。
下面,我们主要介绍消除由于电离层延迟和对流层延迟引起的误差的算法。在算法中使用的时间系统为GPS时,坐标系统为WGS-84坐标系。
1.消除电离层误差的算法
我们主要通过电离层网格延迟算法来获得实际的电离层延迟值,以消除电离层误差。具体过程如下:解算星历,得出卫星位置→求电离层穿透点位置→求对应网格点→求网格4个顶点的电离层延迟改正数→内插获得穿透点垂直延迟改正数→求穿透点的实际延迟值。
2.卫星位置的计算
解算出星历数据后,加入星历修正和差分信息,便可计算出卫星位置。
从GPS OEM板接收到的是二进制编码的星历数据流,必须按照本文前面部分列出的数据结构解算星历数据,再依据IEEE-754标准将其转换为十进制编码的数据。在这里,需要解算的参数有:轨道长半轴的平方根(sqrta)、平近点角改正(dn)、星历表基准时间(toe)、toe时的平近点角(m0)、偏心率(e)、近地点角距(w)、卫星轨道摄动修正参数(cus cuc cis cic crs crc)、轨道倾角(i0)、升交点赤经(omg0)、升交点赤经变化率(odot)。
㈦ GPS定位产生偏离,怎么破
GPS处于树木遮挡、高楼林立、高架桥以及隧道和地下停车场等弱信号环境中的时候,发送的位置信息跟实际位置是有所偏差的。您是做一个什么应用呢?车载定位导航的话,可以选择一款采用能满足日益增长的车载导航对弱信号环境的高精度定位需求,即使在隧道、车库等环境下也能为车辆提供高精度定位的定位导航模块,像SKYLAB采用GNSS/INS组合导航定位技术的车载组合导航模块SKM-4DX,充分利用惯性导航系统和卫星导航系统优点,基于最优估计算法—卡尔曼滤波算法融合两种导航算法,获得最优的导航结果;尤其是当卫星导航系统无法工作时,利用惯性导航系统使得导航系统继续工作,保证导航系统的正常工作,提高了系统的稳定性和可靠性。
㈧ 什么是INS/GPS组合导航系统
组合导航是指综合各种导航设备,由监视器和计算机进行控制的导航系统。INS/GPS组合导航系统是指基于GPS卫星导航系统和惯性导航系统的组合导航系统。
组合导航系统模块充分利用GNSS卫星导航系统和惯性导航系统优点,基于最优估计算——卡尔曼滤波算法融合两种导航算法,获得最优的导航结果;尤其是当卫星导航系统无法工作时,利用惯性导航系统使得导航系统继续工作,保证导航系统的正常工作,提高了系统的稳定性和可靠性。
组合导航模块SKM-4DX采用GNSS(BDS/GPS系统联合定位)/INS(惯性导航)组合导航定位技术,凭借高精度六轴惯性器件和成熟的惯性算法,无需里程计或速度信号接入,且无严格安装要求,即使在隧道、车库等弱信号环境下也能为车辆提供高精度的定位模块。
㈨ 在惯性导航和gps组合导航系统中,卡尔曼滤波起到什么作用
GPS导航主要是全球定位导航系统,属于无线电导航方式,而惯性导航是属于自主式的导航方式,主要由陀螺仪测量三轴角速度,加速度计测量三轴线速度,但是惯性导航的缺点就是定位精度会随时间增长,GPS导航虽然定位误差小,但是容易受到外在环境干扰,因此现在多采用两种组合的导航方式。关于你提问的在GPS导航仪中运用惯性导航技术,应该是将GPS作为主要导航手段,这个时候惯性导航就是为了辅助GPS定位服务的,GPS的数据更新率低,对于高动态情况下,不能实施跟踪载体运动,采用惯性导航可以提高数据更新速度;同时在GPS丢星或者受到遮挡时,采用惯性导航可以再短期内保持较高的定位精度;还有就是通过反馈,惯性导航定位与GPS导航组合可以缩短GPS的定位时间。
㈩ 高精度GPS的算法数据是通过高精度GPS定位设备采集的
高精度GPS算法分析,坐标经纬度数据是高精度gps定位设备RTK-GPS产品采集的,为了符合水利普查GPS要求:
问:譬如说给出两个点,A(11429.3266,3703.6402 ),B(11429.1901, 3703.3329 ),给出个GPS计算距离的算法,使得算出这两点之间的实际距离最准确。看过很多的算法,每个跟每个算出的距离不一样....?
答: GPS算出的点的数值和这个点的实际值是有误差的,这个误差的参数是多少,必须知道,然后去做点校正。做好之后就是这个点的高精度数值,误差一般在米级以内,甚至可以做到分米级和厘米级的,这对不同仪器有不同的要求。
2007年 中海达国内率先推出专业级高精度GPS,打破国外品牌在国内的垄断地位.
中海达作为中国专业的GNSS/高精度GPS定位仪生产商,我们始终专注国内行业用户的专业化应用需求。为此,我们不断的研究行业,走近用户,为用户提供量身定制式的产品和服务。
Q5高精度GPS定位仪采用工业级一体化集成设计,其集GPS、Windows系统、数码相机、麦克风、3G通信、蓝牙通讯、海量存储、USB/RS232端口、SD卡扩展等多种功能于一身,是目前业内功能最强的专业级GIS数据采集器,满足您复杂环境及多样化的使用需求。
Q5高精度GPS定位仪采用高精度GNSS应用领域的测量型GPS技术,配合专业的抗干扰GPS天线,并整合主流的的系统硬件配置,为您的应用提供更高的精度、速度和稳定性。
Q5高精度GPS定位仪提供专业的GIS采集应用软件,兼容目前各种主流的GIS软件平台,实现数据的无缝对接。同时,我们为您定制各种特定要求的行业应用功能,满足您的个性化使用需求。
高精度GPS定位仪功能参数:
高端的系统配置
◆ 工业级一体化集成设计
◆ Windows CE操作系统
◆ 533MHz 高速ARM920T处理器
◆ 128M 大容量内存
◆ 3.5英寸专业级户外彩色触摸屏
专业级GPS性能
◆ 采用国际名牌高精度测量型GPS主板
◆ 内置高灵敏度抗干扰GPS天线
◆ 精度:单点定位:2.5米
SBAS:1米
实时差分:0.5米
差分后处理:0.3米
静态测量:±5mm+1ppm
集成的3G无线通信
◆ 内置工业级3G无线通信模块
◆ 可直接接收参考站(CORS)差分信息,提高定位精度
◆可实现管理中心和移动GPS终端的数据互通
◆采用电池仓内置SIM卡槽,方便插拔
直观的数字影像
◆ 内置数码相机,可实现影像信息的现场采集标注
◆ 软件自动实现GPS坐标与影像信息的匹配标注
◆ 内置麦克风、可实现语音信息的现场采集标注
方便的数据通讯
◆内置蓝牙,可方便的实现无线数据传输
◆通过蓝牙连接,可协同测距仪等进行偏距测量
◆内置Micro SD卡槽,支持大容量存储扩展
◆支持USB、RS232串口数据传输
专业的采集软件
Hi-Q 数据采集软件是专业为GIS应用而设计的高效率GIS数据采集和更新的移动GIS平台软件,它能轻松的帮您实现点、线、面、图形等复杂GIS外业数据的工作要求。
◆ 图形化软件界面,形象易懂,操作简单
◆ 方便的数据字典编辑功能,支持预先录入及野外实时编辑
◆ 提供多种位置数据和属性信息的采集方式
◆ 可导入多种格式的栅格图、矢量图作工作底图
◆ 方便的长度、距离、面积计算功能
◆ 支持数码相机拍照、声音文件录制
◆ 提供多种工作模式选择:SBAS、实时差分、后处理、静态采集等
◆ 可协同测距仪、探测仪等设备实现多方式协作采集
◆ 支持无线及远程数据通信,实时数据互传
◆ 模块化设计,可根据客户需求灵活定制各种行业软件
◆ 成熟的全球版坐标系统转换算法